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I. Introduction 

Let G = G ( F )  be a split reductive group with connected center over a p-adic 
field •. In [KL2]  (see also [G]), the classification of the irreducible representa- 
tions with Iwahori  fixed vectors is obtained. This is a special case of a more 
general conjecture of Langlands [Ln]  and is achieved as follows. Let J be 
an Iwahori  subgroup of G and ~ f  = oVf(G//J) the algebra of J -b i invar ian t  com- 
pactly supported functions on G. The category c#( j )  of admissible modules 
generated by their Iwahori  fixed vectors is naturally equivalent to the category 
cg(jf)  of finite dimensional ~f-modules.  The equivalence from ~ ( J )  to ~ ( J f )  
is V~--, V J. Under  this equivalence V is hermitian precisely when V J is hermitian. 

A long standing question is whether the unitarity of V can be detected 
on V J (see [B, C]). The main result in this paper  is the following. 

Theorem 1.1. An irreducible real hermitian module V6c~(J) is unitary if and only 
if VJ 6C~(Jf) is unitary. 

The proof of Theorem 1.1 relies heavily on the classification of irreducible 
~Vf-modules in [KL2]  and the idea of the signature of a hermitian module 
in [-V 2]. 

The methods employed are valid for arbitrary infinitesimal character. How- 
ever Corollary 4.8 is false for non-real infinitesimal character. Therefore the 
assumption that V be real hermitian in Theorem 1.1 is essential. We hope to 
treat the general case in a subsequent paper  using different techniques. 

Let K=~r  be a special maximal compact  subgroup of G. As a corollary 
to our methods, we obtain a characterization of the irreducible ~f-modules  
in terms of their ~ w = ~ ( K / / . . r  structure. This can be thought an analogue 
of the classification of (fl, K) modules over P, in terms of their lowest K-types 
IV 1]. This is the content of Theorems 4.6 and 6.3. 

Iwahor i -Matsumoto  have defined an involut ion '  on cg(ovf) hence cg(j),  which 
preserves hermitian representations. The involution ' preserves unitarity on 
~(J f ) .  As an immediate corollary of Theorem 1.1, we have 

Theorem 1.2. The involution ' on real representations of ~ ( J )  preserves unitarity. 
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As an app l i ca t i on  of  T h e o r e m  1.2, we ob t a in  a large class of un i t a ry  i sola ted  
K-spher ica l  representa t ions .  They can  be descr ibed  as follows. Let  LG =LG((E) 
be the complex  g roup  dual  to  G. Every  m a p  

~: SL(2, ~)-~L~ (1.1) 

gives rise to a real t empered  i r reducible  r ep resen ta t ion  V~. In T h e o r e m  8.1 we 
show tha t  W , =  V~ is K-spher ica l .  By Theo rem 1.2, the W,'s are  uni tary .  They 
can be viewed as a special  case of the more  genera l  conjec ture  in [A] .  
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2. Basic results 

We es tabl ish  n o t a t i o n  and  review some bas ic  results. F ix  a Borel  s u b g r o u p  
B = Ao No of  G. In the  n o t a t i o n  of [ H C ]  and  [BW] ,  let 

a*=X(Ao) |  and  a o = H o m ( X ( A o ) , ~ ) .  (2.1) 

Let  (,) deno te  a Wey l  g r o u p  invar ian t  inner  p roduc t  on  the complexi f ica t ion  
(a*)c of  a*. F o r  P = M N  = B, a pa r abo l i c  subgroup ,  let 

a* =X(M)| a~), a= Hom(X(M), JR) (~ ao), 

and H: M ~ a be the Harish-Chandra map. (2.2) 

If  A is a max ima l  spli t  t o rus  in the  center  of  M, view X(A)  as a subset  of 
a*. If a is an  admiss ib le  r ep resen ta t ion  of  M and  w a * ,  let I (P,a ,  v) denote  
the induced  represen ta t ion  o f  r ight  t r ans la t ion  on  the space of funct ions  

{ f :  G ~ V,I f local ly  cons tan t  and  

f (m n g) = 61/2 (m) a (m) qV(n(,,))f (g)}. (2.3) 

We call the r ep resen ta t ion  I (v)=I(P,  a, v) where  P = B and  a is the tr ivial  repre-  
sen ta t ion  of  A o, an  unramif ied  p r inc ipa l  series and  any  subquot ien t  of  it an 
J - s p h e r i c a l  representa t ion .  The  fol lowing well k n o w n  theo rem justifies the  te rm 
J - s p h e r i c a l .  

Theorem 2.1. I f  a is a subquotient of  I(v), then a has a nonzero lwahori f ixed 
vector. Conversely, if X is an irreducible admissible representation of  G with 
a nonzero Iwahori f ixed vector, then X occurs as a subquotient of some l(v). 
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Let be(J) be the category of (equivalence classes of) admissible G-modules 
whose subquotients are generated by their J-fixed vectors. Let 

) f  = ) f  (G/ /J )  = compactly supported J-biinvariant  functions on G. (2.4) 

This is an algebra under convolution. Moreover, ) f  acts on the set V s of 
J-fixed vectors of any admissible representation (n, V) by 

re(f) v--- ~ / (g)  7r(g) vdg(v~ V ~ , f ~ ) f ) .  (2.5) 
G 

Denote by be()f) the category of finite dimensional )f-modules. 

Theorem 2.2. The map 

V~-* V s 

is an equivalence of categories between be(J) and be(oXt~). 

Borel has shown in [B] that the inverse functor is 

V s ~ C~ (G/J)|  V s. (2.6) 

Kazhdan and Lusztig classify the irreducible objects in be()f). 
An admissible representation (re, V) of G is hermitian if there is a hermitian 

form ( , )  on V such that 

(~(g) v, w) = (v, zt(g- l) w) (v, w~ V, g~G). (2.7) 

If (Tr h, V h) denotes the hermitian dual of (rt, V), then (re, V) is hermitian if and 
only if (re, V)~ (Tr h, Vh). One can also define the notions of hermitian and unitarity 
for ) f .  Indeed, ) f  is a * algebra with 

f*  (g) = f ((g)--~) ( f ~ ) f ,  g ~ G). (2.8) 

An )f -module  E is hermitian if there is a hermitian form ( , )  on E such that 

(re(f)  v, w)  = (v, re(f*) w)  (v, we  E, f e g/f). (2.9) 

In the equivalence of categories between be(J) and be()f), it follows from (2.6) 
that the property of being hermitian is preserved. In one direction, we merely 
restrict the form on V to V s. In the other direction the form is given by 

( f l |  , f 2 |  = (zr(f* * f O vl , Vz)v , .  (2.10) 

Clearly, if V is unitary, then so is V s. 
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3. Standard and simple modules 

We review the Langlands conjecture. Let WF be the Weil group of IF. The 
basic facts about  WF can be found in IT]. A homomorphism 

qS: WF X SL(2, 112) ~ LG (3.1) 

is admissible if the closure of qS(WF) is reductive. According to a conjecture 
of Langlands [Ln], refined later by Langlands, Deligne and Lusztig, to each 
admissible homomorphism ~b there should correspond a finite packet H(qS) of 
representations of G(IF). Furthermore, as one varies over all LG conjugacy classes 
of q~'s, the packets H(q~) should partition the representations of G. 

Langlands and Deligne have envisioned a description of those qS's for which 
the representations H(~b) are J-spherical.  Let IF be the inertia subgroup of 
WF so that WF/IF=Z. Denote the Frobenius generator by ~v. Then, conjecturally, 
the J-spherical  packets are parameterized by admissible qS's satisfying 

q5: WF/I~ X SL(2, I1;) ~ LG. (3.2) 

The condition of admissibility is that s =  q~(~v) be semisimple. Call these ~b's 
/F-spherical. This is often reformulated with the aid of the Jacobson-Morozov 
Theorem. Let 

e = [ ~  10], h= [~  _~] ,  f = [ O  1 00] (3.3) 

be the standard triple in the Lie algebra sl(2, II;). Set 
element and u = ~b(exp(e)), a unipotent element. Then, 
parameters are pairs of commuting elements 

s = q~ (m), a semisimple 
the J-spherical  packet 

(s, u): s semisimple, u unipotent. (3.4) 

Denote by q the order of the residue field of IF. The element s is often replaced 
by 

~r = s. ~b (exp (log(q)/2) h). (3.5) 

The J-spherical  packets are then parametrized by pairs 

(a, u): a semisimple, u unipotent with a u a -  1 = u q. (3.6) 

The members of a packet H(~b) have a conjectural parametrization in terms 
of a component group. Let ~ be the center of LG and C(a, u) the centralizer 
of a and u in LG. Then, conjecturally, the members of H(~b) are parametrized 
by representations of the component group 

A(qS, u)= C ( ~, u)/[ C ( 4), u) ~ ~.~]. (3.7) 

The data (u,a,q,p), p~A(4),u) is called the L-group data of an J-spherical  
representation. In their proof of the Langlands conjecture, Kazhdan and Lusztig 
construct a packet of ~ - m o d u l e s  for each pair (qS, u). Their construction is 
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in fact more general. To describe their work we need to review the generic 
affine Hecke algebra. 

Let B = A o No be the Borel subgroup in Sect. 2. Denote by (W, S) the Weyl 
group of G. Let ~ denote the weight lattice of a maximal torus in LG. Observe 
that ~ can be viewed as the group Horn [X(A0): Z].  There is a canonical action 
L~--~w(L), (we W,, Le~)  of W on ~.  For  seS, let ~ H o m [ ~  : 2g] be the coweight 
corresponding to s. The generic affine Hecke algebra is the abstract algebra 
H ( X )  over II2[X, X -  1] with generators T~, (seS), 0 L, (Le~) and the relations 

T ~ 2 = X + ( X - 1 )  r~ for seS, 

T~ T~, Ts . . . .  T~, ~ T~ . . . .  s 4: s', m factors on both sides, 

where m is the order ofss' in W, 

~Osa~)=OL T~- (X-1)Oc  whens~S, Le~andc~(L)=l ,  (3.8) 

T~O~L)=OL TswhenseS, L e ~  and c~(L)=0, 

OL OL,=OL@L , , L, E e ~ ,  
OL, = 1 when L is the trivial element o f ~ .  

The subalgebra ~ffw(X) generated by the Tjs is the generic Hecke algebra 
of (W, S). Denote by .;4~(1), the specialization of ~ ( X )  to X = I. It is clear that 
~ ( 1 )  is the group algebra C [ W ~ ] ,  while ~w(1) is 112 [W]. When X is specialized 
to q, Bernstein has shown that 

~ff(q) and ~ are naturally isomorphic. (3.9) 

We are now ready to explain the work of Kazhdan and Lusztig. For q5 
satisfying (3.2), let M, denote the complex variety of Borel subgroups of LG 
containing u =exp(e) (notation 3.3). Decompose 

s = qb(vJ) = se sh (3.10) 

into its compact and hyperbolic parts. Let (Se) (resp. (Sh)) denote the smallest 
diagonalizable algebraic subgroup LG containing Se (resp. Sh). Define M cLG 
xlE • by 

M =  {(g, 1)lge (se)} x {(g, 1)lge(s ,)} x {(exp(yh), e2Y)lye~ }. (3.11) 

The group M acts on Nu by 

(g, t). B =gBg-  t((g, t)eM, BeCCu). (3.12) 

Kazhdan-Lusztig define an action of ~ ( X )  on the M-equivariant K-homology 
group KM(~,). This K-group is a free R(M)-module. Any meM, determines, 
by evaluation at m, an algebra homomorphism #m : R (M) --* IlL Set 

KM(M.)m = lI2| KM(Mu) (3.13) 

where K M is K-homology as in [KL2] ,  Sect. 1.3. 
Let P2: LG x Ir • --* C • be the projection map to the second factor, and set 

t=p2(m ). Then, KM(Mu),, is a module for J f  (t). The group A(s, u) acts on KM(M,) 
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in a fashion which commutes with 3f (X)  and specialization. For  pe3(u ,s ) ,  
define a standard module 

~r m, 0 = HomA (., s) [p: K M (M.)m] (3.14) 

whenever it is nonzero. 

Theorem 3.1. ( [KL2]  7.11) Fix t~lE • which is not a root of  unity. For each 
map 

49: Wr/IF x SL(2, II;) ~ LG 

let 

m = (49 (w exp ((log(t)/2) h)), t). (3.15) 

Then 
(1) The standard module JC,,,,,p has a unique simple quotient s which 

we call the Langlands quotient. 
(2) Every simple module of ~ ( t )  is obtained in this fashion. 
The map 49 is said to be 

real if Se = 1, 

tempered if Sh = 1, 

L 2 if tempered, and no nontrivial torus Tcentralizes both s and u. 

(3.16) 

When s = l ,  the p's defining standard modules coincide with those occuring 
in the Springer representation. 

Theorem 3.2. ( [KL2]  8.2, 8.3) Assume t=q.  ldentify ~'~(q) with .~. Let g(O,P) 
be the representation of G whose lwahori f ixed vectors afford 5f~, ~, ~, p. Then 

(1) ~(0, P) is tempered if and only if 49 is tempered (here, ,~'.,s,q,p = 5Qs, q,p), 
(2) ~(49, p) is square integrable if and only if 49 is L 2. 

The packet H(49) is defined to be the set 

H ( r  { ~.~.q.ol peA(u,  s) and J/g,,.~.q.o , O}. (3.17) 

In the next result we specialize X to 1. We focus on a real packet. Here, 
the group M is connected. Choose m to be 1. Let K(~u) be the K-homology 
group (over tE) of ~ , .  As an immediate consequence of Proposition 5.i1 in 
[KL2] ,  we have the following fundamental result, important  in determining 
the ~w(t )  structure of JC/,,,~,t,o. 

Theorem 3.3. The natural map KM(~,,)I ~ K(Mu) is an isomorphism. 

A real tempered packet is a 49 which is trivial on Wv. It is thus a homomorph-  
ism 

49: SL(2, ~2)~LG. (3.18) 

By the Jacobson-Morozov Theorem, the LG conjugacy classes of 49's correspond 
naturally to unipotent conjugate classes. 
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We close this section with a review of the center of ~ ( X ) .  Let d be the 
group algebra (12~. The II;[X, X-1]-subalgebra of ~ ( X )  generated by the 0L's 
is d [X, X -  1]. The following result of Bernstein describes the center of ~ ( X ) .  

Theorem 3.4. The center of ~ ( X )  is d W [ x ,  X-1] .  

The center acts as scalars on any simple module. In analogy with real groups 
the character by which the center acts is called the infinitesimal character. A 
character of d w is a Weyl orbit in X(Ao)| The exponential map 

exp: X(Ao)| z II; ~ LG (3.19) 

maps X(Ao) |  to a maximal torus. It maps the infinitesimal character of 
2P,,s,q.o multiplied by log(q) to a conjugate of s. 

4. ~ w  Structure of tempered modules 

In this section, we determine the structure of real tempered modules. To accom- 
plish this, we need to review Springer's work on the representations of W. 

Given a unipotent element ueLG(C), consider the cohomology groups 
H* (N,,112). For  brevity, denote these groups by H*(~,) .  The centralizer C(u) 
of u in LG(II;) acts by conjugation on ~ , ;  therefore C(u) acts on H*(~,) .  The 
action is easily seen to factor to the component group 

A ( u )  = c(u)/EC(u) ~ ~ r ] .  (4.1) 

For p e l i  (u), let H* (~u) ~ be the p-component of H* (~,), i.e. 

H* (~,)o = HOmA(u ) [p: H* (Nu)]. (4.2) 

Springer has defined an action of W on H* (~,) and proved the following funda- 
mental result. 

Theorem 4.1. 
(1) The actions of W and A(u) commute. Thus, W acts on each H*(~,)  p, 

peA(u). 
(2) The natural map 

H* (~) ~ H* (~,) 

induced by the inclusion ~ ,  c ~ is W-equivariant. 
(3) For p~A(u), the representation a(u,p) of W on H2~"(~,) (d,=dirnr 

is irreducible or zero. 
(4) a(u, 1)*0.  
(5) Every a~ VV occurs as some a(u, p) with (9, and p uniquely determined. 

The map 

(u, p)~--~a(u, p) (4.3) 
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is called the Springer correspondence, and the data (u, p) Springer data. The 
Springer correspondence has been calculated explicitly. Let sgn denote the sign 
character of W. 

Proposition 4.2. When u is the principal unipotent element, A (u) is trivial and 

a(u, 1)= sgn. 

Corollary 4.3. For any unipotent element u, the action of W on H~ 1 is the 
sgn representation. 

Proof The variety ~u  is connected; hence H ~ 1 7 6  The action 
of W on this one dimensional space now follows from the Proposition 4.2 and 
Theorem 4.I part (2). 

For  suggestive notational convenience, call the representation of W on 
H*(~ , )  p a standard module for W Borho and MacPherson have shown 

Theorem 4.4. 
(1) Homw[a(u,p): Hi(~u)]-~O if" i:~2du. 
(2) Homw[a(x,p):H*(~,)]=O for u r  x. 

Theorem 4.4 says that the standard modules of W form a basis for R(W), 
and the change of basis matrix between the standard and irreducible modules 
bases of R(W) is (with a suitable ordering) upper triangular. 

Let H . (~u)  be the direct sum of the homology groups with coefficients in 
C. This group is also dual to H*(~u) and therefore carries a natural action 
of ~ W  induced by the Springer action in eohomology. 

We now define an action of ~ W  on the standard modules ~#,,s,t,p. Consider 
the group algebra O,[X 1/2, X-1/2] W and the Hecke algebra YgQ~x,/~,x-,/~j over 
O~[X 1/2, X-1/2] defined by generators T~(seS), OL(LeN) and the relations (3.8). 

Theorem 4.5. [Ls l ]  There is a natural map 

z: O~[X 1/~, X-1/2]W-~ ~ t x , ~ , x  - ,~l, 
(4.4) 

t(w')=~fw,,wTw, L , . ~ E X ' / Z , X  -1/2] 
W 

which becomes an isomorphism when O~ IX 1/2, X-1/2] is extended to ~(X1/2). 

If X is specialized to t ~  • which is not a nontrivial root of unity, we 
obtain an isomorphism 

z,: ~ W ~  ~w( t ) .  

This allows us to view ~[,,~,,,p as a ~W-module.  
We are ready to determine the J~w(X) structure of real modules. Fix a 

real /F-spherical map  ~b (notation (3.2)). In this case, the group M of (3.11) 
is 

M = {(g, 1)l g6(sh)} • {(exp(yh), e2y)IyG(F }. (4.5) 

The algebra R(M) is a Laurent palynomial algebra in several variables. 
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Theorem 4.6. For dp real and meM, KM(~,)m and H,(M.) are isomorphic as 
ffgW modules. 

This is a rephrasing of Theorem 6.4 in [Ls3]. Its proof will appear in [Ls4]. 
To give some idea of the proof, we show how KM(~.) and K(~ , ) l  are 

equivalent as IEW modules. 
The K-group KM(M,) is a finite rank free module over R(M). Pick a basis 

e l ,  e2 ,  . . . ,  ea of KM(M,,) as an R(M)-module. For  seS and L e ~ ,  write 

T=(ei)=~fi=jej, fiTj~R(M), (4.6a) 
i 

OL(e~)=~f~~ f~jeR(M). (4.6b) 
i 

Let 
0~: M x  W-411; 

(4.7) 
(m, w) ~--> trace (w, KM(~.),.). 

We conclude from Theorem 4.5 and (4.6) that Om is a Laurent polynomial in 
several variables. Fix an irreducible representation E of W. Let Oe be the charac- 
ter of E. The multiplicity of E in KM(~u)~ is of course 

de(m) = I WI-a ~" O,,(w) Ze(w). (4.8) 

This is a Laurent polynomial, which is integer valued. Thus dE is constant, 
indeed equal to dE(0, 1)), the multiplicity of E in H,(~u).  Hence KM(~,),~ and 
KM(M,)~ ~ K(~u) are equivalent modules of W. 

Remark. By property (1.3.m2) in [KL2] ,  there is a natural isomorphism 

C: K (~u) ~ H ,  (~,) (4.9) 

which is A(u)-equivariant. The difficulty is to show that this map is also W- 
equivariant. The fact that these are equivalent as (I;W modules follows from 
the proof in [Ls4]. The stronger equivariance statement is not known. 

We say more about the real tempered case. Here, 

M = {(exp (y h), e z r)l Y e 112}, (4.10) 

so R ( M ) = ~ [ X ,  X-a]. The groups A(u, s) and A(u) coincide. They act on the 
K-group KM(~.). For peA(u), set 

Jr o = H~ KM (~r �9 (4.11) 

The group J/,,,o is a finite rank free module over R(M)=IF.[X,X-i] .  When 
X is specialized to t, the resulting module is J///~,s,,... The above proof applies, 
to yield 

Theorem 4.7. For ~ real tempered and m as in (3.15), ,~',,m,, and H , ( ~ u )  p a re  

equivalent IF.W-modules. 

Corollary 4.8. As Jfw(q)-modules, the real tempered representations of J f  are 
linearly independent. 

Proof This is an easy consequence of Theorem 4.7 and the remark after Theo- 
rem 4.4. 
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5. Signature theorem 

In this section, we establish the p-adic analogue of a fundamental result of 
Vogan in [V2]. It says the signature character of an J-spherical  hermitian 
module V can be expressed in terms of K-characters of tempered modules. The 
methods employed are Vogan's ideas transposed to the p-adic setting. We begin 
by recalling the Langlands classification (see [BW, S]) of representations in 
terms of tempered representations. In the notation of section 2, fix a Borel 
subgroup B = A  0 N o of G and a parabolic subgroup P = M N = B .  Let a be a 
tempered representation of M, and yea* satisfying (v ,a)>0 for all roots ~ of 
A occuring in N. Let b7 denote the unipotent radical opposite to N and P =  MN. 
Then 

Theorem 5.1. 
(1) There is an absolutely convergent integral intertwining operator 

so that 

L~': I(P, a, v)= Inde~(a|  I(P, a, v)=Ind~-(a| 

( ~  f ) (x )  = ~ f ( n x )  dn 

J ( a |  a, v)/ker 

is the unique irreducible quotient of I (P, a, v). 
(2) Any irreducible admissible representation ~z of G occurs uniquely as some 

J(a| The parameter v is called the LangIands parameter and denoted by 2~. 
(3) I f  ~ is an irreducible constituent of l (P,a,v) ,  then ).~<v with equality 

occuring if and only if r =J(a|  

The irreducible hermitian representations are those J(a |  for which there 
is an wEWeyl(G, A) satisfying 

- v = w ( v )  and a~w(a) .  (5.1) 

In this situation, I(P, a, v) admits a possibly degenerate hermitian form as 
follows. Pair the two spaces I(P, a, v) and I(P, a, - v )  via the natural pairing 

( f l , f2)  = S (fl(g),f2(g)>~ dg ( f ~ I ( P , a ,  v) , f2~l(P,a,  -v)) .  (5.2) 
G 

Because of (5.1), there is a choice of an isomorphism ? between l ( P , a , - v )  
and I(P, a, v) such that the hermitian form on I(P, a, v) is given by 

( f , , f 2 )=( f , ,  ~-'  ~e f2). (5.3) 

The choice of 7 depends on the isomorphism a ~w(a)  and not on v. The radical 
of ( , )  is precisely ker LP. The quotient form on J(a|  is a nonzero multiple 
of the unique hermitian form. 
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Suppose ~=J(a |  is J-spherical. Let (u,z,q,p) be the L-group data for 
n. The infinitesimal character of rc is 

X, =logq(r). (5.4) 

where s~ and Sh are the Let sq denote ~b(exp(log(q)/2)h). Write ~ as r=SeShSq, 
elliptic and hyperbolic parts of q5 (w) respectively. Then 

v=lOgq(Sh) and Re(g~)=logo(shsq). (5.5) 

Fix a special maximal compact subgroup K containing J .  Under the appro- 
priate conventions, the group K is G(~) the ~-rat ional  points of G, where 

is the ring of integers in F. The Hecke algebra YF(K/ /J )  is a subalgebra 
of ~r In fact, 

(K / / J )  is canonically isomorphic to ~4~w (q). (5.6) 

For ease of notation, we write Yfw for Yg(K//J) .  
Let (n, V) be an irreducible representation of G with a nonzero hermitian 

form ( , ) .  For  each irreducible representation 6 of K fix a positive definite 
hermitian form. Let V(6) be the 6-isotypical component of V. The finite dimen- 
sional space F ( b ) = H o m r [ &  V(6)] acquires a nondegenerate form from ( , ) .  
Denote the dimension and signature of F(6) by m(6) and (p(6), q(6)) respectively. 
Trivially, m(6)= p(6)+ q (3). Define the formal K-character of V to be 

Or(V ) =~m(6)6. (5.7) 
6 

Define the signature character of ( , )  to be the pair of formal sums 

(~p(6) 6, y'q(6) 6). 
O 6 

(5.8) 

Theorem 5.2. Suppose V is an irreducible J-spherical representation of G admitting 
a nonzero hermitian form ( , ) .  There are finitely many irreducible tempered J -  
spherical modules V 1 . . . . .  V. and integers a 1 . . . .  , a. and b 1 . . . . .  b n so that the signa- 
ture of ( , )  is 

(al Or(V1)+ ... +a, OK(V,), bl Or(VO+ ... +b, 0r(V,)). 

The proof of the signature theorem follows along the same lines as Vogan's 
proof [V2] in the real case. We need a few preliminary results. 

Theorem 5.3. The K-character of an ,,C-spherical representation is a linear combi- 
nation of K-characters of tempered representations. 

Proof It is enough to prove the assertion for an irreducible J-spherical  represen- 
tation V. Let (u, a, q, p) be the L-group data for V, and let ae be the compact 
part of a. Denote the set of tempered modules ~u,O,q,p with O e = a  e by 3--(ae). 
This is a finite set. Write V in the Langlands classification as J(z| The 
K-character of I(P, z, v) is that of the tempered representation I(P, r, 0). This 
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means the assertion is true when J (zNv)  equals I(P,z ,  v). Suppose they are 
not equal. Let 7r be an irreducible composition factor of I(P, z, v) different from 
J(z| Write rc in the Langlands classification as J(z'@2~), where 2~ < v. Denote 
the infinitesimal characters of V, a and a' by )~v, )~, and )(o respectively. It follows 
from 

(1) ~'~.Y(Se) 
(2) 2~ + Re (Z~,) = Re (Xv) = v + Re (Z~) 

that the length of v--2~ is bounded below by a positive number. The theorem 
follows by an induction on the length of the Langlands parameter. 

The next result is Lemma 3.9 in [V 2]. 

Lemma 5.4. Suppose V is an J-spherical representation admitting a nondegenerate 
hermitian form <, ). Let 

(~,p(6) ~, ~ q(~) ~) 

be the signature of ( ,  >. Then, there exist irreducible modules Y1, ..., Y, and irre- 
ducible hermitian modules X1 . . . .  , X m such that (in the Grothendieck group) 

V). 
i j 

Furthermore, if mj is the K-character of Yj and (Pl, qi)  is the signature character 
of Xi,  then 

p(6) = ~,pi(6) + Emit6), 
i j 

q (6) = E qi (6) + E mr (6). 
i j 

Suppose Vis an irreducible hermitian J-spherical  representation. Let J(a|  
be the Langlands classification realization of V. Since Vis hermitian, the standard 
module I(P, a, v) carries the hermitian form (5.3). This standard module is a 
member of the one parameter family 

Xt =I(P,  a, tv) (te•). (5.9) 

The representation X 0 is tempered while X1 is the standard representation 
I(P, a,v). Because of the decomposition G = P K ,  the spaces Xt, which are all 
clearly hermitian, can be realized on the fixed space of functions 

X = { f :  K -~ V~] f loca l ly  constant and 

f (mnk) = a(m) f (g) m~ m c~ K, n~ N ~ K}. (5.10) 

View L~, as an operator on X. The function t~--~7-1~t can be continued to 
a meromorphic operator. The operators ? - 1 ~  can be multiplied by a mero- 
morphic function in t which yields analytic intertwining operators t~,~ct on 
X. From this, we can construct an analytic family of hermitian forms ( ,>t  
on X, namely 

( f , , f 2 > t = ( f l , d t f z ) ,  (5.11) 
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with the property 

rad ( ( , ) , )  = ker ( ~ )  = ker (L,~) for t>0 .  (5.12) 

We need to know how the signature changes from 0 to 1. It does not change 
over intervals where the form ( , )  is nondegenerate. To determine how the 
signature changes at a reducibility point we review the Jantzen filtration of 
X at an arbitrary point to. This filtration is the sequence of subspaces 

x = x  = . . .  =xN={0} (5.13) 

defined as follows. The space X h is the set of vectors veX  for which there 
is a neighborhood U of to and an analytic function 

f,,: U-- ,X (5.14) 

satisfying 
(1) f~ takes values in a finite dimensional K-subspace of X 
(2) f~ (to) = v 
(3) Vv'~X the function t~--~(f,(t), v')t vanishes at to to order at least n. 

Define a hermitian form ( , ) "  on X" by the formula 

1 
(v, v ' ) "=  ,~to ~ ( l i m  L(t),L,(t)),, (5.15) 

where f~ and f~, are choosen as above. The limit depends only on v and v' 
and not on the particular choice of f ,  and f~,. Jantzen has shown (see Theo- 
rem 3.2 in IV 2]) 

Theorem 5.5. The form ( , )"  on X" has radical exactly X "+ 1. 

Let (p,,q,) be the signature character of ( , ) " .  The following theorem is 
Proposition 3.3 in [-V2]. 

Theorem 5.6. 
(1) For t -  to small positive, ( , ) t  has signature character 

(EP,, ~ q.)" 
n n 

(2) For  t - -  to small negative, ( , ) t  has signature character 

( Y, P,+ • q,, ~ P,+ ~ q,). 
n even n odd n odd n even 

Proof of Theorem 5.2. By Theorem 5.3 and Lemma 5.4, we may assume V is 
an irreducible hermitian representation, say V=J(a| Let t l <  ... < t , - i  be 
the points in (0, 1) where At is not an isomorphism. They are the points where 
I(P, ~, tv) is reducible. Set to = 0  and t r= 1. Let 

(p J, q J) be the signature of ( , )  on the open interval (tj_ 1, t j). (5.16) 
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Denote the Jantzen filtration of Xtj by 

X t ~ = X ~ X ~  ~ .. . .  (5.17) 

and the signature of "~,/~,n+l by (p~,q~). The representation Xo is tempered. 
Consequently v , / v  .+1 is tempered and therefore pO and qO are K-characters ~* t o / ~  to 

of tempered representations. By Theorem 5.6, both p~ and q~ are linear combina- 
tions of tempered K-characters. Exactly as in IV 2], we have 

r - 1  

signature of V = ( p  1, q l )+ ~ Z(pt2m+ 1, qtzm + 1) 
/ = 1  m 

l r r 
-- 2(qzm+,,P~,,+l)--  Z (P2,,,q2,,) 

l = l  m m > O  

(5.18) 

By induction on the length of the Langlands parameter as explained in Theo- 
rem 5.3, we can assume the result for all terms on the right; hence V also satisfies 
the hypothesis. This completes the proof. Note that, if V is real then the V{s 
can also be taken real. 

To be able to apply Theorem 5.2 to the proof of Theorem 1.1, we need 
to relate the K-character and signature character of a hermitian representation 
V to analogous characters of V ~. Let E be a hermitian ~f~-module. If 6 is 
an irreducible hermitian module of ~ ,  let (p(5),q((~)) be the signature of 
Hom~wl-6: E]. In analogy with (5.6) and (5.7), the formal ~w-character and 
signature character are 

O:,rw(E)=~(p(6)+q(5))6, and (~p(5)6,~q(6)6) 
6 6 

(5.19) 

respectively. Let ,~ be the set of irreducible representations of K occuring in 
the induced representation Ind~ 1. The map 

6 ~ 6 J (5.20) 

is a bijection between 5 p and the simple ~w-modules. Suppose E = V s. Write 
the K-character of V as the sum 

oK(v)= X m(6)6+ Z m(6)6. 
(i ~ cJ 6 r  ~ 

The ~fy-character of E is 

O~w(E)= F~ m(6)6 ~. 
6 e S f  

(5.21) 

(5.22) 

The signature character of E is gotten from that of V in the same fashion. 
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Theorem 5.7. Suppose V1 . . . . .  V,, are J-spherical real tempered representations 
of G. Then, a Z combination 

if and only if 
r 10K(V1)-t- . . .  - t -r  m OK(rm)=O 

r~ o ~ e w ( v i ' ) +  . . .  + r , , O ~ w ( V ~ ) = O .  

Proof This is a consequence of Corollary 4.8. 
As an application of Theorems 5.2 and 5.7 we prove Theorem 1.1. 

Proof of Theorem 1.1. Denote by ( , )  the hermitian form on V, and by ( , ) J  
its restriction to V ~. Assume ( , ) J  is positive. We need to show ( , )  is also 
positive. Let .Y- denote the set of J-spherical  real tempered representations 
of G. By Theorem 5.2, the signature of ( , )  can be written as a 2g combination 
of tempered K-characters 

signature o f ( , ) = (  ~ a t 0K(~ ), ~ b~ 0K(~)). (5.23) 
h e y  he3 

Then 

signature o f ( , ) " = (  ~ a, O~w(rO, ~ b~ OJew(rC)). (5.24) 

From 
(1) the linear independence of the 0aew(n)'s 
(2) and the fact that ( , ) J  is positive definite, 

we conclude the b~'s are zero. Thus ( , )  is positive. 
lwahori and Matsumoto have defined an algebra involution ' on ~ .  It 

is the specialization of the involution of ~ ( X )  given by 

T~-->-XTs -1 s~S and 0L"--~0L-I L ~ .  (5.25) 

An easy verification shows ' commutes with the �9 operation (see 2.7) on Yr. 
This means ' takes a hermitian module of W to a hermitian module. The same 
statement is also true for unitary modules. As a corollary to this observation 
and Theorem 1.1, we obtain Theorem 1.2. 

We observe here that 

' takes the infinitesimal character to its inverse. 

This follows from Theorem 3.4 and (5.25). 

(5.27) 

6. Lowest  K-types 

We explain the connection between the standard modules in the Langlands 
classification and the standard modules of Kazhdan-Lusztig. To do this we 
need to recall the interpretation of parabolic induction in terms of Hecke alge- 
bras. Fix a parabolic subgroup P =  LU containing B. The center of L is con- 
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nected. In particular, the methods of Kazhdan-Lusztig apply to L. We take 
the Iwahori subgroup of L to be the intersection 

JL =Lc~ J .  (6.1) 

The Hecke algebra 9 f  L = ]f(L//JL) can be embedded into ~ = ~(G/ /J )  as fol- 
lows. Denote by SL the set of simple reflections contained in Weyl(L, A0). Let 
~L(X) be the IE[X,X-1]-subalgebra of ~ ( X )  generated by d and T~SL. 
Let 9fL(q) be the specialization of ~L(X) to X=q. By (3.8), ~ L = ~ ( q ) .  Hence, 
it is a subalgebra of ~ = ~ ( q ) .  Suppose V is an JL-spherical representation 
of L. Bernstein has shown 

Theorem 6.1. 

(Ind,(V))" = Jg| V"L. 

Let LL be the Levi subgroup of LG dual to L. Fix an /F-spherical map r 

qS: WF/IF x SL(2, II;) -+ LL. (6.2) 

Let AL(u) denote the component group of u=q~(exp(e)) in LL, and ~ , ,  the 
variety of Borel subgroups in LL containing u. The K-group KM(~u),, is a module 
for ~t,- 

Theorem 6.2. ([KL2], 7.8) As ~~ 

KM (M,),, = ~ | KM (~u)m �9 

We are ready to compare the standard modules of Langlands and those 
of Kazhdan-Lusztig. Fix an admissible homomorphism qS, and let 05(tv)=s~sh 
be the decomposition (3.10). The centralizer LL of Sh in LG is a Levi subgroup. 
Define 

~bternp: WF/IF x SL(2, ~) ~ LL (6.3) 

by 05temp(g)=05(g), (g~SL(2,~)) and 05~r The representation r of L 
corresponding to a nonzero KM(~u),,,p is tempered. The element v=logq(sh) 
determines a positive chamber in a*. Let P=LU be the parabolic subgroup 
determined by this chamber. Then 

J/d,,,,,,p=I(P,~,v) '~ and ~ . , , . p = J ( z |  J. (6.4) 

We describe how to determine the simple quotient of a standard module 
in terms of K-types. Our description applies to the Kazhdan-Lusztig standard 
modules. This description can be transferred to the Langlands standard modules 
via (6.4) and (5.20). 

Define a partial ordering on the representations of W by 

a(u,p)<a(u',p') when u~C,,. (6.5) 

In this partial ordering, the sgn (resp. trivial) representation of W is a maximal 
(resp. minimal) element. Fix a 05 which is real. The group A(u,s) is naturally 
a subgroup of A(u) because in a connected algebraic group, the centralizer 
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of a torus is connected. For each p~,,~(u,s) we define a subset A(q~,p) of I3/ 
by 

A (q~, p) = {a (u, ~9)1 ~ a representation of A (u) containing p}. (6.6) 

In the special case when ~b is real tempered, A (u)= A (u, s) and A (~b, p )=  {a (u, p)}. 

Theorem 6.3. Fix cb real and pEA(u, s). 
(1) Each a~A ((9, p) occurs in ~#,,, m, p. Among the representations of W oecuring 

in Jg~,,,,p, they are minimal for the partial order <. 
(2) For any a~A(49, p), the smallest subquotient of J//u,,,,p containing a(u, ~9) 

is ~,,,,,o. 

Proof Assertion (1) is a consequence of Theorems 4.4 and 4.2. To prove (2), 
we do an induction on the dimension of ~ , .  When u is a principal unipotent 
element the assertion is obvious. Assume the assertion is true for all u' satisfying 
dim(~, ,)<dim(~u).  By Theorem 4.2 and (1), a necessary condition for ~',m'.o' 
to appear as a constituent of J/gu,,,,, is 

u~C,,,. (6.7) 

For those u' satisfying (6.9) and C,,,#C,,, the ~W-module L,e,,, m,, o, does not 
contain any representation in A (qS, p). The assertion follows. 

Theorem 6.3 was obtained earlier for GL(n) by Rogawski [R]. 

7. Reducibility 

We state here explicitly some results on reducibility of tempered representations 
which can be found implicity in [KL2].  Suppose (u, a, q, p) are L-group data 
for a real module. Assume further that the associated map q~ maps SL(2, II7) 
into a Levi subgroup LL of LG. By Theorems 4.1 and 6.1 (under the assumptions 
of Theorem 6.2, [KL2]),  

@ (KM(JJ.),.,p| = KM(~.)m 
p~h(u) 

= ,,ug| KM(~,)m 
=~| Q KM(.~.)...,| ') 

I]ICAL(IA) 

= ~ (~|174 (7.1) 
~f4L[u) 

This enables us to calculate the multiplicity of the irreducible tempered mod- 
ule K~t(~u)m,p in the module induced from KM(~,),,,q,. Indeed, if m(p,~9) is 
the multiplicity of r in the restriction of p to AL(U), then 

~ |  KM(~.),.,q, = @ dim(p) m(p, ~) KM(~,),.,p. (7.2) 
p~2(u) 

We give two examples where the induced module is not multiplicity free. 
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Example 7.1. Take LG=Er(~),  with r=6 ,  7 or 8. There is a Levi subgroup LL 
of type D4(~)x (~• This group is unique up to conjugacy. Let u be a 
subregular unipotent element in LL. The component group AL(u) (resp. A(u)) 
in LL (resp. LG) is trivial (resp. $3). The former means 

KM (~)m is irreducible tempered, (7.3) 

while the latter means 

,3,~ |  K~t(~.) , .  = ~ (KM(M.), . ,o|  P) �9 
pES3 

(7.4) 

In particular, the multiplicity of KM(~,),,, 0, 0 the reflection representation of 
$3, in the induced representation is 2. 

Example 7.2. Take LG= E8(~ ). There is an unique conjugacy class of Levi sub- 
groups of type D4(~) • A2(C). Fix such an LL. Let u be an unipotent element 
in LL which projects to a subregular (resp. principal) unipotent element in D 4 (~) 
(resp. A2(~)). As in Example 7.1, AL(U) is trivial, while A(u) is $3. Formulas 
(7.3) and (7.4) hold, so the induced representation is again not multiplicity free. 

If LG is simple, the above two examples give all instances in which an induced 
tempered representation is not multiplicity free. 

8. Unitary K-spherical representations 

The trivial and sgn representations of d# w are the one dimensional representa- 
tions given on the generators T~(s~S) by 

T~-~q, and T~--~- 1 (8.1) 

respectively. An d-spherical module V is K-spherical precisely when V J contains 
the trivial representation of Ww- The Iwahori-Matsumoto involution ' of 
restricts to an algebra involution of Ww. The trivial and sgn representation 
are exchanged by '. More generally, under the Lusztig isomorphism between 
dg w and ~EW, the trivial and sgn representation in (8.1) correspond respectively 
to the trivial and sgn representation of W. The deformation arguments in Sect. 4 
can be applied to show that the effect of '  on a representation z of W is 

z~--*r| (8.2) 

Suppose (u,a, q,p) is L-group data for a real tempered module J/g.,,,q,p. We 
know from Theorem 4.7 that the action of ~ W  on J//,,,,q,p and H*(M) p are 
equivalent. Consider the case when p is trivial. By Corollary 4.3, sgn occurs 
in H*(M) ~. This means ~/,,,,q, ~ contains the sgn representation of dt~w . Apply 
the involution '. We conclude 

Theorem 8.1. The module J/~, ~, q, 1 is 
(1) K-spherical, 
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(2) unitary and 
(3) has the same infinitesimal character as the tempered module J/g,.~,q, ~. 

T h i s  verif ies the  a n a l o g u e  of  c o n j e c t u r e  1.3.2 in [ A ]  in this case. 
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