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1. Introduction

Let G=G(IF) be a split reductive group with connected center over a p-adic
field IF. In [KL 2] (see also [G]), the classification of the irreducible representa-
tions with Iwahori fixed vectors is obtained. This is a special case of a more
general conjecture of Langlands [Ln] and is achieved as follows. Let .# be
an Iwahori subgroup of G and 5 = #°(G//.#) the algebra of .#-biinvariant com-
pactly supported functions on G. The category €(.#) of admissible modules
generated by their Iwahori fixed vectors is naturally equivalent to the category
%(H#) of finite dimensional #-modules. The equivalence from € (.#) to € ()
is V=¥, Under this equivalence V is hermitian precisely when V' is hermitian.

A long standing question is whether the unitarity of V can be detected
on V* (see [B, C]). The main result in this paper is the following.

Theorem 1.1. An irreducible real hermitian module Ve% (.#) is unitary if and only
if VZ/e€(H) is unitary.

The proof of Theorem 1.1 relies heavily on the classification of irreducible
#-modules in [KL2] and the idea of the signature of a hermitian module
in [V2].

The methods employed are valid for arbitrary infinitesimal character. How-
ever Corollary 4.8 is false for non-real infinitesimal character. Therefore the
assumption that V be real hermitian in Theorem 1.1 is essential. We hope to
treat the general case in a subsequent paper using different techniques.

Let K=.# be a special maximal compact subgroup of G. As a corollary
to our methods, we obtain a characterization of the irreducible #-modules
in terms of their 4, = (K//#) structure. This can be thought an analogue
of the classification of (g, K) modules over R in terms of their lowest K-types
[V 1]. This is the content of Theorems 4.6 and 6.3.

Iwahori-Matsumoto have defined an involution’ on € () hence € (.#), which
preserves hermitian representations. The involution ’ preserves unitarity on
€ (). As an immediate corollary of Theorem 1.1, we have

Theorem 1.2. The involution ' on real representations of € () preserves unitarity.
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As an application of Theorem 1.2, we obtain a large class of unitary isolated
K-spherical representations. They can be described as follows. Let “G =G (@)
be the complex group dual to G. Every map

é: SL(2, €)= LG (1.1)

gives rise to a real tempered irreducible representation V. In Theorem 8.1 we
show that W,=V; is K-spherical. By Theorem 1.2, the W,’s are unitary. They
can be viewed as a special case of the more general conjecture in [A].
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2. Basic results

We establish notation and review some basic results. Fix a Borel subgroup
B= A, N, of G. In the notation of [HC] and [BW], let

af=X(4¢)®R and as=Hom(X(A4,), R). 2.1

Let (,) denote a Weyl group invariant inner product on the complexification
(a). of a¥. For P=MN > B, a parabolic subgroup, let

a*:X(M)®]R(Ca3)3 G=H0m(X(M), R)(Cao),
and H: M — abe the Harish-Chandra map. 2.2)

If A4 is a maximal split torus in the center of M, view X(A) as a subset of
a*. If ¢ is an admissible representation of M and vea}, let I(P,0,v) denote
the induced representation of right translation on the space of functions

{ f: G—V,| flocally constant and
f(mng)=24'(m)a(m) g""™f (g)}. (2.3)

We call the representation I(v)=1I(P, o, v) where P=B and o is the trivial repre-
sentation of A,, an unramified principal series and any subquotient of it an
#-spherical representation. The following well known theorem justifies the term
#-spherical.

Theorem 2.1. If o is a subquotient of 1(v), then ¢ has a nonzero Iwahori fixed
vector. Conversely, if X is an irreducible admissible representation of G with
a nonzero Iwahori fixed vector, then X occurs as a subquotient of some I1(v).
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Let €(#) be the category of (equivalence classes of) admissible G-modules
whose subquotients are generated by their .#-fixed vectors. Let

H = H#(G//F)=compactly supported .#-biinvariant functionson G. (2.4)

This is an algebra under convolution. Moreover, # acts on the set V* of
JF-fixed vectors of any admissible representation (n, V) by

n(f)o={ f(g)n(g)vdgveV’, fe ). (2.5)

Denote by € (#) the category of finite dimensional #-modules.

Theorem 2.2. The map
VisV*

is an equivalence of categories between % (%) and € (#).
Borel has shown in [B] that the inverse functor is
Vs CE(G/ AR, V7. (2.6)
Kazhdan and Lusztig classify the irreducible objects in € ().

An admissible representation (r, V) of G is hermitian if there is a hermitian
form ¢,> on V such that

(n(g)v,w)={v,n(g” ") w) (v, we V. geG). 2.7)
If (=", V*) denotes the hermitian dual of (x, V), then (x, V) is hermitian if and

only if (n, V)= (n", V"). One can also define the notions of hermitian and unitarity
for #. Indeed, # is a * algebra with

f*@=f(®)~ N (feA#, geC). (2.8)

An #-module E is hermitian if there is a hermitian form {,) on E such that
{r(f)v, wy=Cv, n(f*)w) (v, weE, fe #). (2.9)
In the equivalence of categories between % (.#) and € (+#), it follows from (2.6)

that the property of being hermitian is preserved. In one direction, we merely
restrict the form on ¥ to V7, In the other direction the form is given by

S1®uy, L0y =<r(fF * f1) vy, 030v. (2.10)

Clearly, if V is unitary, then so is V7.



22 D. Barbasch and A. Moy
3. Standard and simple modules

We review the Langlands conjecture. Let Wi be the Weil group of IF. The
basic facts about W can be found in [T]. A homomorphism

¢: WexSL(2, €)—LG (3.1)

is admissible if the closure of ¢(Wg) is reductive. According to a conjecture
of Langlands {L.n], refined later by Langlands, Deligne and Lusztig, to each
admissible homomorphism ¢ there should correspond a finite packet IT(¢) of
representations of G (IF). Furthermore, as one varies over all “G conjugacy classes
of ¢’s, the packets I1(¢) should partition the representations of G.

Langlands and Deligne have envisioned a description of those ¢’s for which
the representations I1(¢) are #-spherical. Let Ig be the inertia subgroup of
W so that Wg/Ig=Z. Denote the Frobenius generator by w. Then, conjecturally,
the .#-spherical packets are parameterized by admissible ¢’s satisfying

b Wi/lpx SL(2, @) - *G. (3.2)

The condition of admissibility is that s=¢(w) be semisimple. Call these ¢’s
Iy-spherical. This is often reformulated with the aid of the Jacobson-Morozov

Theorem. Let
0 1 1 0 0 0
e=[0 0]’ h=[0 —1]’ f=[1 0] (3)

be the standard triple in the Lie algebra sl(2,€). Set s=¢(w), a semisimple
clement and u=¢(exp(e)), a unipotent element. Then, the .#-spherical packet
parameters are pairs of commuting elements

(s, u): ssemisimple, v unipotent. (3.4)

Denote by g the order of the residue field of IF. The element s is often replaced
by
o=s-¢(exp(log(qg)/2) h). (3.5

The .#-spherical packets are then parametrized by pairs
(0, u): o semisimple, u unipotent with cuo ™' =u. (3.6)

The members of a packet I1(¢) have a conjectural parametrization in terms
of a component group. Let 2 be the center of “G and C(o, u) the centralizer
of ¢ and u in *G. Then, conjecturally, the members of I1(¢p) are parametrized
by representations of the component group

A(d,u)=C(,w/[C(¢,u)° Z]. (3.7)

The data (u,0,q, p), pecA(p,u) is called the L-group data of an .#-spherical
representation. In their proof of the Langlands conjecture, Kazhdan and Lusztig
construct a packet of #-modules for each pair (¢,u). Their construction is
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in fact more general. To describe their work we need to review the generic
affine Hecke algebra.

Let B= Ay N, be the Borel subgroup in Sect. 2. Denote by (W, S) the Weyl
group of G. Let 2 denote the weight lattice of a maximal torus in “G. Observe
that 2 can be viewed as the group Hom[ X (4,): Z]. There is a canonical action
L—w(L), (we W, Le?) of Won 2. For se8, let a,e Hom{[Z : Z] be the coweight
corresponding to s. The generic affine Hecke algebra is the abstract algebra
H#(X) over C{X, X '] with generators T, (seS), 8,, (LeZ) and the relations

T =X+(X—-1)T, for seS,
T.T.T,..=T,T,T, ...s%+s, mfactors on both sides,
where m is the order of ss" in W,
T.0,,,=0, T,—(X—1)06, when seS, LeZ and o (L) =1, (3.8)
T, 0,,,=0, T;whenseS, Le? and a(L)=0,
0.0,=0,51, L, Le?,
8, =1 when L is the trivial element of 2.

The subalgebra 5 (X) generated by the Ts is the generic Hecke algebra
of (W, S). Denote by #°(1), the specialization of #(X) to X =1. It is clear that
H# (1) is the group algebra C[WZ], while (1) is CLW]. When X is specialized
to ¢, Bernstein has shown that

H(q) and I arenaturally isomorphic. (3.9

We are now ready to explain the work of Kazhdan and Lusztig. For ¢
satisfying (3.2), let 4, denote the complex variety of Borel subgroups of G
containing u =e¢xp(e) (notation 3.3). Decompose

s=¢(w)=s,s, (3.10)

into its compact and hyperbolic parts. Let {s,> (resp. {s,») denote the smallest
diagonalizable algebraic subgroup “G containing s, (resp. s;). Define M <G
xC* by
M={(g, )lge<s.>} % {(g Digesp>} x {(exp(yh), e**)| yeT}. G.11)
The group M acts on 4, by
(g.1)- B=gBg™ ‘(g )M, Be3,). (3.12)

Kazhdan-Lusztig define an action of #°(X) on the M-equivariant K-homology
group K¥(#,). This K-group is a free R(M)-module. Any me M, determines,
by evaluation at m, an algebra homomorphism g,,: R(M)— €. Set

K"(B)w=C®,, KM%, (3.13)

where K™ is K-homology as in [KL 2], Sect. 1.3.
Let py: *\Gx €C* —» € be the projection map to the second factor, and set
t=p,(m). Then, KM(4,),, is a module for # (t). The group A(s, u) acts on KM(4,)
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in a fashion which commutes with #(X) and specialization. For peA(y, s),
define a standard module

'/%u,m,p:HomA(u,s) [p KM(‘@u)m] (314)

whenever it is nonzero.

Theorem 3.1. ([KL2] 7.11) Fix te@* which is not a root of unity. For each
map

¢: We/Ie x SL2,€) > G
let

m=(¢(w exp((log(1)/2) h)), ). (3.15)
Then
(1) The standard module M,
we call the Langlands quotient.
(2) Every simple module of 5 (t) is obtained in this fashion.
The map ¢ is said to be

has a unique simple quotient %, which

2P ST, P2

realifs,=1,
tempered if 5,=1, (3.16)

I2 if tempered, and no nontrivial torus T centralizes both s and u.

When s=1, the p’s defining standard modules coincide with those occuring
in the Springer representation.

Theorem 3.2. ([KL2] 8.2, 8.3) Assume t=gq. Identify # (q) with #. Let n(¢, p)
be the representation of G whose Iwahori fixed vectors afford &, ; , ,. Then
(1) n(¢, p) is tempered if and only if ¢ is tempered (here, M, s , ,= L, . 4. o)
(2) n(¢, p) is square integrable if and only if ¢ is 2.

The packet I1(¢) is defined to be the set
H($)={%, c4,lpeA,s)and 4, , ,+0}. (3.17)

In the next result we specialize X to 1. We focus on a real packet. Here,
the group M is connected. Choose m to be 1. Let K(4,) be the K-homology
group (over €) of 4,. As an immediate consequence of Proposition 5.11 in
[KL2], we have the following fundamental result, important in determining
the 5, (1) structure of &, , ,-

Theorem 3.3. The natural map K™(4,), — K(4,) is an isomorphism.

A real tempered packet is a ¢ which is trivial on Wg. It is thus a homomorph-
ism
¢: SL(2,0)—~*G. (3.18)

By the Jacobson-Morozov Theorem, the “G conjugacy classes of ¢’s correspond
naturally to unipotent conjugate classes.
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We close this section with a review of the center of s#(X). Let .o be the
group algebra C#. The C[X, X ~!]-subalgebra of # (X) generated by the 8,’s
is o/ [X, X ~']. The following result of Bernstein describes the center of 5 (X).

Theorem 3.4. The center of #(X)is " [X, X 1].

The center acts as scalars on any simple module. In analogy with real groups
the character by which the center acts is called the infinitesimal character. A
character of /% is a Weyl orbit in X (4,)®; C. The exponential map

exp: X(4)®zC LG (3.19)

maps X(4,)®z C to a maximal torus. It maps the infinitesimal character of
<, multiplied by log(g) to a conjugate of s.

S q,p

4. Ay Structure of tempered modules

In this section, we determine the structure of real tempered modules. To accom-
plish this, we need to review Springer’s work on the representations of W.

Given a unipotent element uelG(C), consider the cohomology groups
H*(4,, ). For brevity, denote these groups by H*(#,). The centralizer C(u)
of u in *G(C) acts by conjugation on 4,; therefore C(u) acts on H*(4,). The
action is easily seen to factor to the component group

Aw)=CW)/[Cw)°Z]. (4.1)
For pe A(u), let H*(4,) be the p-component of H*(4,), i.e.
H*(#,) =Hom 4, [p: H*(%,)]. 4.2)

Springer has defined an action of W on H*(4,) and proved the following funda-
mental result.

Theorem 4.1.
(1) The actions of W and A(u) commute. Thus, W acts on each H*(A,Y,
peA(u).
(2) The natural map
H*(#)— H*(%.)

induced by the inclusion #,< % is W-equivariant.

(3) For pe A(u), the representation o(u, p) of W on H**(4A,) (d,=dimg(A,))
is irreducible or zero.

4) o(u, 1)=+0.

(5) Every ae W occurs as some o (u, p) with O, and p uniquely determined.

The map
(u, p)—a(u, p) (4.3)
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is called the Springer correspondence, and the data (u, p) Springer data. The
Springer correspondence has been calculated explicitly. Let sgn denote the sign
character of W.

Proposition 4.2. When u is the principal unipotent element, A (u) is trivial and

o(u, 1)=sgn.

Corollary 4.3. For any unipotent element u, the action of W on H°(8,)! is the
sgn representation.

Proof. The variety 4, is connected; hence H®(%,)!=H°(#,)=C. The action
of W on this one dimensional space now follows from the Proposition 4.2 and
Theorem 4.1 part (2).

For suggestive notational convenience, call the representation of W on
H*(3,) a standard module for W. Borho and MacPherson have shown

Theorem 4.4.
(1) Homy, [0, p): H(B,)]=0 if i+2d,.
(2) Homy, [a(x, p): H¥*(#,)]=0 for u¢0,.

Theorem 4.4 says that the standard modules of W form a basis for R(W),
and the change of basis matrix between the standard and irreducible modules
bases of R(W) is (with a suitable ordering) upper triangular.

Let H, (%4,) be the direct sum of the homology groups with coefficients in
€. This group is also dual to H*(#,) and therefore carries a natural action
of €W induced by the Springer action in cohomology.

We now define an action of CW on the standard modules .#, ; , ,. Consider
the group algebra Q[ X', X ~!2] W and the Hecke algebra g1z, x-1/2) over
Q[XY?, X~ Y?] defined by generators T,(seS), 8. (Le#) and the relations (3.8).

Theorem 4.5. [Ls1] There is a natural map

I Q[XI/Z, X~ 1/2] W— %[xuz’x— 1723

(4.4)
tW)=3 furwTws  furweQIX'2,X712]

which becomes an isomorphism when Q[ X'/2, X ~1/2] is extended to Q(X'?).

If X is specialized to te@™ which is not a nontrivial root of unity, we
obtain an isomorphism

1,0 CW— S0 (1).

This allows us to view .4, ; , , as a CW-module.

We are ready to determine the #5(X) structure of real modules. Fix a
real Ig-spherical map ¢ (notation (3.2)). In this case, the group M of (3.11)
is

M ={(g, Dge(su>} x {(exp(yh), e*") ye C}. (4.5)

The algebra R(M) is a Laurent polynomial algebra in several variables.
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Theorem 4.6. For ¢ real and meM, K™(%,), and H ($B,) are isomorphic as
CW modules.

This is a rephrasing of Theorem 6.4 in [Ls3]. Its proof will appear in [Ls4].

To give some idea of the proof, we show how KM(4,) and K(%,), are
equivalent as CW modules.

The K-group K¥(4,) is a finite rank free module over R(M). Pick a basis
e,,e,,...,e; of KM(4,) as an R(M)-module. For seS and Le, write

Ts(ei)ZZfifj €j» i ;€ R(M), 4.6a)
HL(ei)=Zf,-f’j e, fif’jeR(M). (4.6b)
Let
O, MxW-C
4.7

(m, w)—trace(w, K™(2,),,)-

We conclude from Theorem 4.5 and (4.6) that ©,, is a Laurent polynomial in
several variables. Fix an irreducible representation E of W, Let @ be the charac-
ter of E. The multiplicity of E in K™ (4,),, is of course

de(m)=|W|" Y0, (W) 1p(W). (4.8)

This is a Laurent polynomial, which is integer valued. Thus dj is constant,
indeed equal to dg((1, 1)), the multiplicity of E in H,(%,). Hence KM(4,),, and
KY(38,), ~ K(#,) are equivalent modules of W.

Remark. By property (1.3.m2) in [KL 2], there is a natural isomorphism
C: K(%#,)—-H_(%,) 4.9

which is A(u)-equivariant. The difficulty is to show that this map is also W-
equivariant. The fact that these are equivalent as CW modules follows from
the proof in [Ls4]. The stronger equivariance statement is not known.

We say more about the real tempered case. Here,

M ={(exp(yh), e*")|yeC}, (4.10)

so R(M)=C[X, X !]. The groups A(u,s) and A(u) coincide. They act on the
K-group K™(4,). For pe A(u), set

M, ,=Hom 4, [p: KM(%,)]. 4.11)

is a finite rank free module over R(M)=C[X, X ']. When
The above proof applies,

The group .4, ,
X is specialized to ¢, the resulting module is .#,,
to yield

Theorem 4.7. For ¢ real tempered and m as in (3.15), .4,
equivalent CW-modules.

s.t,p°

and H, (#,) are

sm, p

Corollary 4.8. As #,,(q)-modules, the real tempered representations of # are
linearly independent.

Proof. This is an easy consequence of Theorem 4.7 and the remark after Theo-
rem 4.4,



28 D. Barbasch and A. Moy
5. Signature theorem

In this section, we establish the p-adic analogue of a fundamental result of
Vogan in [V2]. It says the signature character of an #-spherical hermitian
module V¥ can be expressed in terms of K-characters of tempered modules. The
methods employed are Vogan’s ideas transposed to the p-adic setting. We begin
by recalling the Langlands classification (see [BW, S]) of representations in
terms of tempered representations. In the notation of section 2, fix a Borel
subgroup B=A, N, of G and a parabolic subgroup P=MN>B. Let ¢ be a
tempered representation of M, and vea* satisfying (v, a)>0 for all roots « of
A occuring in N. Let N denote the unipotent radical opposite to N and P=MN.
Then

Theorem 5.1,
(1) There is an absolutely convergent integral intertwining operator
Z: 1(P,0,v)=IndS(c®v)— I(P, 5,v)=IndE (6 ®V)
(ZNx)=[ fnx)dn
N

so that
J(e®v)=I(P, o, v)/ker ¥

is the unique irreducible quotient of I1(P, o, v).
(2) Any irreducible admissible representation . of G occurs uniquely as some
J(oe®v). The parameter v is called the Langlands parameter and denoted by 1,.
(3) If t© is an irreducible constituent of I(P,o,v), then A, Zv with equality
occuring if and only if t=J(o®v).

The irreducible hermitian representations are those J(o®v), for which there
is an we Weyl(G, A) satisfying

—v=w(v) and o=zw(o). (5.1)

In this situation, I(P, o, v) admits a possibly degenerate hermitian form as
follows. Pair the two spaces I(P, ,v) and I(P, o, —v) via the natural pairing

(f17f2): j‘ <f1(g)5f2(g)>rr dg (fIEI(P9 g, V)’fZEI(P’ g, -—V)) (52)
G

Because of (5.1), there is a choice of an isomorphism y between I(P,qg, —v)
and I(P, o, v) such that the hermitian form on I(P, g, v) is given by

<f1>f2>:(f15?_1$f2)' (5.3)

The choice of y depends on the isomorphism ¢ = w(e) and not on v. The radical
of {,) is precisely ker Z. The quotient form on J(¢®v) is a nonzero multiple
of the unique hermitian form.
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Suppose n=J(c®v) is F-spherical. Let (u, 1,4, p) be the L-group data for
7. The infinitesimal character of 7 is

A==log, (7). (5.4)

Let s, denote ¢(exp(log(g)/2) h). Write t as t=5,5,5,, where s, and s, are the
elliptic and hyperbolic parts of ¢ (@) respectively. Then

v=Ilog,(s;) and Re(y,)=log,(s,s,) (5.5)

Fix a special maximal compact subgroup K containing .#. Under the appro-
priate conventions, the group K is G(#) the Z-rational points of G, where
A is the ring of integers in IF. The Hecke algebra #(K//.#) is a subalgebra
of #(G//#). In fact,

H# (K//9)is canonically isomorphic to 55 (). (5.6)

For ease of notation, we write 5, for # (K//.%).

Let (=, V) be an irreducible representation of G with a nonzero hermitian
form (,>. For each irreducible representation ¢ of K fix a positive definite
hermitian form. Let V(J) be the J-isotypical component of V. The finite dimen-
sional space F(0)=Homg[d: V(0)] acquires a nondegenerate form from ().
Denote the dimension and signature of F(J) by m(d) and (p(d), ¢(J)) respectively.
Trivially, m(d)= p(d)+ q(9). Define the formal K-character of ¥ to be

0x(V) =Y m(5) 6. (5.7)

Define the signature character of <, ) to be the pair of formal sums

(2.p(8)6,3.4(0) 9). (5.8)
é é

Theorem 5.2. Suppose V is an irreducible .#-spherical representation of G admitting
a nonzero hermitian form {,). There are finitely many irreducible tempered .#-
spherical modules V,, ..., V, and integers a,, ...,a, and by, ..., b, so that the signa-

ture of {,> is
(a; O (V) + ... +a,0¢(V,), by Ok (V) + ... +b, 0, (V).

The proof of the signature theorem follows along the same lines as Vogan’s
proof [ V2] in the real case. We need a few preliminary results.

Theorem 5.3. The K-character of an #-spherical representation is a linear combi-
nation of K-characters of tempered representations.

Proof. 1t is enough to prove the assertion for an irreducible .#-spherical represen-
tation V. Let (u, 0, q, p) be the L-group data for ¥, and let o, be the compact
part of . Denote the set of tempered modules %, 4, , with 8,=0, by 7 (a,).
This is a finite set. Write V in the Langlands classification as J(t®v). The
K-character of I(P,1,v) is that of the tempered representation I(P,t,0). This
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means the assertion is true when J(t®v) equals I(P,t,v). Suppose they are
not equal. Let = be an irreducible composition factor of I(P, 7, v) different from
J(t®v). Write « in the Langlands classification as J(7'®4,), where A, <v. Denote
the infinitesimal characters of V, ¢ and ¢’ by yy, ¥, and y., respectively. It follows
from

(1) o’e T (s.)

(2) A+ Re(x)=Re(ry)=v+Re(y)
that the length of v— 21 is bounded below by a positive number. The theorem
follows by an induction on the length of the Langlands parameter.

The next result is Lemma 3.9 in [V2].

Lemma 5.4. Suppose V is an J-spherical representation admitting a nondegenerate
hermitian form {,). Let

(2p(9)6,2.4(9)9)
3 4

be the signature of {,). Then, there exist irreducible modules Y,, ..., Y, and irre-
ducible hermitian modules X |, ..., X, such that (in the Grothendieck group)

V=2 X+ 1Y+ 1)),

13

Furthermore, if m; is the K-character of Y; and (p;, q;) is the signature character
of X;, then

p(d) :ZPi(é) +ij(5),
4()=.0,0) + Xm0

Suppose Vis an irreducible hermitian .# -spherical representation. Let J(6®v)
be the Langlands classification realization of V. Since V is hermitian, the standard
module I(P, g,v) carries the hermitian form (5.3). This standard module is a
member of the one parameter family

X,=I(P,o,tv) (teR). (5.9)

The representation X, is tempered while X, is the standard representation
I(P, 6,v). Because of the decomposition G = PK, the spaces X,, which are all
clearly hermitian, can be realized on the fixed space of functions

X ={f:K -V, flocally constant and
fmnk)y=c(m)f(gymeMnK,neNnKj}. (5.10)

View % as an operator on X. The function t+—7y~'% can be continued to
a meromorphic operator. The operators y~!.% can be multiplied by a mero-
morphic function in ¢t which yields analytic intertwining operators t— .o/, on
X. From this, we can construct an analytic family of hermitian forms {,),
on X, namely

S Sre= 1 A1), (5-11)
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with the property
rad({,>)=ker()=ker(¥) for >0. {5.12)

We need to know how the signature changes from 0 to 1. It does not change
over intervals where the form {,) is nondegenerate. To determine how the
signature changes at a reducibility point we review the Jantzen filtration of
X at an arbitrary point ¢,. This filtration is the sequence of subspaces

X=X2X"s..2X"={0} (5.13)

defined as follows. The space X" is the set of vectors veX for which there
is a neighborhood U of t, and an analytic function

fi: UosX (5.14)
satisfying
(1) f, takes values in a finite dimensional K-subspace of X

2) folto)=v
(3) Yv'eX the function t— { f,(t), v, vanishes at t, to order at least n.
Define a hermitian form {,>" on X" by the formuia

1
N
{v,v") lim T

S0, S0 (O (5.15)

where f, and f,. are choosen as above. The limit depends only on v and '
and not on the particular choice of f, and f,. Jantzen has shown (see Theo-
rem 3.2 in [V2])

Theorem 5.5. The form {,>" on X" has radical exactly X"*'.

Let (p,,q,) be the signature character of {,)»". The following theorem is
Proposition 3.3 in [V 2].

Theorem 5.6.
(1) For t—t, small positive, {,), has signature character

Q. Pn> 2. 4q0)-

(2) For t—t, small negative, {, >, has signature character

(Y Pt Y 4w 2 Put D an)

neven nodd nodd neven

Proof of Theorem 5.2. By Theorem 5.3 and Lemma 5.4, we may assume V is
an irreducible hermitian representation, say V=J(e®v). Let ;< ... <t,_, be
the points in (0, 1) where A, is not an isomorphism. They are the points where
I(P, 0,tv) is reducible. Set t;=0and t,=1. Let

(¢, ¢’) be the signature of {, ) on the open interval (£;_,, t). (5.16)
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Denote the Jantzen filtration of X, by
X,J,=XS:X}J:3..., (5.17)

and the signature of X7/X}"' by (p}, q). The representation X, is tempered.
Consequently X7 /X:*" is tempered and therefore p) and g, are K-characters
of tempered representations. By Theorem 5.6, both p! and ¢! are linear combina-

tions of tempered K-characters. Exactly as in [V 2], we have

-1

signature of V=(p', ¢")+ Y. Y (Phm+1>d2m+1)

=1 m

I=1 m m>0

By induction on the length of the Langlands parameter as explained in Theo-
rem 5.3, we can assume the result for all terms on the right; hence V also satisfies
the hypothesis. This completes the proof. Note that, if V is real then the Vs
can also be taken real.

To be able to apply Theorem 5.2 to the proof of Theorem 1.1, we need
to relate the K-character and signature character of a hermitian representation
V to analogous characters of V*. Let E be a hermitian #-module. If § is
an irreducible hermitian module of #, let (p(8),4q(d)) be the signature of
Hom,  [d: E]. In analogy with (5.6) and (5.7), the formal #,-character and
signature character are

0w (E)=2(p(0)+4(0) 6, and (Lp(d)d,).q(d)d) (5.19)
o [4 o

respectively. Let % be the set of irreducible representations of K occuring in
the induced representation Ind% 1. The map

Srd* (5.20)

is a bijection between . and the simple #5-modules. Suppose E=V7. Write
the K-character of V as the sum

0(V)=Y m(@) 5+ Y m(d) . (5.21)

de S d¢ S
The 3#-character of E is
O, (E)=Y. m(8) 6. (5.22)

des

The signature character of E is gotten from that of ¥ in the same fashion.
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Theorem 5.7. Suppose V|, ..., V,, are F-spherical real tempered representations
of G. Then, a Z combination

ry Ok + ... +7, 05 (V,)=0
if and only if
FiOu, (VI + o 41O, (V))=0.

Proof. This is a consequence of Corollary 4.8.
As an application of Theorems 5.2 and 5.7 we prove Theorem 1.1.

Proof of Theorem 1.1. Denote by {,> the hermitian form on ¥, and by {,)*
its restriction to V¥, Assume {,>”7 is positive. We need to show {,> is also
positive. Let  denote the set of #-spherical real tempered representations
of G. By Theorem 5.2, the signature of {,)> can be written as a Z combination
of tempered K-characters

signature of (,>=( ) a, 0x(n), ) b, Ox(n)). (5.23)
ned ned
Then
signature of (, > =( . a, 0, (), Y. b, 0, (7). (5.24)
ned ned
From

(1) the linear independence of the 8, (7)’s

(2) and the fact that {,>”* is positive definite,
we conclude the b,’s are zero. Thus {, ) is positive.

Iwahori and Matsumoto have defined an algebra involution ' on . It
is the specialization of the involution of #° (X) given by

T—»—XT 'seS and 60,—0,_, Le?. (5.25)
An easy verification shows ' commutes with the * operation (see 2.7) on #.
This means ' takes a hermitian module of # to a hermitian module. The same
statement is also true for unitary modules. As a corollary to this observation
and Theorem 1.1, we obtain Theorem 1.2.

We observe here that

" takes the infinitesimal character to its inverse. {5.27)

This follows from Theorem 3.4 and (5.25).

6. Lowest K-types

We explain the connection between the standard modules in the Langlands
classification and the standard modules of Kazhdan-Lusztig. To do this we
need to recall the interpretation of parabolic induction in terms of Hecke alge-
bras. Fix a parabolic subgroup P=LU containing B. The center of L is con-
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nected. In particular, the methods of Kazhdan-Lusztig apply to L. We take
the Iwahori subgroup of L to be the intersection

g,=LnJ. (6.1)

The Hecke algebra #; = #(L//4,) can be embedded into # =#(G//.#) as fol-
lows. Denote by S; the set of simple reflections contained in Weyl(L, 4,). Let
H#,(X) be the C[X, X ']-subalgebra of #(X) generated by o« and T.eS,.
Let #,(q) be the specialization of #7(X) to X =¢. By (3.8), #,. = #,(q). Hence,
it is a subalgebra of # = #(q). Suppose V is an £ -spherical representation
of L. Bernstein has shown

Theorem 6.1.
(Ind§ (V) =H Ry, V7=

Let “L be the Levi subgroup of “G dual to L. Fix an Ig-spherical map ¢
¢: Wi/lgx SL(2, €)= L. 6.2)

Let A, (1) denote the component group of u=¢(exp(e)) in “L, and £,, the
variety of Borel subgroups in “L containing u. The K-group K™ (4,),, is a module
for .

Theorem 6.2. ([K1.2], 7.8) As s#-modules
KM('@u)m = ’%®3f1‘ KM(‘@M)M .

We are ready to compare the standard modules of Langlands and those
of Kazhdan-Lusztig. Fix an admissible homomorphism ¢, and let ¢ (w)=s, s,
be the decomposition (3.10). The centralizer L of s, in G is a Levi subgroup.
Define

Gremp: Wi/le x SL2, €)—»LL (6.3)
by ¢remp(@)=¢(g), (geSL(2,C)) and ¢ emy(w)=s.. The representation 7 of L

corresponding to a nonzero K™ (QZ’,,),,,,‘, is tempered. The element v=Ilog,(s;)
determines a positive chamber in a*. Let P=LU be the parabolic subgroup

determined by this chamber. Then
Mymp,=IP,7,v)" and %, , ,=J(r®V)’. (6.4)

We describe how to determine the simple quotient of a standard module
in terms of K-types. Our description applies to the Kazhdan-Lusztig standard
modules. This description can be transferred to the Langlands standard modules
via (6.4) and (5.20).

Define a partial ordering on the representations of W by

o(u,p)<o(,p) when ued,. (6.5)

In this partial ordering, the sgn (resp. trivial) representation of W is a maximal
(resp. minimal) element. Fix a ¢ which is real. The group A(u,s) is naturally
a subgroup of A(u) because in a connected algebraic group, the centralizer
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of a torus is connected. For each peA(u,s) we define a subset A(¢, p) of W
by
A, p)=1{a(u, Y)|\ a representation of A(u) containing p}. (6.6)

In the special case when ¢ is real tempered, A (u)= A (u, s) and A(¢, p)={c(u, p)}.

Theorem 6.3. Fix ¢ real and pe A(u, s).

(1) Each oe A(¢, p) occursin M, ,- Among the representations of W occuring
in My m o they are minimal for the partial order <.

(2) For any oeA(¢, p), the smallest subquotient of M, . , containing a(u, )
is Ly om p

Proof. Assertion (1) is a consequence of Theorems 4.4 and 4.2. To prove (2),
we do an induction on the dimension of 4,. When u is a principal unipotent
element the assertion is obvious. Assume the assertion is true for all u’ satisfying
dim(4,)<dim(%,). By Theorem 4.2 and (1), a necessary condition for %, .,
to appear as a constituent of .4, , , is

ue0,.. 6.7)

For those ' satisfying (6.9) and ¢, +0,, the CW-module %, ,. ,- does not
contain any representation in /A(¢, p). The assertion follows.
Theorem 6.3 was obtained earlier for GL(n) by Rogawski [R].

7. Reducibility

We state here explicitly some results on reducibility of tempered representations
which can be found implicity in [KL2]. Suppose (u, g, g, p) are L-group data
for a real module. Assume further that the associated map ¢ maps SL(2, C)
into a Levi subgroup “L of “G. By Theorems 4.1 and 6.1 (under the assumptions
of Theorem 6.2, [KL2]),

@ (KM('%u)m,p®p) = KM(gu)m

ped(u) R
=”®XL KM('@u)m
=%®#L( @ KM('@u)m,w®l//)
yeAr(n)
= B (HQu, KM (B )OY. (7.1)

YAy ()

This enables us to calculate the multiplicity of the irreducible tempered mod-
ule KM(#,),,, in the module induced from KY(4,),, ,. Indeed, if m(p,¥) is
the multiplicity of i in the restriction of p to A, (u), then

c}f®3f,‘I<M('@u)m,|[1: @ dlm(p)m(p’l//)KM(‘%u)m,p (72)

peA(u)

We give two examples where the induced module is not multiplicity free.



36 D. Barbasch and A. Moy

Example 7.1. Take "G =E,(C), with r=6,7 or 8. There is a Levi subgroup ‘L
of type D4(C)x(C*)~* This group is unique up to conjugacy. Let u be a
subregular unipotent element in “L. The component group A, (u) (resp. A(u))
in “L (resp. “G) is trivial (resp. S;). The former means

KM(B,), is irreducible tempered, (7.3)
while the latter means
peSs

In particular, the multiplicity of K™(%,),. .0 the reflection representation of
S3, in the induced representation is 2.

Example 7.2. Take “G = E4(CT). There is an unique conjugacy class of Levi sub-
groups of type D,(C) x A,(C). Fix such an “L. Let u be an unipotent element
in “L which projects to a subregular (resp. principal) unipotent element in D, (T)
(resp. A,(C)). As in Example 7.1, 4,(u) is trivial, while A(u) is S;. Formulas
(7.3) and (7.4) hold, so the induced representation is again not multiplicity free.

If G is simple, the above two examples give all instances in which an induced
tempered representation is not multiplicity free.

8. Unitary K-spherical representations

The trivial and sgn representations of s, are the one dimensional representa-
tions given on the generators T (seS) by

T.—q, and T4—-—1 (8.1)

respectively. An .#-spherical module V is K-spherical precisely when V¥ contains
the trivial representation of #, . The Iwahori-Matsumoto involution ' of #
restricts to an algebra involution of . The trivial and sgn representation
are exchanged by . More generally, under the Lusztig isomorphism between
H#yw and €W, the trivial and sgn representation in (8.1) correspond respectively
to the trivial and sgn representation of W. The deformation arguments in Sect. 4
can be applied to show that the effect of ' on a representation t of Wis

TH1®sgn. (8.2)

Suppose (4,0, q, p) is L-group data for a real tempered module .#, , , ,. We
know from Theorem 4.7 that the action of CW on .#, , ,, and H*(#)" are
equivalent. Consider the case when p is trivial. By Corollary 4.3, sgn occurs
in H*(#)". This means .#, , , , contains the sgn representation of . Apply
the involution . We conclude

Theorem 8.1. The module 4, , , , is
(1) K-spherical,
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(2) unitary and
(3) has the same infinitesimal character as the tempered module M, 5 , ;.

This verifies the analogue of conjecture 1.3.2 in [A] in this case.
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