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THE LOCAL LANGLANDS CONJECTURES AND

CHARACTERISTIC CYCLES

1. Introduction

The purpose of these talks is to present some aspects of the relation between geometry of singular spaces,
and representation theory. Precisely, I want to look at

– admissible irreducible representations of real reductive groups
– admissible irreducible representations of p–adic groups admitting fixed vectors for an Iwahori subgroup.

I will follow [ABV] and [V?] quite closely.
These relations originate with the idea of Langlands that there is a close connection between irreducible

admissible representations of the rational points of a connected reductive algebraic group G defined over a
local field F and homomorphisms of the Weil–Deligne group into the (complex) dual group

WF
′ −→ LG. (1.1)

Such a relationship is established by Langlands in [L] for F = R and F = C and a few other cases.
The best thing would be that one has a bijection between equivalence classes of irreducible admissible
representations and such homomorphisms up to conjugation by ∨G. This is not true, so the notion of L–
packets of representations was introduced. This partitions the set of irreducible representations into finite
sets which are in 1–1 correspondence with homomorphisms as above. In particular the stable combination
of characters formed from a packet is the natural object to consider when one investigates occurence of
representations in the space of automorphic forms via the trace formula.
Here are some refinements of these conjectures and related results:

– Knapp–Zuckerman and Shelstad, description of packets for tempered representations,
– Beilinson–Bernstein and Brylinski–Kashiwara for character formulas in the case F = C,
– Lusztig–Vogan for character formulas in the case F = R,
– work of Bernstein–Zelevinsky on the admissible dual of Gl(n, F ) for a p–adic field,
– Kazhdan–Lusztig for representations admitting fixed vectors under an Iwahori subgroup.

These packets are very well suited for investigations involving tempered representations. Motivated by the
problem of how non–tempered representations fit in the trace formula, Arthur introduced a different set of
parameters; namely he considered maps

ψ : WF
′ × Sl(2,C) −→ ∨G

Γ
. (1.2)

(see §7 for the precise definition). He then conjectures that, attached to such a map there should be a packet
of irreducible representations satisfying certain character identities with respect to endoscopic groups. A
particular class of such maps is given by the case when ψ|WF

is essentially trivial. These are called unipotent
representations. For example, in the case F = R, WF = C× {1, j} satisfying the relation jzj−1 = z. In this
case, essentially trivial would mean ψ|C is trivial. In [BV], the packet of special unipotent representations is
defined as follows.

Definition. An admissible representation of a real form G(R) is called special unipotent if it has infinitesimal
character

λ
Ǒ

= dψ

[
1/2 0
0 −1/2

]
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and its annihilator in the universal enveloping algebra is maximal. The set of irreducible representations
attached to ψ is called the representation theoretic packet.

Then formulas of the type conjectured by Arthur are proved for the case of complex groups.

In [ABV], a different more general approach is taken. The category of Harish–Chandra modules is related
to constructible or perverse sheaves on an algebraic space Y equivariant with respect to the action of an
algebraic group H. Then the packets can be defined in terms of characteristic cycles for sheaves. These are
called the microlocal packets. In chapter 27 of [ABV] it is shown that for the case of special unipotent
representations, the union of parameters with a fixed map of Sl(2) coincides with the microlocal packet.

This second approach has the advantage that it is more general in that it applies to any Langlands
parameter not just an Arthur parameter, but also the conjectured character identities relevant to endoscopic
groups are a consequence of Lefschetz fixed point theorems of Goresky–MacPherson.

Another nice feature of this second approach is that a microlocal packet has a distinguished stable virtual
combination of irreducible representations, namely the linear combination with coefficients equal to the
dimensions of certain representations of the component group of the centralizer of the image of ψ. However
these representations are not very easy to compute (see §? for more precise definitions).

A large portion of this talk will be devoted to describing the geometric setting that allows us to define
the microlocal packets. This is a (very incomplete) summary of [ABV].

In §2 we describe the setting in which we do representation theory. In §3 we analyze weil group homo-
morphisms, and show how they parametrize irreducible admissible modules. In §4 we introduce the various
geometric categories relevant for our analysis. In §5 we describe the notion of geometrically stable and its
relation to the notion of representation theoretically stable introduced by Langlands–Shelstad. In §6 we
introduce the microlocal packets and investigate the relation to the previously defined packets.

As already mentioned, one of the advantages for working with characteristic cycles is that the coefficients
in the stable linear combinations of characters have a natural interpretation as dimensions of representations
of certain component groups. It is not clear or easy to see what these representations are. In §7 we prove
that in the complex case, these characters coincide with the results in [BV]. This is joint work with D. Vogan.
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2. Rational Forms

We consider the case of a local field F of characteristic 0. Let F be its algebraic closure and Γ := Gal(F/F ).
A rational form is a map

σ : Γ −→ Aut(G(F )) (2.1.1)

so that if f is a regular function on G(F ), then so is

γ ·σ f(x) := γ · (f(σ(γ−1) · x)). (2.1.2)

The group of F–rational points is
G(F, σ) := G(F ))σ(Γ).

Since G(F ) acts via conjugation, we can consider equivalence classes of rational forms. We say that σ is
inner to σ′, if for each γ ∈ Γ, the automorphism σ(γ)σ′(γ)−1 is an inner automorphism, say given by a
gγ ∈ G(F ).
A representation of a rational form, is an admissible representation of G(F, σ). Generally we write (π, σ),
and the action of G(F ) is via

g · (π, σ) := (π ◦Adg−1, g · σ).

Suppose (π1, σ) and (π2, σ) are representations of the same rational form. Then it would be convenient to
say that they are equivalent under the above action of G(F ) precisely when they are equivalent in the usual
sense, i.e. there is an element g ∈ G(F ) such that π1 = π2 ◦Ad(g−1). But this is just not true. For example,
let G = Sl(2, F ). Suppose χ is a nontrivial character whose square is one. Then the induced principal series
(normalized induction) decomposes as a direct sum of two inequivalent irreducible representations

π = IndGB(χ) = π1 ⊕ πχ.

There is a quadratic extension E of F and an element g ∈ Sl(2, E) such that g · (π1, σ) = (πχ, σ).

We can do one of two things:
– use only groups with trivial center; the (image of the) offending element is in PGl(2, F ),
– change the notions.
Here is the modification. Fix a σ. Define the (weak extended) group GΓ := Go Γ via σ i.e.

[g, γ][g′, γ′] = [gσ(γ)g′, γγ′].

Then GΓ is a group which contains G as a normal subgroup so that

1 −→ G −→ GΓ −→ Γ −→ 1, (2.1.3)

such that for every element γ ∈ Γ, the action of an inverse image gγ is compatible with γ, i.e. if f is a
regular function, then so is

gγ · f(x) := γ · (f(g−1
γ xgγ)).

Definition. A rigid rational form of G is a continuous map

δ : Γ −→ GΓ

compatible with the map of GΓ to Γ and such that the quotient to GΓ/Z(G) is a homomorphism. A pure
rational form of G is a δ which is in fact a homomorphism.
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The rational form attached to δ is the homomorphism

σ(δ) : Γ −→ Aut(G(F )), σ(δ)(γ) is conjugation by δ(γ).

A representation is a pair (π, δ) where δ is a pure rational form and π a Harish–Chandra module for the
fixed points G(F, σ(δ)). We denote by Π(G/F ) the set of equivalence classes (under the action of G(F )) of
irreducible representations.

There are some other conditions on σ ((2.3) in [V?]) which I won’t bother to write down right now.
Finally, two rigid rational forms are called equivalent if they are conjugate by G, i.e. there is g ∈ G such
that δ′ = gδg−1.

2.2. The real case. Let G be a complex connected reductive algebraic group defined over R, and let
Γ = Z2 be the Galois group of C over R. A weak extended group is attached to an antiholomorphic involutive
automorphism σ : G −→ G. In this case it is better to use strong real forms of G; this is a rigid form satisfying
δ(1) = 1, so it can be thought of as just an element δ ∈ GΓ − G such that δ2 ∈ Z(G). A pure real form
satisfies δ2 = 1.

Example I. Suppose Gc is the complexification of a group G which is complex but viewed as a real group.
Choose a conjugation which we denote by so that we can identify Gc with G×G and take

σ(x, y) = (y, x) (2.2.1)

for such a real form. �

Example II. Suppose G = Sl(2,C). Then the conjugation

σ(g) = g the usual conjugation on each entry (2.2.2)

gives the real form Sl(2,R). �

In Example I, set δ = [(a1, a2), τ ] ∈ GΓ where

GΓ = (G×G)× Z2, τ · (g1, g2) = (g2, g1) · τ

The pure forms must satisfy [(a1, a2), τ ]
2 = 1, so a2 = a−1

1 . Furthermore, since

[(g−1
1 , g−1

2 ), 1] · [(a, a−1), τ ] · [(g1, g2), 1] = [(g−1
1 ag2, g

−1
2 a−1g1), τ ], (2.2.3)

we can choose (g1, g2) such that g−1
1 ag2 = 1, to see that [(a, a−1), τ ] ∼= [(1, 1), τ ]. Thus up to equivalence

there is a unique pure form. The same calculation shows that (equivalence classes of) strong real forms are
in 1–1 correspondence with elements [(1, z), τ ] with z ∈ Z(G).

In Example II, set δ = [a, τ ], so that the antiholomorphic action is σ(τ)(g) = g. Then there are two cases,
δ2 = Id and δ2 = −Id. The first case gives a single conjugacy class corresponding to the pure real form
Sl(2,R). The second case is a strong real form only, and has two equivalence classes corresponding to Su(2, 0)
and Su(0, 2).
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3. Langlands Parameters

3.1. Dual group. Fix a GΓ. We form the L–group LG as follows. Let ∨G be the dual group. This
is the usual object; if G ↔ Ψ(G) := (X∗, X∗, R,

∨R), then ∨G ↔ Ψ(∨G) := (X∗, X
∗, ∨R,R). Then the

automorphism σ induces a homomorphism

∨σ : Γ −→ Aut(Ψ(∨G)), (3.1.1)

but this time we are twisting it so that it is algebraic.

Definition. Fix an inner class of F–rational forms corresponding to σ : Γ −→ Aut(Ψ(G)) with dual ∨σ.

Then we can define LG := ∨Go Γ.

This is a complex complex reductive algebraic group having the following structure.

(1) There is a short exact sequence

1 −→ ∨G −→ LG −→ Γ −→ 1. (3.1.2)

(2) If γ ∈ Γ, then any preimage gγ acts by ∨σ(γ).

(3) There is an open subgroup Γ0 ⊂ Γ such that ∨G× Γ0 is isomorphic to an open subgroup of LG.

Typically, a Langlands parameter is a continuous homomorphism

φ : WF
′ −→ LG (3.1.3)

which is compatible with the canonical maps into Γ, i.e. the diagram

WF
φ

−−−−→ LG
y

y

Γ
id

−−−−→ Γ

(3.1.4)

is commutative and has some other special properties as described later.

3.2. P–adic case. Write k for the residue field, k for its closure. Then there is a surjective homomorphism

from Γ to Ẑ ∼= Gal(k/k) with kernel the inertia group IF . Then Z is a dense subgroup of Ẑ generated by the
Frobenius map x 7→ xq . The Weil group is defined to be the inverse image of Z in Γ. We get a sequence

1 −→ IF −→WF −→ Z −→ 1.

The topology is defined by requiring that IF be compact and open. Then WF acts on the additive group
Ga ∼= C by w · x = ||w||x, where ||w|| = qn, with n the image of w in Z. The Weil–Deligne group is then
C oWF with wxw−1 = ||w||x.

Definition. A Langlands parameter is a continuous map as in (3.1.3) satisfying

(1) φ is compatible with Γ,
(2) the restriction to C is algebraic,
(3) φ(WF ) consists of semisimple elements.
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The collection of Langlands parameters is denoted P (LG).

Suppose G is split. Then LG = ∨G × Γ, and consider the special case of φ which satisfy φ(i) = (1, i).
Then φ is determined by the ensuing map

φ : Z× C −→ LG. (3.2.1)

The restriction to Z is determined by (essentially the image of Fr), a semisimple element s ∈ ∨G. The
restriction to C yields a unipotent element u. The relation is sus−1 = uq. We are supposed to consider ∨G
conjugacy classes of such pairs. Let O be the orbit of s and suppose we restrict attention to the sets

P (s, ∨G) := {φ ∈ P (LG) : φ|WF
is determined by s},

P (O, ∨G) := {φ ∈ P (LG) : φ|WF
is determined by an s′ ∈ O}.

(3.2.2)

For the first set, we observe that we can write u = exp(e) and e is nilpotent satisfying Ad(s)e = qe.

Remark. The element e can be embedded in a Lie triple {e, h, f}. We can write s = s0sh, where sh :=

exp( log q
2 h). Then s0 commutes with e. Since CG(e) = L ·U where L = CG(e, h, f) and U is the nilradical, we

can write s = s00shsu where s00 ∈ L and su ∈ U. But then observe that AdU s00sh = s00shU, because the
eigenvalues of sh on the Lie algebra of U are strictly positive and sh preserves the decomposition CG(e) = LU.

Thus we may assume that s0 ∈ CG(e, h, f).

Let ∨g(q) be the q–eigenspace of s. Then the space P (s, ∨G) can be identified with ∨g(q). The ∨G–orbits
on P (O, ∨G) are then in 1–1 correspondence with the orbits of H := ∨G(s) on Y := ∨g(q). It is well known
that this space has finitely many orbits. In such a situation we always consider the component group

A(φ) = C∨G(φ)/C∨G(φ)0 ∼= C∨G(s, e)/C∨G(s, e)0. (3.2.3)

An equivariant local system on the orbit of H on Y corresponding to φ identifies with an irreducible character
of A(φ). If we want to stress the ∨G action, we use the space

∨G×∨G(s)
∨g(q). (3.2.4)

For the geometric facts we will use, either version works.

The case of a general φ is about the same if we fix φ|WF
and don’t insist on saying too precisely what it

is.

Example III. Suppose H = Gl(2) acts on Y = S(2,C), the space of 2× 2 symmetric matrices. In this case
the orbits are easy to determine, they are the ranks of the symmetric forms; there are exactly 3. The open
orbit has A(φ) ∼= Z2. This example comes from Sp(4) with s = sh for the subregular nilpotent orbit. �

Example IV. Suppose G = S[Gl(3) × Gl(2)] acting on [St3 + St∗3] ⊗ St2 which has dimension 12; here
St is the standard module of Gl and the subscript is the dimension. There are 11 orbits, the largest has
component group S4 and there are 4 others with component group S2. This example comes from F4 with
s = sh for a particular nilpotent orbit. �

We can identify these parameters with representations as follows. Suppose G is split, so that LG = ∨G×Γ.
Then let T ⊂ G be a maximally split torus contained in a Borel subgroup B. Its characters are given by
X(T )⊗Z Hom(F×,C×). The unramified characters are then identified with

X∗(T )⊗Z Hom(F×/UF ,C
×) ∼= X∗(T )⊗Z (C) ∼= ∨T (C),
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where UF are the units in F×. The last isomorphism comes from X∗(T ) ∼= X∗(
∨T ). To an unramified

character we can associate, on the one hand the unramified principal series

IndGB(χ), (3.2.5)

and on the other hand the semisimple element s ∈ ∨T obtained from the above isomorphisms. The composi-
tion factors of the principal series are representations with Iwahori fixed vectors; and every such irreducible
representation is a composition factor of some I(χ). The composition series of Ind(χ) only depends on the
Weyl group orbit of χ, so the element s may be taken up the the action of the Weyl group. The next theorem
makes this correspondence even sharper.

Theorem. (Kazhdan–Lusztig) Let G be a split p–adic group. Then the factors of Ind(χ) can be put in 1–1
correspondence with equivariant local systems on the orbits of H = C∨G(s) on Y = ∨g(q); or equivalently

pairs (O, ψ) where O = H · x is an orbit and ψ ∈ Ĥx/H0
x.

Remarks. In Example III, take a φ corresponding to the maximal orbit O2 and an element s = s0sh

where s0 =

[
0 1
−1 0

]
. Then A(φ) ∼= Z2, but there is only one representation with nontrivial Iwahori–fixed

vectors. Thus the correspondence in the theorem is not a bijection.

Similarly in Example IV, not all characters of the component group occur.
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3.3. Real case. In this case Γ = Z2. Then a rational form is determined by the image of the nontrivial
element τ ∈ Γ. We assume (as we may) that this σ = σ(τ) is an antiholomorphic involutive automorphism
of G(C). A rigid form δ is determined by its values δ(1) and δ(τ) in the weak extended group GΓ = GoΓ. A
strong real form must satisfy δ(1) = 1, so it is determined by a single element δ = [a, τ ]. The automorphism
σ induces an automorphism of the dual root datum. This in turn extends to an automorphism of ∨G (up to

conjugacy by an inner automorphism), and we can form the corresponding group LG.

In Example I, we get LG = (∨G× ∨G)× Γ with multiplication τ · (g1, g2) = (g2, g1) · τ. �

In Example II, we get LG = PSl(2,C)× Γ, direct product. �

The Weil group WR is the group

WR = C× × {1, j}, jzj−1 = z, j2 = −1. (3.3.1)

Definition. A Langlands parameter is a (real) Lie group homomorphism

φ : WR −→
LG (3.3.2)

compatible with the maps into Γ and such that φ(C×) is formed of semisimple elements.

Write this set as Π(LG) and let ∨G act in the obvious way.

Definition. The pure Langlands component group is the component group

Alocφ = ∨G(φ)/∨G(φ)0, (3.3.3)

where ∨G(φ) is the centralizer of the image of φ.

The pairs (φ, τ), where τ ∈ Âlocφ , are called complete Langlands parameters and the set of equivalence

classes under the action of ∨G will be denoted Ξ(G/R).

Here is the main theorem. The nature of the bijection will be described later.

Theorem. There is a natural bijection

Π(G/R)↔ Ξ(G/R).

Remark. This is one of the main results in [ABV]. But Langlands and Shelstad already proved such

statements much earlier. The difference is perhaps in the details. For example the set Â(φ) always has a
distinguished element, namely the trivial local system. To make the correspondence as canonical as possible,
one has to choose a similar irreducible representation in each packet. For this one can fix a Whittaker model.
Another difference is that representations of strong real forms may be attached to local systems on a cover
(still algebraic) of ∨G.

We describe the parametrization of Π(G/R) in the case of regular infinitesimal character without recourse
to the Weil group homomorphisms. Suppose that G(R) is the set of fixed points of the conjugation σ. Let θ
be a Cartan involution commuting with σ. Then a parameter is a triplet γ = (H(R),Λ, λ) as follows:

– H = T ×A is a θ–stable σ–stable Cartan subgroup with Cartan subalgebra h,
– Λ is a character of H(R), and λ is a character of h(R); we are assuming that λ is regular.
– Let Rim(λ) = Rim,c ∪ Rim,nc be the positive system of imaginary roots determined by λ. Then

dΛ = λ+ ρ(Rim)− 2ρ(Rim,cpct).

By conjugating by the (real) Weyl group, we can also choose the parameter so that λ is dominant
with respect to some fixed positive system of real roots. Then to such a parameter one can associate a
Standard module M(γ) which is induced from a Discrete series on a Levi component and has a unique
irreducible quotient L(γ).

The singular situation is worse, but of the same type.
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3.4. Langlands Parameters. We now describe the Langlands parameters more explicitly. First an
elementary lemma.

Lemma. Let H be a complex group with Lie algebra L(H) = h. Then there is a bijection between the set
of real Lie homomorphisms φ : C× −→ H and the set of pairs (λ, µ) ∈ h × h such that [λ, µ] = 0 and
exp(2iπ(λ− µ)) = 1.

We recall the formula

φ(et) = exp(tλ+ tµ).

Proposition. The set of Langlands parameters can be put in 1–1 correspondence with the set of pairs

{ (y, λ) ∈ LG× ∨g | λ semisimple }

subject to the conditions

(1) [λ,Ad(y)λ] = 0,
(2) y2 = exp(2iπλ),

(3) y ∈ ∨G
Γ − ∨G is semisimple.

We write e(λ) = exp(2iπλ). We also recall that the µ in lemma 3.4 is µ = Ad(φ(j))λ and y = exp(iπλ)φ(j).
In Example I, write y = [(a, b), τ ] and λ = (λL, λR). By conjugating everything by ∨G, we may assume
that y = [(1, β), τ ]. Then conditions (1)–(3) become β = exp(2iπλL) = exp(2iπλR) and [λL, λR] = 0. The
component group is trivial.

Suppose β = 1; then these data give the usual conditions for a parameter of an irreducible Harish–
Chandra module. There is a single conjugacy class of Cartan subgroups with representative H = TA. Since
µ = λL − λR is integral, it defines a character Cµ of T and ν = λL + λR defines a character Cν of A. Let
B ⊃ H be a Borel subgroup. Then we can take

M(γ) = IndGB(Cµ ⊗ Cν)K−finite.

This has a unique irreducible subquotient L(γ) determined by the fact that it contains the K–type V (µ) with
extremal weight µ. This version is equivalent to the above. Furthermore, we note that the λ in Proposition
3.4 corresponds to the infinitesimal character of the representation being parametrized.
In Example II, let y = (a, τ). Then a2 = e(λ) and [λ,Ad(a)λ] = 0. Conjugate the data so that λ, Ad(a)λ
are in the diagonal Cartan subalgebra . Assume e(λ) = 1 and λ is regular for simplicity. Then there are

three orbits, a = 1, a =

(
i 0
0 −i

)
and a =

(
0 1
−1 0

)
. In the third case, the component group is a Z2.

On the other hand, in Sl(2,R) there are two conjugacy classes of Cartan subgroups:

Hc = {

[
cos r sin r
− sin r cos r

]
} hc= {

[
0 r
−r 0

]
},

Hs = {±

[
et 0
0 ±e−t

]
} hs= {

[
t 0
0 −t

]
}.

Given a fixed integral infinitesimal character λ, there are two parameters attached to Hc and two attached
to Hs. These are the two discrete series and the two principal series. We would like to say that they are
simply lifted from the tori; but this gives trouble because typically it is Λ which is a representation of T (R)
not λ.
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An infinitesimal character is an orbit OR = (Y ,O) where

O is a semisimple ∨G–conjugacy class of an element λ ∈ ∨g

Y is a ∨G–conjugacy class of an element y ∈ ∨G
Γ
− ∨G,

y2 is conjugate to e(λ) = exp(2iπλ) under ∨G.

(3.4.1)

Denote by C(OR) the ∨G–conjugacy class Y2 = e(O).

Definition. The set of Langlands parameters with infinitesimal character OR is

P (OR,
∨G

Γ
) = { φ = (y, λ) ∈ P (LG) : y ∈ Y , λ ∈ O }. (3.4.2)

We make the simplifying assumption that C(OR) is trivial.

This is the same as requiring that the infinitesimal character be integral.

Then the Y in the orbit OR can be identified with just {y | y2 = 1}. For y ∈ Y , set

K(y) := centralizer of y in ∨G. (3.4.3)

Then y defines an involutive automorphism θ(y) of ∨G with fixed point group K(y). Then set

Ocomm(y) := {λ ∈ O | [λ, θ(y)λ] = 0}. (3.4.4)

Proposition. There is a ∨G–equivariant map between P (OR,
LG) and the fiber product

∨G×K(y) O
comm(y).

In particular, the orbits of ∨G on P (OR,
LG) are in one–to–one correspondence with orbits of K(y) on

Ocomm(y); and there are finitely many orbits. Furthermore, these orbits are closed.

This is the analog of the maps λ : WF −→
LG in the p–adic case. But because the orbits are closed, this

is not good for doing geometry.

3.5. Geometric Parameter Space. We now give the description of the geometric parameters which will
have singular orbits, even though the group acting and the parametrization of orbits will be the same.

Given λ, let ∨gi = { x : [λ, x] = ix }, and recall the map e(λ) = exp(2iπλ). The canonical flat through λ is
defined to be

F(λ) := λ+
∑

i∈N+

∨gi. (3.5.1)

Write F(∨g) for the set of all canonical flats. For a fixed λ, we consider

∨g(λ) :=
∑

n∈Z

∨g(λ)n, H(λ) := CG(e(λ))

∨l(λ) := ∨g(λ)0 = C∨g(λ)n, L(λ) := CH(λ)

∨n(λ) :=
∑

n∈N

∨g(λ), N(λ) the corresponding Lie group,

∨p(λ) := ∨l(λ) + ∨n(λ), P (λ) := L(λ)N(λ).

(3.5.2)
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Then H(λ) is a reductive group, P (λ) is a parabolic subgroup and most important,

N(λ) ∼= λ+ ∨n(λ), via n 7→ Ad(n)λ.

so that
F(λ) = Ad(P (λ)) · λ = Ad(N(λ)) · λ = λ+ ∨n(λ). (3.5.3)

Thus F(λ) is an affine space for N(λ) and a homogeneous space for P (λ).

We now specialize to the case when λ ∈ O for a fixed orbit O. The corresponding space F(O) can be
viewed as the analog of ∨g(q) in the obvious way. Fix Λ ∈ F(O). Write P (Λ) for the stabilizer of Λ in ∨G.
Then P (Λ) = L(Λ)N(Λ) is a parabolic subgroup, and if λ ∈ Λ, then F(Λ) = Ad(N)λ. Thus e is constant on
Λ and F(O) can be identified with the variety P of parabolic subgroups of type P (Λ).

Definition. The set of Langlands parameters with infinitesimal character OR is

P (OR,
∨G

Γ
) = { φ = (y, λ) : y ∈ Y , λ ∈ O }.

The geometric parameter space of infinitesimal character OR is the fiber product

X(OR,
∨G

Γ
) = Y ×C(OR) F(O),

obtained by using the map e and the squaring map from Y to C(OR).

Remark. In general (even when e(λ) 6= 1, ) the space F(O) inherits an algebraic structure and so does
C(O) ∼= ∨G/C∨G(e(λ)). The map e : F(O) −→ C(O) is then algebraic.

Fix y ∈ Y such that y2 = 1 (recall C(OR) = 1). Write K(y) for the centralizer of y, a symmetric subgroup
of ∨G.

Proposition. The group ∨G acts on P (OR,
∨G

Γ
) and X(OR,

∨G
Γ
) in a natural fashion. There is a ∨G–

equivariant isomorphism

X(OR,
∨G

Γ
) ∼= ∨G×K(y) P .

The orbits of ∨G on X are in 1–1 correspondence with the orbits of K(y) on P; in particular there are only
finitely many of them. The isotropy group ∨G

x
at a point x = (y,Λ) ∈ X is K(y) ∩ P (Λ).

The map

p : P (OR,
∨G

Γ
) −→ X(OR,

∨G
Γ
)

induces a bijection between ∨G–conjugacy classes on these two spaces. The component groups of the central-
izers correspond.

3.6. Example. Let G = Sl(2,R). Then ∨G
Γ

= PSl(2)× {1, τ}, direct product, where τ 2 = 1. Take λ to
be regular integral, in fact such that e(λ) = 1. Then P = B, the variety of Borel subgroups. There are two
conjugacy classes of y’s,

y = τ, K(y) = PSl(2,C),

y =

[
i 0
0 −i

]
τ, K(y) =

[
eiθ 0
0 e−iθ

]
∪

[
eiθ 0
0 e−iθ

] [
0 1
−1 0

]
.

(3.6.1)

Consider the second case. Identifying B with a sphere, there are two orbits, the union of the North and
South pole, and the rest. The component group for the open orbit is Z2. The two characters correspond
to DS(±). The component group for the poles is trivial. The corresponding representation is the trivial
representation occuring in the spherical principal PS(sph). The other (irreducible) principal series PS(sgn)
of Sl(2), matches the orbit of the other y.



12

4. Local Systems and Characteristic Cycles

4.1. We consider the setting of a (complex) algebraic variety Y with an action of an algebraic group H with
finitely many orbits. There are several categories of interest:

C(Y,H) = category of H–equivariant constructible sheaves on Y,

P(Y,H) = category of H–equivariant perverse sheaves on Y,

D(Y,H) = category of H–equivariant regular holonomic D–modules on Y.

(4.1.1)

Each of these categories is abelian and objects have finite length. In each of these categories, irreducible
objects are parametrized by equivariant local systems (Sξ,Vξ) on orbits. We describe these irreducible
objects. Let S = H · y be an orbit. There are inclusion maps

j = jS : S −→ S, i = iS : S −→ Y. (4.1.2)

We can form the local component group

Alocy := CH(y)/CH(y)0. (4.1.3)

A local system (equivariant with respect to the action of H) is defined to be an equivariant vector bundle

with a flat connection. These are parametrized by ξ = (S, τ) where τ ∈ Âlocy . Explicitly, if (τ, V ) is such a
representation, then the bundle is

Vξ := H ×Hy V. (4.1.4)

In C(Y,H) the irreducible objects are given by

µ(ξ) := i∗j!V , the extension by zero. (4.1.5)

In P(Y,H), the irreducible objects are given by the following construction. Let d = dim(S). Make a complex
V [−d] out of V by putting zero in every degree except −d, where you put V . Then the irreducible object
attached to V is

P (ξ) = i∗j!∗V [−d], wherej!∗ is the intermediate extension functor. (4.1.6)

In the case of D(Y,H), considerM, the sheaf of sections of V . Because V has a flat connection, it naturally
has a structure of H–equivariant DS–module. Then

D(ξ) := direct image ofM. (4.1.7)

In fact the Riemann–Hilbert correspndence provides an equivalence of categories between P and D via
the deRham functor. Furthermore, the Grothendieck groups of these three categories are isomorphic. We
analyze the isomorphism between C and P more closely. It is given by the map

χ : ObP(Y,H) −→ KC(Y,H), P 7→
∑

(−1)iH iP. (4.1.8)

(The cohomology sheaves of perverse sheaves are constructible.) In particular we can write

P (γ) =
∑

(−1)d(ξ)cg(ξ, γ)µ(ξ), where cg(ξ, γ) = (−1)d(ξ)
∑

(−1)i[Vξ : H iP (γ)|Sξ ]. (4.1.9)

Then the coefficients cg satisfy

cg(γ, γ) = 1, cg(ξ, γ) 6= 0 only if Sξ ⊂ Sγ . (4.1.10)

Typically, theorems are proved separately in each category; each version illuminates a different aspect of the
theory.
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4.2. We write K(Y,H) for the Grothendieck group. In view of the expression for cg , we define functionals
χlocS . Let y ∈ S, be an element in the orbit Y. Then for a constructible sheaf C, define

χlocS : K(Y,H) −→ N, χlocS (C) = dimCy (4.2.1)

On a perverse sheaf P the formula is the Euler characteristic

χlocS (P ) =
∑

(−1)i dim(H iP )y. (4.2.2)

Since Ay acts on the stalk of C at y, we can also define

QlocS : C(Y,H) −→ ( local systems ) C 7→ C|S ,

τ locS : C(Y,H) −→ ( representations of Alocy ) C 7→ representation of Alocy on Cy.
(4.2.3)

On P one gets similar functors (QlocS )i and (τ locS )i.

Definition. A Z–linear functional η : K(Y,H) −→ Z is called geometrically stable if it is a Z–linear
combination of χlocS .

Remark. If we specialize to the case of (Y,H) the parameter space of representations of rational forms,
the geometrically stable functionals are expected to be the stable combinations of characters defined by
Langlands–Shelstad. In particular the χloc can be identified with the basis of stable combinations obtained
from tempered parameters (or rather standard modules). In the real case, these are all theorems. In the
case of p–adic groups, these are conjectures.

In the next section we define a different basis, which should correspond to the stable combinations con-
jectured by Arthur. We will analyze to what extent they have the required properties.

4.3. Given an orbit S, recall the conormal bundle T ∗
SY (with fiber at y given by the annihilator of TyS) and

the conormal bundle attached to the H–action,

T ∗
HY :=

⋃

S

T ∗
SY. (4.3.1)

A vector (y, ν) ∈ T ∗
SY is called degenerate if it is contained in the closure of some other conormal bundle

T ∗
S′Y. It is called regular if it is not degenerate. We denote the subset of non–degenerate vectors T ∗

HYreg .

Attached to every H–equivariant regular holonomic D–module, there is a Z–linear combination of conor-
mal bundles

Ch(P ) =
∑

S

χmicS (P )T ∗
S(Y ), (4.3.2)

called the Characteristic Cycle of P. The χmicS are integer valued and additive for short exact sequences, so
they define functionals onK(Y,H). In theD–module version this is due to Kashiwara. Another (independent)
definition is due to MacPherson.

The D–module version seems more intuitive, so let us give a rough sketch. The ring of differential operators
has a filtration by degrees

OY ≡ DY (0) ⊂ D(1) . . . , D(p)D(q) ⊂ D(p+ q) (4.3.3)

such that
grD ∼= p∗(OT∗Y ), (4.3.4)
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Because p : T ∗Y −→ Y is affine, an equivalence of categories identifies grM with a sheaf of modules for
OT∗Y ). A coherent D–moduleM has a “good” filtration so that the ensuing OT∗Y –module grM is coherent;
view it as a sheaf.

On the other hand, given an algebraic variety and a coherent sheaf N , one can define the characteristic
variety and the characteristic cycle

V(N ) = {v ∈ V : Nv 6= 0}, Ch(N ) =
∑

mW (N )W, (4.3.5)

where the W ’s are the irreducible components of V(N ). For a D–module M, we set

Ch(M) = Ch(grM). (4.3.6)

In the case of equivariant D–modules, the W ’s are the conormal bundles T ∗
SY. The multiplicities are the

χmicS .

The main point of considering the notion of characteristic cycles is that they define another basis for the
geometrically stable functionals. Here is the main result.

Theorem. (Kashiwara–MacPherson) The functionals χmicS are geometrically stable. More precisely, there
are integers c(S, S′) such that

χmicS (P ) =
∑

S⊂S′

c(S, S′)χlocS′ (P ).

Let us record some properties:

– c(S, S) = (−1)dim S ,
– c(S′, S) = 0 unless S ⊂ S′,
– c(S, S′) is invertible, (a consequence of the above two facts),

– If S 6= S′ is such that S is contained in the smooth part of S
′
, then c(S, S′) = 0.

Example. Suppose the orbit S is open in Y. Then there is no S ′ 6= S containing S in its closure, and
therefore χmicS = (−1)dim SχlocS .

Remark. We emphasize again, that we have the space of geometrically stable functionals of K(Y,H) with
two bases, χlocS , and χmicS . The first one is easy to describe at least the values on one of the bases of K(Y,H),
namely

χlocS (µ(S′, τ ′)) = δS,S′dim(τ ′). (4.3.7)

The second one is not easy to describe explicitly in either case.

4.4. Let us consider the case of a group H acting algebraically on a vector space Y with finitely many
orbits. In this case there is an extra structure that we can bring to bear upon the problem. In the case of
D–modules we can use the usual Fourier transform. Equivalently, we can use the Fourier–Deligne transform
in the case of sheaves. This transforms an irreducible perverse sheaf to an irreducible perverse sheaf, or a
local system to another local system. The cotangent space to Y can be identified with Y ×Y ∗, and similarly
the cotangent space of Y ∗ can be identified with Y ∗×Y. A result of Piasetsky states that there is a bijection
between orbits of H on Y and orbits on Y ∗ by the prescription

O ←→ O∗ iff T ∗
O
Y ∼= T ∗

O∗Y ∗. (4.4.1)

Precisely, the conormal bundle to O is {(v∗, y) : v∗(X · y) = 0 for all X ∈ h}. There are two projections
p : T ∗Y −→ Y and p∗ : T ∗Y −→ Y ∗. Then

O ←→ O∗ iff p−1(O) = p ∗−1 (O∗). (4.4.2)

Call this bijection on orbits FT as well. The name is justified by the next result.
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Lemma. (Hotta–Kashiwara) Ch(FT (P )) = Ch(P ).

This is more or less the well known fact that the Fourier transform of the Dirac Delta function is the
constant function.

This can be rewritten as

χmicS ◦ FT = χmicFT (S). (4.4.3)

Example. Consider H = Gl(2) acting on Y = S(2,C), and recall the three orbits O2, O1 and O0. It is
very easy to see that

FT (O2) = O0, FT (O1) = O1. (4.4.4)

Recall that the orbit O2 has two irreducible local systems attached to it. To compute χmic we could resort to
the geometric definitions. The nature of the singularities of the closures of these orbits allow one to compute
the numbers c(S, S′). But I don’t know this well enough.

Instead, let me approach it as follows. We know that each local system is attached to a representation with I–
fixed vectors for the split p–adic group Sp(4). There is an involution on the set of such representations, called
the Iwahori–Matsumoto involution. On the level of the Hecke algebra it tensors Weyl group representations
with sgn and changes weights into their negatives. It is reasonable to conjecture that on the level of
parameters this is FT. Evens–Mirkovic have in fact proved exactly such a result. Using this, one can then
see that

FT (P (O2, 2)) = P (O0), FT (P (O2, 1
2)) = P (O1, 1). (4.4.5)

Then it is easy to see what χmicS is:

χmicO2
= δ(O2, 2) + δ(O2, 1

2),

χmicO1
= δ(O1)− δ(O2, 1

2),

χmicO2
= δ(O0)− δ(O1).

(4.4.6)

Here I am abusing the notation in the next section, δ(ξ) is the dual basis to P (ξ). (One reason this works
out nicely is that the infinitesimal character satisfies O(s) = O(s−1).)

4.5. Consider still the case of H acting algebraically with finitely many orbits on a vector space Y. In the
above example, we only used the following facts about χmic :

(1) χmicS (S, τ) = (−1)dim Sdim(τ),

(2) χmicS (S′, τ ′) = 0, unless S ⊂ S
′
,

(3) χmicS ◦ FT = χmicFT (S),

(4) χmicS (S) is geometrically stable.

In view of this, it is natural to make the following conjectures, joint with Evens and Moy.

Conjecture 1. The microlocal characters χmic are uniquely determined by the above four requirements.

This conjecture can be sharpened in the case of the representations with I–fixed vectors. Recall that the
infinitesimal character is a semisimple orbit given by an element s. Write S = O(u) for an orbit under ∨G(s)
and FT (S) = O(u′). This is a pair of nilpotent orbits such that Ad(s)u = qu and Ad(s)u′ = −qu′.

Conjecture 2. Write

χmicS =
∑

aξ′δ(ξ
′).
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Let π(ξ) be the irreducible module of the Hecke algebra corresponding to ξ. Then the identity of A–characters,
∑

(−1)(dim ξ′−dim ξ)aξ′π(ξ′) =
∑

i

(−1)iH i(Bs(u, u′)),

holds. Here Bs(u, u′) is the variety of Borel subgroups containing s, u, u′, and H∗ may be equivariant K–
homology as in Kazhdan–Lusztig or equivariant cohomology as in Lusztig in the case of the graded Hecke
algebra. In particular, H∗(Bs(u, u′)) should support a Hecke algebra representation.

Remark. The space H∗(Bs(u, u′)) admits a representation of A, coming from tensoring with line bundles.
So the formula above makes sense even without having to define an action of the full Iwahori–Hecke algebra.

We have computed numerous examples much more sophisticated than the one above. There are obvious
generalizations to Hecke algebras with parameters, and the analogy to the constructions of Kazhdan–Lusztig
or Ginzburg is also clear.

5. Multiplicity Matrices

5.1. In the previous section I kept writing χmic as a sum of elements in the Grothendieck group of irreducible
characters of the original group. We now make the connection between the categories in section 4 and
representation theory in the case of Y = X(OR,

LG) and H = ∨G.

In general the orbits in X and the irreducible objects in Π are parametrized by the same set. Thus, given
a parameter ξ, we write

π(ξ) for the irreducible representation parametrized by ξ,

M(ξ) for the standard module parametrized by ξ,

µ(ξ) for the irreducible constructible sheaf parametrized by ξ,

P (ξ) for the irreducible perverse sheaf parametrized by ξ.

(5.1.1)

The geometric multiplicity matrix {mg(γ, ξ)} captures the relation between the bases µ(ξ) and P (ξ) in the

Grothendieck group KX(∨G
Γ
),

µ(ξ) = (−1)dim(ξ)
∑

mg(γ, ξ)P (γ). (5.1.2)

Here we have made a direct sum over all possible orbits O. Note also the connection that if we know mg ,
then we can compute χloc on irreducible perverse sheaves; the formula is simple only in the case of µ(ξ).

The representation–theoretic matrix mr(γ, ξ) captures the relation between π(ξ) and M(ξ),

M(ξ) =
∑

mr(γ, ξ)π(ξ). (5.1.3)

The main result about these matrices is that they are inverse transpose of each other. Precisely, the (general)
result is as follows.

Theorem. (Vogan IC4) There is a natural perfect pairing

< , >: KΠ(G/R)×KX(∨G
Γ
) −→ Z

defined by
< M(ξ), µ(ξ′) >= δξ,ξ′ .

This pairing then has the property that

< π(ξ), P (ξ′) >= (−1)dim(ξ)δξ,ξ′ .

In other words, if the pairing is set up so that {M} and {µ} are dual bases, then so are {π} and {P}.

In the case of complex groups, there is a sharper version due to Beilinson–Ginzburg–Soergel, but it is not
needed for this analysis.



17

Corollary. Let KΠ(G/R) be the set of formal linear combinations of irreducible representations of pure

rational forms. Then KΠ may be identified with the space Z–linear functionals of KX(∨GΓ). In this iden-
tification,

(1) M(ξ) : C 7→ m(Vξ, C|Sξ),

(2) π(ξ) : Q 7→ (−1)d(ξ)m(P (ξ), Q|Sξ).

We can then ask what virtual character corresponds to χlocS ; the answer is that it is a certain linear
combination of standard modules M(ξ) corresponding to the orbit S. In the general real case these are the
L–packets defined by Langlands–Shelstad so they are interesting.

5.2. Given the relation in 5.1, it is interesting to identify the virtual combinations of characters corre-
sponding to χmic. This is more delicate. But we can still use χmic to define packets.

Definition. (19.16 in [ABV]) The micro–local packet attached to φ is the set of equivalence classes of
irreducible representations

Π(G/R)micφ := { (π(ξ), δ(ξ)) : χmicS(φ)(P (ξ)) 6= 0. }

The corresponding virtual character is

ηmicφ :=
∑

π′∈Π(G/R)mic
φ

e(π′)(−1)d(π
′)−d(φ)χmicS(φ)(P

′)π′

Here,

– d(φ) and d(π′) are the dimensions of the orbits corresponding to φ, π′,

– P ′ is the irreducible perverse sheaf corresponding to π′ via 5.1.

– e(π′) is Kottwitz’s constant attached to the real form for π′.

It is not clear what this packet is in an explicit sense. In the case of an Arthur parameter, it should be his
conjectured packet. In the case of special unipotent parameters, it coincide with the definition of unipotent
in [BV].

5.3. We begin the study of the micro–local packet, with a view towards its relation to Arthur’s conjectured
packet.

We saw in the previous section that in the case Y is a vector space, there is a dense subset in the conormal
bundle T ∗

SY which plays a special role. The set of nondegenerate vectors plays a similar role in general.
Fix y ∈ Y. Then the isotropy group Hy acts on the fiber T ∗

y,SY. Then given a ν ∈ T ∗
y,SY, we can define the

component group

Hy,ν := CH(y, ν)/CH (y, ν)0. (5.3.1)

This is constant over a certain dense subset of nondegenerate vectors with y in the given orbit S. So we
define

AmicS := CH(y, ν)/CH (y, ν)0, (y, ν) ∈ T ∗
SYreg . (5.3.2)

There is a natural homomorphism

iS : AlocS −→ AmicS . (5.3.3)

The point of introducing this group is the following. Recall QlocS and τ locS from 4.2.
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Theorem. (MacPherson) (24.8 in [ABV]) Suppose P is an H–equivariant perverse sheaf on Y. Then at-
tached to P there is an H–equivariant local system Qmic(P ) of complex vector spaces on T ∗

H(Y )reg satisfying
the following properties:

(1) the rank of Qmic(P ) at (y, ν) equals the multiplicity χmicS (P ),

(2) if P is supported on S, then the restriction of Qmic(P ) to T ∗
SYreg is the pullback of

Q−dim S(P ) by the projection T ∗
SYreg −→ S,

(3) Qmic is exact from P(Y,H) to H–equivariant local systems on T ∗
HYreg .

Remark. For a constructible sheaf C, one attaches a family (Qmic)i; in the case of perverse sheaf they are
zero for i 6= 0.

The difficulty in theorem 5.3 is proving that χmicS (P ) is the dimension of a local system, i.e. that it
comesd from a representation which is trivial on the connected component H0

y,ν .

This is part of what Arthur required, namely that one should attach a character to each representation.

As with τ loc, we define (τmicS )i(C) to be the representation of AmicS on (QmicS )i(C), and τmicS (C) to be the
correspnding Euler sum

∑
i(−1)i(τmicS )i(C). Its dimension is the multiplicity χmicS .

5.4. Another requirement that Arthur imposes on his packets is that they should behave nicely under
endoscopy. This has a counterpart in the geometry as well.
Suppose we have an algebraic action of a connected group G on a variety Y with finitely many orbits; in
addition, suppose that there are compatible automorphisms of finite order

σ : G −→ G, σ : X −→ X. (5.4.1)

Fix a subgroup H of Gsuch that (Gσ)0 ⊂ H ⊂ Gσ and a subvariety Y of Xσ such that H · Y = Y and Y
is open and closed in Xσ. Write ε for the corresponding inclusions H ⊂ G and Y ⊂ X. Suppose that C is a
G–equivariant constructible complex endowed with a compatible automorphism σ of finite order. Suppose
we have a point (x, ν) ∈ T ∗

GXreg which is fixed by σ. Then we get a map

(τmicx,ν )i(C) : (Qmic)i(C)x,ν −→ (Qmic)i(C)x,ν , (5.4.2)

Then we can take the trace (and Euler characteristic)

χmicx,ν (C)(σ) =
∑

(−1)itr(τmicx,ν )i(C)(σ). (5.4.3)

The main result here is the following Lefschetz fixed point formula.

Theorem. (MacPherson, 25.8 in [ABV]) Write ε∗C for the restriction of C to Y. Then

χmicx,ν (C)(σ) = (−1)dim G·x−dim H·xχmicx,ν (ε∗C)(σ).

6. Arthur Parameters

6.1. Motivated by considerations coming from the trace formula, Arthur has introduced certain param-
eters which should describe the residual spectrum for automorphic forms. They should have profound
consequences for the classification of the unitary dual of G(F ) as well as the general structure of admissible
modules.

To describe these parameters, recall first that the Langlands classification (without the Weil group) is
given in terms of standard modules which are induced from tempered irreducible representations. In terms
of the geometric parametrization, these are open orbits. In terms of maps of the Weil group, i.e. in terms
of (y, λ), a parameter is tempered if and only if λ+ θy(λ) is elliptic.
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Example. Consider the inner forms So(p, q) with p+q = 2n+1. Then the dual group is LG = Sp(2n,C)×Γ.
Suppose λ is regular integral so that we are parametrizing Discrete Series for So(p, q). In this case,

y =

[
I 0
0 −I

]
, λ =

[
0 z
z 0

]
, (6.1.1)

where z is a nondegenerate diagonal matrix. Then Alocφ
∼= Zn2 . All these local systems cannot correspond to

just a single So(p, q), in fact they correspond to the Discrete Series over all the p + q = 2n + 1 satisfying
q ≤ n.

On the other hand, recall that we defined a geometrically stable combination of characters as a linear
combination of

ηlocS =
∑

e(ξ)M(ξ).

In the example, this combination is stable in the sense of Langlands–Shelstad; the only difference might be
that it is an average over several real forms. Here are the definitions and results.

Definition. Suppose

η =
∑

n(ξ)(π(ξ), δ(ξ))

is a formal virtual character which is locally finite, in other words, for each real form δ there are only finitely
many ξ with n(ξ) 6= 0. We say that η is strongly stable if the corresponding distribution character

Θ(η, δ) =
∑

δ(ξ)=δ

Θ(π(ξ), δ(ξ))

satisfies the following condition:

If g ∈ G(R, δ) ∩G(R, δ′), then Θ(η, δ)(g) = Θ(η, δ′)(g).

Here is the main result, essentially a reformulation of results of Shelstad.

Theorem, 1.29 in [ABV]. Using the identification of linear functionals of KΠ(G/R) with representations,
the geometrically stable functionals correspond to strongly stable combinations of characters.
Conversely, if Θ is a stable finite integer combination of characters on a real form G(R, δ), then there is a
strongly stable η with Θ(η, δ) = Θ.

6.2. Let us recall the situation. We have inclusions

Π(G/F )temp ⊂ Π(G/F )unit ⊂ Π(G/F ). (6.2.1)

In terms of the parameters, Φ(G/F ), the L–packet of representations attached to a φ is the set

Πφ = {π(y, λ, τ) : τ ∈ AlocS }. (6.2.2)

It is not easy to see how to attach a combination of characters of irreducible representations to Πφ that will
be stable in the sense of Langlands–Shelstad; the only reasonable one seems to be χlocS from earlier, but this
is

∑
e(ξ)M(ξ) from before. In terms of irreducible modules, this is quite large and unwieldy.

Arthur on the other hand, introduced the space Q(∨G
Γ
) of maps (definition 22.4 in [ABV])

ψ : WR × SL(2,C) −→ ∨G
Γ
. (6.2.3)

These maps should satisfy the additional properties

(1) the restriction of ψ to WR is tempered,
(2) the restriction of ψ to Sl(2) is holomorphic.
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Two such parameters are called equivalent if they are conjugate by ∨G. The set of equivalence classes is

denoted Ψ(∨G
Γ
). Define also

∨G(ψ) = centralizer of the image of ψ in ∨G
Γ
, Aψ = ∨Gψ/(

∨Gψ)0. (6.2.4)

The associated Langlands parameter is defined as

φψ(w) := ψ(w,

[
|w|1/2 0

0 |w|−1/2

]
). (6.2.5)

This determines an L–packet of representation of the group G, or rather its quasisplit rational form. Arthur
poses the following problems:

Problem 1. Define a finite set (called a packet) of representations Ψφψ attached to each such map. It
should contain the usual L–packet Φφ.

Problem 2. Attach a finite dimensional representation τ(π) of Aψ to each π ∈ Ψφψ .

Problem 3. Show that ∑
ε(π)dimτ(π)Θ(π)

is stable in the sense of Langlands–Shelstad.

Problem 4. Prove analogues of the theorems on lifting tempered representations from endoscopic groups.

Problem 5. Show that the π ∈ Ψφψ are unitary.

A good answer to Problem 1 should immediately give the resolution of the other ones. The microlocal
packets defined earlier resolve these problems quite well. Here is the answer to Problem 1.

Definition. The Arthur packet attached to ψ is the micropacket

Π(G/R) = Π(G/R)micφψ
.

6.3. We recall the description of such parameters (before Proposition 22.9 in [ABV]). Write ψ0 for the
restriction of ψ to WR and ψ1 for its restriction to SL(2). Then ψ0 is determined by

(y0, λ0), y0 ∈
∨G

Γ
− ∨G, λ0 ∈

∨g. (6.3.1)

For ψ1, define

y1 = ψ1

(
i 0
0 −i

)
, λ

Ǒ
= dψ1

(
1/2 0
0 −1/2

)
. (6.3.2)

Then the parameter φψ is associated to the pair

y = y0y1, λ = λ0 + λ
Ǒ
. (6.3.3)

To answer problems 2–4, we just have to relate them to the geometry described earlier. Mainly we have to
relate Amicφψ

to Aψ .

Write θy for the conjugation by y on ∨G(λ); this gives a Cartan decomposition
∨g(λ) = ∨k(y) + ∨s(y). (6.3.4)

Let x = (y,Λ) ∈ X(O, LG) be a point in the geometric parameter space and let S = K(y) ·Λ ∈ P(Λ) be the
corresponding orbit. Then the conormal space to S at x can be identified as a module for P (Λ)∩K(y) with
[∨g(Λ)/(∨p(Λ) ∩ ∨k]∗. Using the Cartan–Killing form, we can identify this latter space with ∨n(Λ) ∩ ∨s(y).
Then let

Eψ = dψ

[
0 1
0 0

]
. (6.3.5)

Then a simple calculation shows that Eψ ∈ ∨s(y). Thus Eψ is an element of this conormal space.
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Theorem. The orbit LG · Eψ is Zariski dense in T ∗
S . In particular, Aψ coincides with AmicS .

For the remainder we just apply the machinery in section 5.
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