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1. INTRODUCTION

1.1. Lie algebras and their representations. We learned from Reyer’s talk that
a Lie algebra is an abstract structure formed of a vector space g with a bracket
operation

(1.1.1) [,]axg—u,
satisfying

(1) [z,y] is bilinear and skew symmetric, i.e.

[ax1 + br2,y] = a[z1,y] + b2, 9], [z,y] = = [y, ],
(2) (Jacobi identity)

[Ia [ya Z]] + [ya [Za I]] + [Za [Ia y]] =0.

The prototype of a Lie algebra is gl(V'), the vector space of linear transformations
(matricies) L : V — V, with bracket [4, B] := AB — BA. So the bracket measures

how far two linear transformations are from commuting.

1.2. Classification of Lie algebras. In view of the formulation in (1.2.10), it
is tempting to ask whether we can classify Lie algebras in the sense of listing all
{cfj} which give Lie algebras up to change of basis. This is not feasible, but there
is a kind of answer. The building blocks are the simple Lie algebras. These are
analogues of the blocks for matrices. Complex simple Lie algebras were classified
in the late 19th century by Elie Cartan and Killing. Nowadays we use the Dynkin
diagrams to describe them. They are

A, Oo—0—:-—0—0
B, 0O—0—:++—0=>0

C, o—o0—:--—0<=o0

D, 0—0—:+-—0
\o
Gy o=>o0

Fy o—o0o=>0—0
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The first set, A,, B, and C,, are the classical Lie algebras realized as si(n + 1,C),
so(2n + 1,C), sp(2n,C) and so(2n,C). Standard realizations for them are well
known in terms of matrices of trace 0, skew symmetric and symplectic matrices.
The remainder are called exceptional. While there are realizations, mathematicians
usually work with them in terms of (abstract) data derived from the diagrams. For
example Ey is an algebra of dimension 248, and it has four real forms. The program
atlas gives detailed information about the real Lie algebras, the corresponding
groups, and representations computed from the diagram for any of the simple (and
composite) groups and algebras.

Exercise. R?, the space of 3-dimensional vectors is a Lie algebra with bracket the
cross product of vectors. (I

A Lie algebra can be described in terms of structure constants. Let {e;} be a
basis of g. Then there are constants c - such that

(1.2.10) lei, 5] Zc ek

For the example in the exercise, let ;, j, k be the usual coordinate vectors. Then
these constants come from the relations

- - -

(1.2.11) ixj=k  jxk=i,  kx

-

i=7.

Example 1. Let su(2) := {X € gI(C?) : X + X* =0, trace(X) = 0}. This is a
(real) Lie subalgebra of gl(C?). A basis is given by

R L PR IS N )

Example 2. Let s0(3) := {X € gl(R3) : X + X! =0, trace(X) = 0}. This is a
(real) Lie subalgebra of gl(R?). A basis is given by

0 1 0 0 0 O 0 0 -1
(1.2.13) e1:=|-1 0 0], ea:= (0 0 -1}, es:=1[(0 0 O
0 0 0 01 0 1 0 O

Note that in fact these three algebras are the same. This leads us to the notion
of a representation of a Lie algebra.
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Definition (1). A representation of a Lie algebra g is a linear map
p:g— gl(V)

which commutes with the Lie bracket, i.e.

p([z,y]) = [p(x), p(y)] := p(x)p(y) — p(y)p(z).
Here V' is a complex vector space.

The examples above are all representations of the (abstract) Lie algebra with
basis {e1, e2,e3} and bracket defined by the constants [e;, e;] = ey (in the appro-
priate sense, 4, j, k are 1,2, 3 cyclically permuted). In the third example you should
think of the matrices as acting on vectors with complex entries.

Example 3. Let g = R. The Lie bracket is trivial, [a,b] := ab—ba = 0. We want to
describe all finite dimensional representations of R. This is very easy. If p(1) = M,
a linear transformation of a vector space V, then p(t) = p(t- 1) =tp(1) =tM. O

But when we talk about representations, we want to be able to detect if we are
talking about the same representation in different disguises. For example, if we
pick a basis for V, then M is given by an n X n matrix, where n = dim V. If we
change basis, the matrix will change from M to gMg~' where g is an invertible
n X n matrix. So (equivalence classes of) representations correspond to similarity
classes of matrices.

Theorem (Jordan canonical form). Assume that M € gl(V'), where V is a finite
dimensional vector space. Then there is a basis such that M takes on the following
block diagonal form:

A1 0 0
0o N 1 0

... 0
0o ... .. A1
0o ... 0 N

The subspace generated by the basis vectors corresponding to a given block is
the generalized eigenspace of the matrix,
(1.2.14) W, ={veV : (M- X\Id)"v =0}.

This subspace has the property that MVy, C V,. Then (p,V),) is called a sub-
representation of (p, V).

Definition (2). A representation (p, V') is called irreducible if the only invariant
subspaces are (0) and V.

A representation is called completely reducible if any invariant space W C V
has an invariant complement, i.e. there is W' such that

W W =(0), W4+W =V, p(x)W C W for every z € g.

A representation of R (matrix) is irreducible if and only if it is 1-dimensional. Tt is
completely reducible if and only if it is diagonalizable. In general, the representation
(p, V) corresponding to a matrix M decomposes into a direct sum

(1215) V=W, Vi:={veV : (M-A)"v=0 for somen >0}.
Each V) has a filtration of subspaces
(1.2.16) ccVEcViT el V= {o s (M- ADF =0l
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Then MV} C V¥, so it is a subrepresentation of V). Then M (so also g) will act
on Vf“ / Vf as well. This representation is completely reducible, because M acts
by multiplication by A. Its dimension is the number of blocks of size larger than or
equal to k 4 1. The filtration (1.2.16) is called a Jordan-Holder series.

1.3. Abelian Lie algebras. The next case to study, would be g = R™. Represen-
tations are in 1-1 correspondence with n—tuples of commuting matrices (My, ..., M,,),
and their representation theory corresponds to Jordan canonical forms of commut-
ing matrices.

1.4. Lie groups and their representations. We saw in Reyer’s talk that there
is a strong connection between Lie groups and Lie algebras. The case we are going
to focus on is closedgroups G C GL(V'), where GL(V) is the group of invertible
linear transformations of a finite dimensional vector space. Given such a group G,
define its Lie algebra as

(1.4.1) L(G):={Xegl(V) : e €G forallt € R}.

A theorem of von Neumann states that £(G) is a Lie algebra. The general theory
of Lie groups shows how one can recover all (most) of the properties of G from
L(G).

Conversely, given a Lie subalgebra of gl(V'), there is a Lie group attached to it,
namely the group generated by all eX with X € g. The exponential map plays a
crucial role in the interplay between g and G. For example, a representation of
G is a continuous group homomorphism

(1.4.2) p:G— GL(V).

When V is finite dimensional, there is a Lie algebra representation associated to p,
namely

(1.4.3) dp(X) == —|  p(e)

Examples.

(1) Let R, -) be the positive real numbers with the usual multiplication. Then
L(G) = [R,+).
(2) Let R*,-) be the nonzero real numbers with the usual multiplication. Then
L(G) =R, +).
(3) Let G = SO(2) :={g € GL(R?) : g* =g ', det(g) =1}. We write these
. | cosf  sinf . . 0o 0
matrices as r(6) = [_ sind cos@.]' Then L(G) = so(2) = { {_9 O} }
If we drop the condition that det(g) = 1, we get a larger group called O(2)
which is disconnected, but has the same Lie algebra.
(4) Let G = SU(2) := {g € GL(C?) : ¢g* =g~ !, det(g) = 1}. Then L(G) =
su(2).
(5) Let G = SO(3) := {g € GL(R3) : ¢g* = g7, det(g) = 1}. Then L(G) =
s0(3).
While the Lie algebras are the same, the groups are not. They are only locally the
same.
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The way we recover the representation of the group from the Lie algebra is via
formula (1.4.3);

(1.4.4) p(g) = edrlioed),

In this formula g has to be very close to Id for the series to make sense. Furthermore,
in example (1), log is 1-1, so any representation of G is of this form. In example (2)
however, we need to insure that M = dp(1) is such that e?™ = [d. This forces M
to be semisimple and have integer eigenvalues. The irreduible characters of SO(2)
are the y,, (") = e? that appear in Fourier analysis.

Not all representations of the Lie algebra exponentiate to the corresponding Lie
group, even if the Lie group is connected. For example, in quantum physics the
groups SU(2) and SO(2) play an important role. They have the same Lie algebra.
Every representation of the Lie algebra su(2) exponentiates to a representation of
SU(2) essentially because

(1.4.5) SU(2) = { [_C% g] o+ 18P =1, a,B€ (C}
is simply connected. On the other hand SO(3) is a quotient of SU(2) by +Id, and

so only the representations of SU(2) which are trivial on —Id drop down to SO(3).
This has to do with half spin in physics.

(1.4.6) 1—Zy — SU(2) — SO(3) — 1.
1.5. Adjoint Representation. Note that
(1.5.1) geXgTl = e9X9
It follows that there is a representation called the adjoint representation
(1.5.2) Ad:G — GL(g), Ad(g) - X :=gXg .

As in the case of Jordan canonical forms, you can ask for conditions of when two

elements X,Y are conjugate by G. For the simple algebras that we are considering,
(the technical definition is that they do not have any nontrivial proper ideals),

(1.5.3) dAd=ad:g— gl(g)

is an inclusion. Then there is a notion of semisimple elements, generalizing the
notion of diagonalizable, namely x € g is semisimple if and only if ad = is diagonal-
izable. The map from SU(2) to SO(3) in (1.4.6) is really the adjoint representation
of SU(2). The Lie algebra su(2) is 3-dimensional vector space, and has an positive
definite inner product,

(1.5.4) (x,y) = trace(zy™).

Then SU(2) acts by Ad g(x) := gzg~!, and it is easy to check that (Ad gz, Ad gy) =
(x,y). Thus for each g € SU(2), Ad g is an orthogonal 3 x 3 matrix.

—1

1.6. Cartan subalgebras and subgroups.

Definition. A subalgebra ) C g is called a Cartan subalgebra, if
(1) it is abelian, i.e. (|x,y] =0 for all z,y € b,
(2) for every element x € b, ad x is semisimple.

A group H C G is called a Cartan subgroup, if it is the centralizer of a Cartan
subalgebra.
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A Lie algebra has finitely many conjugacy classes of Cartan subalgebras.

Example 4. Suppose G = SL(R™). Then representatives of the Cartan subgroups
are of the form

cosf; sinf; O ... O

(1.6.1) H{ —sinf; cosé; 0 ... 0 }
tj

where there are r boxes of the SO(2) kind, and n — r of the R* kind, with the
product of the t; equal to 1.

One of the main uses of the cartan subgroups is that their irreducible representa-
tions parametrize the irreducible infinite dimensional representations of the group
G. For each x € H there is a standard module X (x), which has a complicated
composition series. But it has a unique subquotient X (), so that every irreducible
module of G is an X (), and there is a precise easy rule how to decide when X ()
and X (x') are equivalent.

1.7. Representations of SL(2,R). This is the subgroup of GL(R?) of invertible
matrices of determinant 1. its Lie algebra is the subalgebra of gl(R?) of matrices
of trace 0. Its complexification is sl(2,C) called A; in the list of simple algebras.

Reminder. det(eX) = efrace(X), O

We are looking to classify the infinite dimensional irreducible representations of
SL(2,R). The Lie algebra sl(2,R) should act on such a representation (in fact it
acts on a dense subspace). Then the complexification

(1.7.1) sl(2,C) := {X € gl(C?) : trace(X)=0}.

should act as well (because our representations are complex vector spaces). We use
the basis

0 i 1 i =1
N T A R ]
A representation of s/(2,R) which is the derivative of a representation should have
h act semisimply and with integer eigenvalues. If vy is an eigenvector for h with

eigenvalue k, then p(e)v, should be a multiple of of vg12, p(f)vg should be a multiple
of vi_2. Indeed, if p(h)v = Av, then

(L7.3)  p()p(e)o = ple)p(h)v + pl[hs e])v = Ap(v) + 2p(e)v = (A + 2)p(e)o.

There are two Cartan subgroups in SL(2,R),
(1.7.4)

T={r(9)=[coso Smﬂ}, A:{a(t,e):[egt Ot},e:il}.

—sinf cosd ce

The standard modules which are easy to construct, are associated to irreducible
representations of the Cartan subgroups. The compact Cartan subgroup 7' has
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irreducible representations x, (7(6) = ¢’ with n € Z as described earlier. Then
(1.7.5)
X(T,n) == {vnt2n}r>o0,

p(R)vns2r = (N + 2k)vnok,

p(€)vnyor = i(n+ 1+ k)vniors2, p(f)vntar = i(=1+k)vpyop—2, 1 >0
X(T,—n) := {v—n—2k} k>0,

p(h)v—n—2k = (=1 — 2k)vnt2k,

ple)v—n—ok = i(1 = k)v_n_ok+2, p(f)ont2r = (—n —1 = k)vpiop—2, n>0

These representations are irreducible. The Cartan subgroup A is disconnected, the
irreducible representations are

(176) Xt’”ivv’/(a(€7t) = |€|et(yil)a ngn,u(a(ea t) = Get(uil).

The standard modules are
X(Aa t’l”il}, V) = {v2k}k€Za

p(h)var = (2k)vay;,

ple)var = i(v + 1/2 + k)vasa, p(f)var = i(—v — 1/2 + k)vap—_2,
X(A, sgn,v) = {vop+1}kez,

p(h)vaks1 = (2k + 1)vagy1,

ple)vaks1 = i(v + 1 + k)varts, p(f)vaks1 = i(—v + k)vag—1.

(1.7.7)

These representations are irreducible, except when v = 1/2 4+ n for triv, and v =
n with n € Z for sgn. In these cases the module has a Jordan-Holder series
analogous to the case of the Jordan blocks. These Jordan-Holder series can be
drawn pictorially

(1.7.8) v=ntl/2 o e b g 2 1,0
(1.7.9) v=-n-1/2 ... —22—2[ B O P

The multiplicities and levels of the irreducible representations are encoded in
polynomials in ¢ called Kazhdan-Lusztig-Vogan polynomials

(1.7.10) Pap(q) =Y aiq'

where a; is the multiplicity of X (b) at level 4 in the composition series of X (a).
These polynomials are very easy to compute for SL(2,R) but quite difficult as the
groups become larger.

Remark. The above account is of course an oversimplification. There is a partial
order on the set of parameters so that P,;, = 0 unless a < b. The algorithm
to compute the P, ; is such that one needs to know the P, ; for all the earlier
(a’, V). Of course the initial standard modules are irreducible. The difficulty with
the algorithm is that the number of parameters goes up very fast with the size of
the group, but also that at each step, to compute P, ; one needs to look up all the
earlier Pa’,b’-

1.8. Eg and atlas software. (D. Barbasch) DEPT. OF MATHEMATICS, CORNELL UNIVERSITY,
ITHACA, NY 14850
E-mail address: barbasch@math.cornell.edu



