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1.

This paper gives a omplete classification of the spherical unitary dual of
the split groups Sp(n) and So(n) over the real and p—adic field. Most of the
results were known earlier from [B1], [B2], [B3] and [BM3]. As is explained in
these references, in the p—adic case the classification of the spherical unitary
dual is equivalent to the classification of the unitary generic (in the sense
of admitting Whittaker models) Iwahori-spherical modules. The new result
is the proof of necessary conditions for unitarity in the real case. Following
a suggestion of D. Vogan, I find a set of K—types which I call relevant
which detect the nonunitarity. They have the property that they are in 1-1
correspondence with certain irreducible Weyl group representations (called
relevant) so that the intertwining operators are the same in the real and
p—adic case. The fact that these relevant W —types detect unitarity in the
p—adic case is also new. Thus the same proof applies in both cases. Since
the answer is independent of the field, this establishes a form of the Lefschetz
principle.

Let G be a split symplectic or orthogonal group over a local field F which
is either R or a p—adic field. Fix a maximal compact subgroup K. In the
real case, there is only one conjugacy class. In the p—adic case, F DR D P,
where R is the ring of integers and P the maximal prime ideal. We fix
K = G(R). Fix also a rational Borel subgroup B = AN. Then G = KB,
and denote by M := K N B. A representation (7, V') (admissible) is called
spherical if VK #£ (0).

The classification of irreducible admissible spherical modules is well known.

For every irreducible spherical 7, there is a character xy € A such that
X|ank = triv, and 7 is the unique spherical subquotient of Ind%[y ® 1]. We
will call a character y whose restriction to ANK is trivial, unramified. Write
X(x) for the induced module (principal series) and L(y) for the irreducible
spherical subquotient. Two such modules L(x) and L(x’) are equivalent if
and only if there is an element in the Weyl group W such that wy = x’. An
L(x) admits a nondegenerate hermitian form if and only if there is w € W
such that wy = —%.

The character x is called real if it takes only positive real values. For
real groups, x is real if and only if L(x) has real infinitesimal character ([K],
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chapter 16). As is proved there, any unitary representation of a real re-
ductive group with nonreal infinitesimal character is unitarily induced from
a unitary representation with real infinitesimal character on a proper Levi
component. So for real groups it makes sense to consider only real infini-
tesimal character. In the p—adic case, x is called real if the infinitesimal
character is real in the sense of [BM2]. The results in [BM1] show that the
problem of determining the unitary irreducible representations with Iwa-
hori fixed vectors is equivalent to the same problem for the Iwahori-Hecke
algebra. In [BM2], it is shown that the problem of classifying the unitary
dual for the Hecke algebra reduces to determining the unitary dual with real
infinitesimal character of some smaller Hecke algebra (not necessarily one
for a proper Levi subgroup). So for p—adic groups as well it is sufficient to
consider only real .

So we start by parametrizing real unramified characters of A. Since G is
split, A 2 (F*)"™ where n is the rank. Define

a* = X*(A) 9z R, (1.0.1)

where X*(A) is the lattice of characters of the algebraic torus A. Each
element v € a* defines an unramified character x, of A, characterized by
the formula

xo(r(F) =1fI, feFs, (1.0.2)
where 7 is an element of the lattice of one parameter subgroups X, (A). Since
the torus is split, each element of X*(A) can be regarded as a homomorphism
of F* into A. The pairing in the exponent in (1.0.2) corresponds to the
natural identification of a* with Hom[X,(A), R]. The map v — x,, from a*
to real unramified characters of A is an isomorphism. We will often identify
the two sets writing simply x € a*.

Let G be the (complex) dual group, and let A be the torus dual to A.
Then a* is canonically isomorphic to d ®r C, the Lie algebra of A. So we can
regard x as an element of & We attach to each y a nilpotent orbit O(x) as
follows. By the Jacobson-Morozov theorem, there is a 1-1 correspondence
between nilpotent orbits O and G-conjugacy classes of Lie triples {é, h, f 4
the correspondence satisfies ¢ € ©. Choose the Lie triple such that A € a.
Then there are many O such that y can be written as wy = E/Q + v with
v € 3(é,h, f), for example this is always possible with @ = (0). The results
in [BM1] guarantee that for any x there is a unique O(x) satisfying

(1) there exists w € W such that wy = %ﬁ + v withv € 3(é,ﬁ,f),
(2) if x satisfies property (1) for any other @, then O’ C O(x).

Here is another characterization of the orbit @. Let

gi={reg: [xal=2}, Go={reg: a]=0}

Then Gy, the Lie group corresponding to the Lie algebra §o has an open
dense orbit in §;. Its G saturation in § is O(x).
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The pair (O(x),v) has further nice properties. For example assume that
v =01in (1) above. Then the representation L(x) is one of the parameters
that the Arthur conjectures predict to play a role in the residual spectrum.
In particular, L(y) should be unitary. In the p—adic case one can verify
the unitarity directly as follows. In [BMI1] it is shown how to calculate
the Iwahori-Matsumoto dual of L(x) in the Kazhdan-Lusztig classification
of representations with Iwahori-fixed vector. It turns out that in the case
v = 0, it is a tempered module, and therefore unitary. Since the results
in [BM1] show that the Iwahori-Matsumoto involution preserves unitarity,
L(x) is unitary as well. In the real case, a direct proof of the unitarity of
L(x) (still with » = 0 as in (1) above) is given in [B3], and in section 9 of
this paper.

In the classical Lie algebras, the centralizer 3(¢, h, f) is a product of sym-
plectic and orthogonal Lie algebras. We will often abbreviate it as 3(@) The
orbit O is called distinguished if 3(O) does not contain a nontrivial torus;
equivalently, the orbit does not meet any proper Levi component. Let migc
be the centralizer of a Cartan subalgebra in 3(O). This is the Levi compo-
nent of a parabolic subalgebra. The subalgebra mp¢ is the Levi subalgebra
attached to O by the Bala-Carter classification of nilpotent orbits. The in-
tersection of @ with mpc is the other datum attached to @, a distinguished
orbit in mpc. We will usually denote it thc(@) if we need to emphasize
the dependence on the nilpotent orbit. Let Mpc C G be the Levi subgroup

whose Lie algebra mpc has mipe as its dual.

The parameter y gives rise to a spherical irreducible representation Lz, (x)

on Mpc as well as a L(x). Then L(x) is the unique spherical irreducible sub-
quotient of

Inipo (X) = Ind§p, [ Large (X)) (1.0.3)

To motivate why we consider Mpc(QO), we need to recall some facts about
the Kazhdan-Lusztig classification of representations with Iwahori fixed vec-
tors in the p-adic case. Denote by 7 the Iwahori-Matsumoto involution.
Then the space of Twahori fixed vectors of 7(L(x)) is a W—representation
(see 5.2), and contains the W —representation sgn. Irreducible representa-
tions with Iwahori-fixed vectors are parametrized by Kazhdan-Lusztig data;
these are G' conjugacy classes of (¢, x,v) where é € g is such that [x, ¢] = ¢,
and 1 is an irreducible representation of the component group A(x,é). To
each such parameter there is associated a standard module X (é, y, 1) which
contains a unique irreducible submodule L(¢, x,). All other factors have
parameters (¢, x',¢") such that

O(e) c O, O(e) £ 0(&).
As explained in section 4 and 8 in [BM1], X (¢, x’,4') contains sgn if and
only if ¢/ = triv. Thus if we assume O satisfies (1) and (2) with respect
to x, it follows that X (é, x,triv) = L(é, x, triv). We would like it to equal
Iz but this is not true. In general (for an M which contains Mpc),

{eq:1.3}
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L(&,x, triv) = Ind§;[Xum (&, x, triv)] if and only if the component Ay (é, x)
equals the component group A(¢, x). We will enlarge Mpc(O) to an Mgr,
so that A, (€, x) = A(é, x). Note that if mipe C m C @', then Aps(é,x) C

Appr(é,x). Then
Indg[KL (X, (€, x, triv)] = X (€, x, triv) = L(é, x, triv) (1.0.4)

and
L(X) = IMKL (X) = Ind?h@ [LMKL (X)] (1'0'5)

follows by applying 7. We remark that Mg depends on y as well as é. It
will be described explicitly in section 2. A more general discussion about
how canonical mgy is, appears in [BC1].

In the real case, we use the same Levi components as in the p—adic case.
Then equality (1.0.5) does not hold for any proper Levi component. A result
essential for the paper is that equality does hold at the level of multiplicities
of the relevant K —types (section 4.2).

We will use the data (O,r) to parametrize the unitary dual. Fix an O.
A representation L(x) will be called a complementary series attached to O,
if it is unitary, O(x) = O. To describe it, we need to give the set of v such
that L(x) with x = h/2 + v is unitary. Viewed as an element of 3(O), the
element v gives rise to a spherical parameter ((0),v) where (0) denotes the
trivial nilpotent orbit. The main result in section 3.2 says that the v giving
rise to the complementary series for O coincide with the ones giving rise to
the complementary series for (0) on 3(O). This is suggestive of Langlands
functoriality.

It is natural to conjecture that such a result will hold for all split groups.
Recent work of D. Ciubotaru for Fy, and by D. Ciubotaru and myself for
the other exceptional cases, show that this is generally true, but there are
exceptions.

I give a more detailed outline of the paper. Section 2 reviews notation
from earlier papers. Section 3 gives a statement of the main results. A
representation is called spherical unipotent if its parameter is of the form
h/ 2 for the neutral element of a Lie triple associated to a nilpotent orbit
O. The unitarity of the spherical unipotent representations is dealt with in
section 8. For the p—adic case I simply cite [BM3]. The real case (sketched
in [B2]) is redone in section 9.5. The proofs are simpler than the original
ones because I take advantage of the fact that wave front sets, asymptotic
supports and associated varieties “coincide” due to [SV]. Section 10.1 proves
an irreducibility result in the real case which is clear in the p—adic case
from the work of Kazhdan-Lusztig. This is needed for determining the
complementary series (definition 3.1 in section 3.1).

Sections 4 and 5 deal with the nonunitarity. The decomposition x =
h/2 + v is introduced in section 3. It is more common to parametrize the
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x by representatives in @ which are dominant with respect to some posi-
tive root system. We use Bourbaki’s standard realization of the positive
system. It is quite messy to determine the data (O, v) from a dominant pa-
rameter, because of the nature of the nilpotent orbits and the Weyl group.
Sections 2.3 and 2.8 give a combinatorial description of (O, v) starting from
a dominant y.

In the classical cases, the orbit O is given in terms of partitions. To such
a partition we associate the Levi component

mpe = gl(ay) x --- x gl{ax) % go(nog)
given by the Bala-Carter classification. (The §p in this formula is not related

to the one just after conditions (1) and (2). The intersection of O with tpc
is an orbit of the form

(a1) x - x (a;) x O

where Oy is a distinguished nilpotent orbit, and (a;) is the principal nilpotent
orbit on gl(a;). This is the distinguished orbit associated to O by Bala-
Carter. Then y gives rise to irreducible spherical modules Ly (x), L(x)
and I (x) as in (1.0.3) and (1.0.5). The module L(y) is the irreducible
spherical subquotient of I/(x). As already mentioned, I, , (x) = L(x) in
the p—adic case, but not the real case. In all cases, the multiplicities of
the relevant K —types in L(x), Ip(x) coincide. These are representations of
the Weyl group in the p—adic case, representations of the maximal compact
subgroup in the real case. Their definition is in section 4.2; they are a small
finite set of representations which provide necessary conditions for unitarity
which are also sufficient. The relationship between the real and p—adic case
is investigated in section 4, and 4.3. In particular the issue is addressed of
how the relevant K —types allow us to deal with the p—adic case only. A
more general class of K —types for split real groups (named petite K-types),
on which the intertwining operator is equal to the p-adic operator, is defined
in [B6]. Sections 4.4, and 4.5 are included for completeness. The interested
reader can consult [B6] and [BC1] for results where these kinds of K —types
and W —types are useful.

The determination of the nonunitary parameters proceeds by induction
on the rank of g and by the inclusion relations of the closure of the orbit
O. Section 5 completes the induction step; it shows that conditions (B) in
section 3.1 is necessary. The last part of the induction step is actually done
in section 3.1.

I would like to thank David Vogan for generously sharing his ideas about
the relation between K —types, Weyl group representations and signatures.
They were the catalyst for this paper.

This research was supported by NSF grants DMS-9706758, DMS-0070561
and DMS-03001712.
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2.

2.1. Explicit Langlands parameters. We consider spherical irreducible
representations of the split connected classical groups of rank n of type
B, C, D, precisely, G = So(2n + 1), G = Sp(2n) and G = So(2n). These
groups will be denoted by G(n) when there is no danger of confusion (n is
the rank). Levi components will be written as

M = GL(k'l) XX GL(k}T) X Go(n()), (211)

where Gg(ng) is the factor of the same type as G. The Lie algebras are
denoted g(n) and m = gl(k1) x --- x gl(ky) X go(no).

Asg already explained in the introduction, we deal with real unramified
characters only. In the case of classical groups, such a character can be
represented by a vector of size the rank of the group. Two such vectors
parametrize the same irreducible spherical module if they are conjugate via
the Weyl group which acts by permutations and sign changes for type B, C
and by permutations and an even number of sign changes in type D. For
a given x, let L(x) be the corresponding irreducible spherical module. We
will occasionally refer to x as the infinitesimal character.

For any nilpotent orbit @ C § we attach a parameter X» € af = a as
follows. Let {¢,h, f} be representatives for the Lie triple associated to a
nilpotent orbit O. Then x5 = h/2.

Conversely, to each y we will attach a nilpotent orbit @ C § and the Levi
components Mpc, Mgy, := GL(k1) X --- x GL(k;) x Go(ng), along with an
even nilpotent orbit Oy C go(ng) and unramified characters yq := Xo, and
xi on GL(k;). Then L(y) is the spherical subquotient, of

Ind;, (R L) @ Lixo)) (2.1.2)

2.2. We introduce the following notation (a variant of the one used by
Zelevinski [ZE]).

Definition. A string is a sequence
(a,a+1,...,b0—1,b)

of numbers increasing by 1 from a to b. A set of strings is called nested if
for any two strings either the coordinates do not differ by integers, or if they

do, then their coordinates, say (ai,...,b1) and (ag,...,bs), satisfy
a; <ag <be < by or az < ap < by < by, (2.2.1)
or
b +1<ay or bo+1<a. O (2.2.2)

A set of strings is called strongly nested if the coordinates of any two strings
either do not differ by integers or else satisfy (2.2.1).

{get}2}
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Each string represents a 1-dimensional spherical representation of a GL(n;)
with n; = b; — a; + 1. The matchup is

a+b
(a,...,b) «— |det |7, of GL(b—a+1). (2.2.3)

In the case of G = GL(n), we record the following result. For the p—adic
case, it originates in the work of Zelevinski, and Bernstein-Zelevinski ([ZE]
and references therein). To each set of strings (a1,...,b1;...;ak,...,bk)
we can attach a Levi component Mpc := [[,<,<, GL(n;), and an induced
module o o

I(x) = Ind5 " [(R) L(x:)] (2.2.4)
where x; is as in (2.2.3).

In general, if the set of strings is not nested, then the corresponding in-
duced module is not irreducible. The coordinates of x in a* ~ R", determine
a set of nested strings as follows. Extract the longest sequence starting with
the smallest element in A; that can form a string. Continue to extract se-
quences from the remainder until there are no elements left. This set of
strings is, up to the order of the strings, the unique set of nested strings one
can form out of the entries of x.

Theorem. Suppose F is p-adic. Then

aj+by ar+by }

L(x) = Ind§F™ [ [det| 5 oo | det |

The nilpotent orbit @ corresponds to the partition of n with entries b; —
a; + 1; it is the unique orbit satisfying (1) and (2) in the introduction, with
respect to x.

For the real case (still GL(n)), the induced module in theorem 2.2 fails
to be irreducible. However equality holds on the level of multiplicities of
relevant K-types.

We will generalize this procedure to the other classical groups. As before,
the induced modules that we construct fail to be irreducible in the real
case. The closest result to irreducibility is equality of multiplicity of relevant
K —types in the two sides of (1.0.5).

2.3. Nilpotent orbits. In this section we attach a set of parameters to
each nilpotent orbit O C g. Let &, h, f be a Lie triple so that € € O, and let
3(O) be its centralizer. In order for x to be a parameter attached to O we
require that § §

xX="h/2+v, v € 3(0), semisimple, (2.3.1)
but also that if

x=h/12+7, v € 3(0"), semisimple (2.3.2)

for another nilpotent orbit @’ C §, then @' C O.In [BM1], it is shown that
the orbit of x, uniquely determines O and the conjugacy class of v € 3(0).
We describe the pairs (O, v) explicitly in the classical cases.

{eq:1.1.1b}
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Nilpotent orbits are parametrized by partitions

(L, 1,2, 2 gy Jyee ) (2.3.3)
—— N——r —_—
1 9 T
satisfying the following constraints.

Ap_1: gl(n), partitions of n.

B,: so(2n + 1), partitions of 2n + 1 such that every even part occurs
an even number of times.

Cr: sp(2n), partitions of 2n such that every odd part occurs an even
number of times.

D,: so(2n), partitions of 2n such that every even part occurs an even
number of times. In the case when every part of the partition is even,
there are two conjugacy classes of nilpotent orbits with the same
Jordan blocks, labelled (I) and (II). The two orbits are conjugate
under the action of O(2n).

The Bala-Carter classification is particularly well suited for describing the
parameter spaces attached to the O C g. An orbit is called distinguished if
it does not meet any proper Levi component. In type A, the only distin-
guished orbit is the principal nilpotent orbit, where the partition has only
one part. In the other cases, the distinguished orbits are the ones where
each part of the partition occurs at most once. In particular, these are even
nilpotent orbits, i.e. ad h has even eigenvalues only. Let @ C § be an ar-
bitrary nilpotent orbit. We need to put it into as small as possible Levi
component m. In type A, if the partition is (a1, ..., ax), the Levi component
is hpc = gl(a1) x - - - X gl(ay). In the other classical types, the orbit O meets
a proper Levi component if and only if one of the r; > 1. So separate as
many pairs (a,a) from the partition as possible, and rewrite it as

((a1,a1), ..., (ak,ak);d1, ..., dp), (2.3.4)

with d; < d;;1. The Levi component mpc attached to this nilpotent by
Bala-Carter is

mpe = gl(ar) x -+ x gl(ax) x Mmp(ng), ng:=n-— Zai, (2.3.5)

The distinguished nilpotent orbit is the one with partition (d;) on g(ng),
principal nilpotent on each gl(a;). The x of the form h/2 + v are the ones
with v an element of the center of mpc. The explicit form is in (2.3.6), and
we will write out (d;) and hg/2 in sections 2.4-2.7.

We will consider more general cases where we write the partition of @ in
the form (2.3.4) so that the d; are not necessarily distinct, but (d;) forms an
even nilpotent orbit in g(ng). In this case x = h/2 + v will be of the form

a; — 1 a; — 1
(.5 — 22 e Z 22

where hg is the neutral element of a triple corresponding to (d;).

+vi,...3h/2), (2.3.6)

{eq:2.3.3}
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The parameter x determines an irreducible spherical module L(x) for G
as well as an Ly (x) for M, of the form

Li(x1) ® -+ ® Li(xx) ® Lo(x0)s (2.3.7)

where the L;(;) are one dimensional. We will consider the relation between
the induced module

L (x) := Ind§;[Lar (), (2.3.8)
and L(x) for various M.

2.4. Type A. We write the h/2 for a nilpotent @ corresponding to
(a1,...,a) with a; < a;41 as

ai—l ai—l_

(o5 — 5 T g e )
The parameters of the form y = h/2 4 v are then
a; — 1 a; —1
(...;— Z2 R Z TN 22 —|—I/i;...). (241)
Conversely, given a parameter as a concatenation of strings
X:(...;Ai,...,BZ’;...), (2.4.2)

it is of the form h/2+v where A is the neutral element for the nilpotent orbit
with partition (A; + B; + 1) (the parts need not be in any particular order)

and y; = AZEB L. We recall the following well known result about closures of
nilpotent orbits.
Lemma. Assume O and O' correspond to the partitions (a1,...,ax) and
bi,...,by) respectively, where some of the a; or b; may be zero in order to
have the same number k. The following are equivalent

(1) O' c 0.

(2) Diss@i > Y ingbi forallk > s> 1.

Proposition. A parameter x as in (2.4.1) is attached to O in the sense of
satisfying (2.8.1) and (2.3.2) if and only if it is nested.

Proof. Assume the strings are not nested. There must be two strings
(A,...,B), (C,...,D) (2.4.3)

such that A —C € Z, and A < C < B < D,or C = B—1. Then by
conjugating y by the Weyl group to a x’, we can rearrange the coordinates
of the two strings in (2.4.3) so that the strings

(A,...,D), (C,...B), or (4,...,D). (2.4.4)
appear. Then by the lemma, ' = A'/2 + v/ for a strictly larger nilpotent
o'

Conversely, assume y = 71/2 + v, so it is written as strings, and they

are nested. The nilpotent orbit for which the neutral element is A/2 has
partition given by the lengths of the strings, say (ai,...ax) in increading

{eq:2.3.8}

{sec:2.3a}

{2.3a.1}

{eq:2.3a.2}

{1:2.3a}

{p:2.3a}

{eq:2.32a.3}

{eq:2.3a.4}



10 DAN BARBASCH

order. If y is nested, then aj is the length of the longest string of entries we
can extract from the coordinates of x, ap_1 the longest string we can extract
from the remaining coordinates and so on. Then (2) of lemma 2.4 precludes
the possibility that some conjugate x’ equals A'/2 + v/ for a strictly larger
nilpotent orbit. O

In type A, Mg = mpe.
{sec:2.3b} 5
2.5. G of Type B. Rearrange the parts of the partition of O C sp(2n,C),

in the form (2.3.4),

{eq:2.3b.1} ((al,al),...,(ak,ak);on,...,Qme) (251)

The d; have been relabeled as 2x; and a 2zg = 0 is added if necessary, to
insure that there is an odd number. The z; are integers, because all the
odd parts of the partition of @ occur an even number of times, and were
threrefore extracted as (a;, a;). The y of the form h/2 + v are

-1 -1
( ,—a’2 Y, ,a’2 v 12, 12T — 1/2, . o —1/2).
ni/2 Nzom—1/2
{eq:2.3b.2} (2.5.2)
where
{eq:2.3b.3} n_12 = #{wi > 1}. (2.5.3)

; ) Lemma 2.4 holds for this type verbatim. So the following proposition holds.
p:2.3b .
Proposition. A parameter x = h/2+ v cannot be conjugated to one of the

form ' /2 + V' for any larger nilpotent O if and only if
(1) the set of strings satisfying ‘”;1 +v;— GJT_I —vj € 1/247 are nested.
(2) the strings satisfying alé_l + v; € 7 satisfy the additional condition

that either xo,, +1/2 < —ainl + v; or there is j such that

i — 1 i — 1
a; +Vi§az

{eq:2.3b.4} zj+1/2<— +v; <xjp1+1/2. (2.5.4)

The Levi component mgy, is obtained from mpe as follows. Consider the
strings for which a; is even, and v; = 0. If a; is not equal to any 2x;, then
remove one pair (a;,a;), and add two 2z; = a; to the last part of (2.5.1).
For example, if the nilpotent orbit is

{eq:2.3b.5} (2,2,2,3,3,4,4), (2.5.5)
then the parameters of the form h/2 + v are
(=1/24v1,1/2+ v =1+ v9,v9, 1 + vy;
—-3/2+wv3,—1/24v3,1/24+1v3,3/2+v3;1/2)
The Levi component is mpc = sp(4) X gl(2) x gl(3) x gl(4). If v3 # 0, then

mpe = mgyr. But if v3 = 0, then myp = sp(6) x gl(2) x gl(3). The parameter
is rewritten

{eq:2.3b.6} (2.5.6)
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O« ((2,2)(3,3);2,4,4) (2.5.7)
X (=1/24 1,124 v15 -1+ vo,v9,1 +19;1/2,1/2,1/2,3/2,3/2).
The explanation is as follows. For a partition (2.3.3),

3(0) = sp(r1) x so(rg) x sp(r3) x ... (2.5.8)

and the centralizer in G is a product of Sp(re;4+1) and O(ra;), i-e. Sp for the
odd parts, O for the even parts. Thus the component group is a product of
Zs, one for each ro; # 0. Then A(x,é) = A(v,h,é), and so Ay, (x,€) =
A(x, €) unless one of the v; = 0 for an even a; with the additional property
that there is no 2z; = q;.

We can rewrite each of the remaining strings

a; —1 a; — 1
(———— 4 vy, —— 4+ 1) (2.5.9)
2 2
as
Xi =(fi+ 7, fi+1+7,...,F +7), (2.5.10)
satisfying
fieZ+1/2, 0<7,<1/2, Fi=fi+a. (2.5.11)

This is done as follows. We can immediately get an expression like (2.5.10)
with 0 < 7; < 1, by defining f; to be the largest element in Z+1/2 less than or
equal to — ‘”2_1 +v;. If 7, < 1/2 we are done. Otherwise, use the Weyl group
to change the signs of all entries of the string, and put them in increasing
order. This replaces f; by —F; — 1, and 7; by 1 — 7;. The presentation of the
strings subject to (2.5.11) is unique except when 7; = 1/2. In this case the

argument just given also provides the presentation
(—F;—141/2,...,—fi—1+1/2). (2.5.12)

We choose between (2.5.10) and (2.5.12) the one whose leftmost term is
larger in absolute value. That is, we require f; + F; > —1 whenever 7; =
~1/2.

2.6. G of Type C. Rearrange the parts of the partition of O C so(2n +
1,C), in the form (2.3.4),

((al, al), ceey (ak,ak); 200 +1,...,2x0, + 1; (2.6.1)

The d; have been relabeled as 2x; + 1. In this case it is automatic that
there is an odd number of nonzero z;. The z; are integers, because all the
even parts of the partition of @ occur an even number of times, and were
threrefore extracted as (a;, a;). The yx of the form h/2 + v are

a; — 1 a; — 1
(coo5— 12 +v, .., —

+vis.50,000,0, 000 Zom, e, Tom). (2.6.2)
2 —— <~

no Neom,

{eq:2.3b.8}

{eq:2.3b.9}

{eq:2.3b.10}

{eq:2.3b.11}

{eq:2.3b.12}

{sec:2.3c}

{eq:2.3c.1}

{eq:2.3c.2}



{p:

{eq:2.

{eq:2.

{eq:2.

{eq:2.

{eq:2.

{eq:2.

2.3c}
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where
m if ] =0,
n, = .
#{x; > 1} if [ #0.
Lemma 2.4 holds for this type verbatim. So the following proposition holds.

(2.6.3)

Proposition. A parameter x = il/2 + v cannot be conjugated to one of the
form I [2+ V' for any larger nilpotent O' if and only if

a;—1

(1) the set of strings satisfying “5—= + v; — % —v; € 7 are nested.

(2) the strings satisfying ‘“51 + v; € 7 satisfy the additional condition
that either oy, +1 < —a";l + v; or there is j such that

1 1
Qa; +Vigaz

xj—l—l < — + v; <$j_|_1—|—1. (2.6.4)

The Levi component mg, is obtained from mpc as follows. Consider the
strings for which a; is odd and v; = 0. If a; is not equal to any 2z; + 1, then
remove one pair (a;,a;), and add two 2z; +1 = a; to the last part of (2.6.1).
For example, if the nilpotent orbit is

(1,1,1,3,3,4,4), (2.6.5)
then the parameters of the form h/2 + v are

(1/1; -1 + VQ,I/Q,]. + V9,

2.6.6
—3/2+V3,—1/2+I/3,1/2+V3,3/2—|-V3;0) ( )

The Levi component is fipc = s0(3) x gl(1) x gl(3) x gl(4). If v # 0, then
mpe = Mg But if vo = 0, then My, = s0(9) x gl(1) x gl(4). The parameter
is rewritten

O+ ((1,1),(4,4);1,3,3) (2.6.7)
X — (v1;-3/2+v3,—1/2+13,1/2 4+ 1v3,3/2 4+ v3;0,1,1).

The Levi component is unchanged if v; = 0.
The explanation is as follows. For a partition (2.3.3),

3(0) = s0(r1) x sp(ra) x so(rs) x ... (2.6.8)

and the centralizer in G is a product of O(raj11) and Sp(r;), i.e. O for the
odd parts, Sp for the even parts. Thus the component group is a product of
Zs, one for each rg;41 # 0. Then A(x, &) = A(v, h,€), and so Ap,. (X, €) =
A(x, ¢é) unless one of the v; = 0 for an odd a; with the additional property
that there is no 2z; + 1 = a;.

We can rewrite each of the remaining strings

(_

ai—1+ az-—l
Viyouo
2 19 3 2

+ 1) (2.6.9)

{eq:2.3c.3}



{eq:2.3c.10}

{eq:2.3c.11}
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as
Xi:=(fi+7r,fi+1+7,...,F+71), (2.6.10)
satisfying
fi€Z, 0<7,<1/2, F=fi+a. (2.6.11)

This is done as follows. We can immediately get an expression like (2.6.10)
with 0 < 7; < 1, by defining f; to be the largest element in Z+1/2 less than or
equal to —‘“’Tfl +v;. If ; < 1/2 we are done. Otherwise, use the Weyl group
to change the signs of all entries of the string, and put them in increasing
order. This replaces f; by —F; — 1, and 7; by 1 — 7;. The presentation of the
strings subject to (2.6.11) is unique except when 7; = 1/2. In this case the

argument just given also provides the presentation
(—F;—141/2,...,—fi—14+1/2). (2.6.12)

We choose between (2.6.10) and (2.6.12) the one whose leftmost term is
larger in absolute value. That is, we require f; + F; > —1 whenever 7; =
~1/2.

2.7. G of Type D.  Rearrange the parts of the partition of O C so(2n, C),
in the form (2.3.4),

((al, al), RN (ak,ak); 200+ 1,..., 2291 + 1) (2.7.1)

The d; have been relabeled as 2x; + 1. In this case it is automatic that there
is an even number of nonzero 2x; + 1. The x; are integers, because all the
even parts of the partition of © occur an even number of times, and were
therefore extracted as (a;,a;). The x of the form h /2 + v are

(c.5—

a; — 1 a; — 1
Z2 + V..., ’

—|-1/i;...;07...,0,...,xgm,...,wgm). (2.7.2)
2 S—— S——r
no Neom
where
m if [ =0,
n, =
e, >0} 140

Lemma 2.4 holds for this type verbatim. So the following proposition holds.

(2.7.3)

Proposition. A parameter x = h/2 + v cannot be conjugated to one of the
form W' /2 + V' for any larger nilpotent O if and only if

a;—1 aj_1

(1) the set of strings satisfying “5— + v; — 55— — vj € Z are nested.
(2) the strings satisfying ai2_1 + v; € 7 satisfy the additional condition
that either xoy, +1 < —ainl + v; or there is j such that

a; +Vi§az

r;+1<— +vi<wzjyr + 1. (2.7.4)

{eq:2.3c.12}

{sec:2.3d}

{eq:2.3d.1}

{eq:2.3d.2}

{eq:2.3d.3}

{p:2.3d}

{eq:2.3d.4}



{eq:2.3d.6}

{eq:2.34d.7}

{eq:2.3d.8}

{eq:2.3d.9}

{eq:2.34.10}
{eq:2.3d.11}

{eq:2.3d.12}
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The Levi component my, is obtained from mpgc as follows. Consider the
strings for which a; is odd and v; = 0. If q; is not equal to any 2z; + 1, then
remove one pair (a;,a;), and add two 2z; + 1 = a; to the last part of (2.7.1).
For example, if the nilpotent orbit is

(1,1,3,3,4,4), (2.7.5)
then the parameters of the form h/2 + v are
(v1; =1+ vo,v0, 1 + 1y
—-3/24+v3,-1/2+1v3,1/24+13,3/2 + 13)
The Levi component is igc = gl(1) x gl(3) x gl(4). If vy # 0 v1 # 0, then
mpe = mgp. If vy =0 and vy # 0, then Mg, = so(6) x gl(1) x gl(4). The
parameter is rewritten
O+ ((1,1),(4,4);3,3) (2.7.7)
X — (1n;-3/2+v3,—1/24v3;1/2 + v3,3/2+ v3;0,1,1).
Similarly if v1 = vo, = 0.
The explanation is as follows. For a partition (2.3.3),
3(0) = so(r1) x sp(ry) x so(rs) x ... (2.7.8)

and the centralizer in G is a product of O(rg;11) and Sp(raj), i.e. O for the
odd parts, Sp for the even parts. Thus the component group is a product of
Zy, one for each rgj1 # 0. Then A(x,€) = A(v, h,é), and so Ango(x, €) =
A(x, €) unless one of the v; = 0 for an odd a; with the additional property
that there is no 2z; + 1 = a;.

We can rewrite each of the remaining strings

(_

(2.7.6)

ai—1+ az-—l
Viyou.
2 19 ) 2

+ 1) (2.7.9)

as
xi =(fi+n, fi+1+7,....,F+71), (2.7.10)
satisfying fi€eZ, 0<1,<1/2, F,=fi+a. (2.7.11)

This is done as in types B and C, but see the remarks which have to do
with the fact that —Id is not in the Weyl group. We can immediately get
an expression like (2.7.10) with 0 < 7; < 1, by defining f; to be the largest
element in Z + 1/2 less than or equal to —aiT_l +v. It < 1/2 we are
done. Otherwise, use the Weyl group to change the signs of all entries of
the string, and put them in increasing order. This replaces f; by —F; — 1,
and 7; by 1 —7;. The presentation of the strings subject to (2.7.11) is unique
except when 7; = 1/2. In this case the argument just given also provides the
presentation

(—F;—141/2,...,—fi—1+1/2). (2.7.12)
We choose between (2.7.10) and (2.7.12) the one whose leftmost term is
larger in absolute value. That is, we require f; + F; > —1 whenever 7; =
—1/2.

{eq:2.3d.5}
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Remarks

(1)

(2)

A (real) spherical parameter x is hermitian if and only if there is
w € W(D,) such that wy = —x. This is the case if the parameter
has a coordinate equal to zero, or if none of the coordinates are 0,
then n must be even.

Assume the nilpotent orbit O is very even, i.e. all the parts of the
partition are even (and therefore occur an even number of times).
The nilpotent orbits labelled (I) and (IT) are characterized by the
fact that mpc is of the form

(I) «— gl(ar) x -+ x gl{ag_1) X gl(ag),

(I1) — gl(ar) x -+ x gl(ar—1) x gl(ax)".

The last gl factors differ by which extremal root of the fork at the
end of the diagram for D,, is in the Levi component. The string for
kis

(1) «—(

(1) «— (=

ap — 1 arp — 1
_ %k + Vi, oo, k2 +I/k;),
ak—l ak—3 ak—l
+ Vg, ... 5 + Vg, — 2

We can put the parameter in the form (2.7.10) and (2.7.11), because
all strings are even length. In any case (I) and (II) are conjugate by
the outer automorphism, and for unitarity it is enough to consider
the case of (I).

Certain x having a coordinate equal to 0, can be written as hy/2+
vr or hyr/24 vir, but then they can also be written as h'/2 + v/ for
a larger nilpotent orbit. For example, in type D2, the two cases are
(2, 2)] and (2, 2)][,

(1) «— (1/2,-1/2) + (v, v),
(I1) < (1/2,1/2) + (v, —v).

— k).

For the parameter to contain a zero, it has to be (1,0) and this
corresponds to (1, 3), the principal nilpotent orbit.

Because we can only change an even number of signs using the Weyl
group, we might not be able to change all the signs of a string. We
can always do this if the parameter contains a coordinate equal to
0, or if the length of the string is even. If there is an odd length
string, and none of the coordinates of y are 0, changing all of the
signs of the string cannot be achieved unless some other coordinate
changes sign as well. However if y = h/2 + v cannot be made to
satisfy (2.7.10) and (2.7.11), then y’, the parameter obtained from
X by applying the outer automorphism, can. Since L(x) and L(x')
are either both unitary of both nonunitary, it is enough to consider
just the cases that can be made to satisfy (2.7.10) and (2.7.11).



{sec:2.4}

{2.4b}

{eq:2.4.2a}
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For example, the parameters
(5/35 2/37 _1/3; 1/45 _3/47 _7/4)7
(1/35 _2/35 _5/3; 1/45 _3/4: _7/4)

in type Dg are of this kind. Both parameters are in a form satisfying
(2.7.10) but only the first one satisfies (2.7.11). The second one
cannot, be conjugated by W (Dg) to one satisfying (2.7.11).

2.8. Relation between infinitesimal characters and strings. In the
previous sections we described for each nilpotent orbit @ the parameters of
the form h/2 + v with v € 3(0) semisimple, along with condition (2.3.2).
In this section we show how to find the data (O,v) satisfying (2.3.1) and
(2.3.2) from a x € a.

G of Type B. Partition the coordinates of x into subsets parametrized
by 0 <71 <1/2,

Ar={vi : vior—v;=1/2+ 7 (mod Z)}.

There are three cases 7 = 0,1/2 and 0 < 7 < 1/2. From the coordinates
in Ay extract the longest possible string. Continue extracting strings until
there are no coordinates left. From the subset of strings that start with
1/2, remove all pairs of strings of equal length. The coordinates of the
strings that are left over are the ones coming from the (2zy,...,2z9,)
of O written as in (2.5.1). The coordinates of each pair of equal strings
(1/2,..., ‘“2—_1; 1/2,..., “iQ_I) combine to give a string (—‘”2_1,. o “lT_l) cor-
responding to a pair (a;,a;). For example if the parameter is

(1/2,1/2,1/2,3/2,3/2,3/2,5/2,5/2,5/2,5/2,7/2),

then the strings are
(1/2,3/2,5/2,7/2), (1/2,3/2,5/2), (1/2,3/2,5/2), (5/2))
and the parameter is
(5/2;-5/2,-3/2,-1/2,1/2,3/2,5/2;1/2,3/2,5/2,7/2).

corresponding to the nilpotent orbit O = (1,1,6,6;8).

For the coordinates in Ay /5, extract the longest possible string, but by chang-
ing some coordinates into their negatives if necessary. If necessary, change
the coordinates of the string to their negatives, to make it conform to (2.5.10)
and (2.5.11). Continue until there are no entries left. These are strings in
(2.5.2) corresponding to pairs (a;, a;) in (2.5.1). For example for

(0,0,1,1,1,1,2,3,3,4,5),
the strings are
(=5,-4,-3,-2,-1,0,1), (-1,0,1), (—4,-3). (2.8.1)
This adds the pairs (2,2,3,3,7,7) to the partition of O.



{2.4.3}
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For A; with 0 < 7 < 1/2, change signs in the coordinates if necessary and
rearrange in increasing order

(a+71,...,a+71,...,A+71,...,A+T) (2.8.2)

Then extract the longest possible string. Extract strings in the same way
from the remainder until there are no coordinates left. These are strings
in (2.5.2) corresponding to pairs (aj,a;) in (2.5.1). For example, if the
parameter is
(1/4,1/4,3/4,5/4,5/4),
rewrite it as
(_5/47 _5/47 _1/41 _1/45 3/4)5
and then extract the strings
(=5/4,-1/4,3/4), (=5/4,~1/4).
This adds the pairs (2,2,3,3) to the partition of O.

G of Type C. Partition the coordinates of x into subsets parametrized {2 4c}
by 0 <7<1/2,

Ar=A{vi : vior—v; =71 (mod Z)}.
From the coordinates in A extract the longest possible string by changing
coordinates into their negatives if necessary. Continue extracting strings un-
til there are no coordinates left. Set aside the strings of the form (— %4 L el

they correspond to pairs (a;, a;) in (2.6.1). The coordinates of the remaining
strings come from the (2x + 1,...,2%2, + 1) of O written as in (2.6.1).
For example if the strings are as in (2.8.1), then the nilpotent orbit is
O =(2,2,3,31,3,11), and x = (-4, —3;-1,0,1;0,1,1,2,3,4, 5).

From the coordinates in A/, extract the longest possible string, but by
changing some coordinates into their negatives if necessary. If necessary,
change the coordinates of the string to their negatives, to make it conform
to (2.6.10) and (2.6.11). Continue until there are no entries left. These are
strings in (2.5.2) corresponding to pairs (a;, a;) in (2.5.1).

For A, with 0 < 7 < 1/2, change signs in the coordinates if necessary and
rearrange in increasing order

(a+7,...;0a4+7,...,A4+7,...,A+7T) (2.8.3)

Then extract the longest possible string. Extract strings in the same way
from the remainder until there are no coordinates left. These are strings in
(2.6.2) corresponding to pairs (a;, a;) in (2.6.1).

G of Type D. Partition the coordinates of x into subsets parametrized
by 0 <71 <1/2,

A ={v; : vyor—v; =7 (mod 7)}.

From the coordinates in Ay extract the longest possible string by changing
coordinates into their negatives if necessary. Continue extracting strings
until there are no coordinates left. Separate the strings of the form

{2.4c.1}

{2.4d}
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(—“gl, el “igl); they correspond to pairs (a;,a;) in (2.6.1). The coordi-

nates of the remaining strings come from the (229 +1,...,2z9,-1+ 1) of O
written as in (2.6.1). For example if the strings are as in (2.8.1), then the
nilpotent orbit is O = (2,2,3,3;3,11), and x = (-4, -3; -1,0,1;0,1,1,2,3,4, 5).
From the coordinates in A/, extract the longest possible string, but by
changing some coordinates into their negatives. If necessary, change the
coordinates of the string to their negatives, to make it conform to (2.6.10)
and (2.6.11). Continue until there are no entries left. These are strings in
(2.5.2) corresponding to pairs (a;, a;) in (2.5.1).

For A; with 0 < 7 < 1/2, change signs in the coordinates if necessary and
rearrange in increasing order

{2.44.1} (a+7,...;0a4+7,...,A4+7,...,A+7T) (2.8.4)

Then extract the longest possible string. Extract strings in the same way
from the remainder until there are no coordinates left. These are strings in
(2.7.2) corresponding to pairs (a;, a;) in (2.7.1).

All the changes of signs can be implemented using the Weyl group if one
of the coordinates of x equals 0. Suppose none of the coordinates are equal
to 0. If the lengths of all the strings is even, we can put all strings in the
form (2.7.10) satisfying (2.7.11) by using W (D,,), but the longest one will
be

(fi+Ti7"'7E+Ti)J
{eq:2.44d.2} or (2.8.5)
(fi+7iso..,—F— 1)

The first parameter corresponds to a very even nilpotent labelled (I), the
second (IT). The two parameters are not conjugate by W(D,,), but are con-
jugate by an outer automorphism.

In the case when the strings in (2.8.5) are of odd length, the two param-
eters are not conjugate by W(D,,), but the associated nilpotent, orbit is the

same.
{sec:2.6}

2.9. Let x = h/2 + v be associated to the orbit O. Recall from 2.3

{eq:2.6.1} Ing(x) == Ind$;[Lar (X)), (2.9.1)
where Ljps(x) is the irreducible spherical module of M with parameter x.
Write the nilpotent orbit in (2.3.4) with the (dy, ..., d;) as in sections 2.5-2.7
depending on the Lie algebra type. Then mpc = gl{a1) x---xgl(ag) X go(no)
is as in (2.3.5). Thus x determines a spherical irreducible module

{eq:2.6.2} Ly (x) = Li(x1) ® -+ - @ Lg(xx) @ Lo(xo), (2.9.2)

with y; = (—‘”;1 +Vi e, ‘“;1 + 1), while xo = ho/2 for the nilpotent (d;).

Let mgy be the Levi component attached to xy = fL/2 + v in sections
2.5-2.7. As for mpc we have a parameter Lz, (x). In this case O =



{eq:2.6.3}
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((a,d)),...,(a,a));dy,...d)) as described in 2.5-2.7. Then (a W-conjugate
of) x can be written as in (2.5.2)-(2.7.2)), and

g = gl(a)) x -+ x gl(a;) x go(np),
Lree, (X) = Ll(Xll) Q- LT(X;) ® LO(X())'
Theorem. In the p-adic case
Invre, () = L(X)-

Proof. This is in [BM1], mg, was defined in such a way that this result
holds. O

Corollary. The module Iy, (x) equals L(x) in the p—adic case if all the
v; 0.

(2.9.3)

3.

3.1. Recall that G is the (complex) dual group, and A C G the maximal
torus dual to A. Assuming as we may that the parameter is real, a spherical
irreducible representation corresponds to an orbit of an element y € a, the
Lie algebra of A. In section 2 we attached a nilpotent orbit O in § to such
a parameter. Let é,h, f be a Lie triple attached to O. Let y := 71/2 +v
satisfy (2.3.1)-(2.3.2).

Definition. A representation L(x) is said to be in the complementary series
for O, if the parameter x is attached to O in the sense of satisfying (2.3.1)
and (2.3.2), and is unitary.

We will describe the complementary series explicitly in coordinates.
The centralizer Zp(¢,h, f) has Lie algebra 3(O) which is a product of
sp(r;, C) or so(r;,C) 1 <1 < k according to the rule
G of type B, D: sp(r;) for a; even, so(r;) for a; odd,
G of type C: sp(r;) for a; odd, so(r;) for a; even.
The parameter v determines a spherical irreducible module Lj(v) for the

dual of 3(O). Tt is attached to the trivial orbit in 3(O).

Theorem. The complementary series attached to O coincides with the one
attached to the trivial orbit in 3(O). For the trivial orbit (0) in each of the
classical cases, the complementary series are
G of type B:
0§V1§"'§V}c<1/2.
G of type C, D:
0< < <y <12< < - <y <1

so that v; +v; < 1. There are

(1) an even number of v; such that 1 —vp 1 <v; <1/2,

(2) an odd number of v; such that 1 — vy < vy <1—wvpy .

In type D of odd rank, vy = 0 or else the parameter is not hermitian.

{t:2.6}

{c:2.6}

{8et}3}

{d:2.1}

{thm:3.1}



{sec:3.2}

{eq:3.2.1}

{11:3.2}

{12:3.2}

{13:3.2}
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Remarks.
(1) The condition that v; + v; # 1 implies that in types C,D there is at
most one v, = 1/2.
(2) Each of the coordinates forms a string, but in the form above the
parameter does not satisfy (2.3.2). For (2.3.2) to hold, it suffices to
change vy for types C, D to 1 — vp;.

3.2. We prove the unitarity of the parameters in the theorem for O = (0)
for types B,C, and D. First we record some facts.

Let G := GL(2a) and
a—1 a—1 a—1 a—1
X = (- 5 Ve VT +uv,..., 5 +v). (3.2.1)

Let M := GL(a) x GL(a) C GL(2a). Then the two strings of x determine
an irreducible spherical (1-dimensional) representation Lys(x) on M. Recall

T (x) = Ind[Lar ().

Lemma (1). The representation Ini(x) is unitary irreducible for 0 < v <
1/2. The irreducible spherical module L(x) is not unitary for v > %, 2v ¢ 7.

Proof. This is well known and goes back to [Stein] (see also [T] and [V1]). O

We also recall the following well known result due to Kostant in the real
case, Casselman in the p—adic case.

Lemma (2). If none of the (x,a) for a € A(a) is a nonzero integer, then
X (x) is irreducible. In particular, if x = 0, then

L(x) = X(x) = Ind§[x],
and it is unitary.

Let m C g be a Levi component, and & € 3(m), where 3() is the center
of m, depending continuously on ¢ € [a, b].

Lemma (3). Assume that

I (xi) == Ind§y[Lar(x0) © &)
is irreducible for a < t < b, and Lyr(xo) @ & is hermitian. Then Ipr(xt)
(equal to L(xy)) is unitary if and only if Las(xo) is unitary.

This is well known, and amounts to the fact that (normalized ) induction
preserves unitarity. I don’t know the original reference.

We now start the proof of the unitarity.

Type B. In this case there are no roots a € A(g,a) such that (x,«) is a
nonzero integer. Thus

L(x) = Ind§[x]
as well. When deforming x to 0 continuously, the induced module stays
irreducible. Since Ind$[0] is unitary, so is L(x).
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Type C,D. There is no root such that (x,«) is a nonzero integer, so L(x) =
IndS[x]. If there are no vj,; > 1/2 the argument for type B carries over
word for word. When there are v;4; > 1/2 we have to be more careful with
the deformation. We will do an induction on the rank. Suppose that for
some j there is more than one v;. Necessarily, v; < 1/2. Conjugate x by the
Weyl group so that

X =W, Ve 0j, 0,5 055 05) 1= (X03 V53 Vj)- (3.2.2)

Let m := g(n —2) x ¢gl(2), and denote by M the corresponding Levi compo-
nent. Then by induction in stages,

L(x) = Ind§;[Lu (X)), (3.2.3)

where Lys(x) = Lo(xo0) ® Li(vj,v;). By lemma (1) of 3.2, Li(v;,v;) is uni-
tary. Thus L(y) is unitary if and only if Lo(xo) is unitary. If x satisfies the
assumptions of the theorem, then so does x(. By the induction hypothesis,
Lo(xo) is unitary, and therefore so is L(x). Thus we may assume that

0§V1<"'<I/k§1/2<yk+1<"'<Vk+l. (3.2.4)

If v, < 1 — w1, then the assumptions imply 1 — v 1o < vg. Consider the
parameter

Xt = (oo Vpy V1 — o). (3.2.5)
Then
L(xy) = Indg[)(t], for 0 <t < wgiq — v, (3.2.6)

because no (x;,«) is a nonzero integer. At ¢ = v, — Vg, the parameter is
in the case just considered earlier. By induction we are done.

If on the other hand 1 — vy < v, the assumptions on the parameter are
such that at least 1 — v 11 < vgp—1 < Vk. Then repeat the argument with

Xt = (o 1,0k —t,...), 0<t<vy—vgp . (3.2.7)

This completes the proof of the unitarity of the parameters in theorem 3.1
when O = (0).

3.3. We prove the unitarity of the parameters in theorem 3.1 in the general
case.

The proof is essentially the same as for O = (0), but special care is needed
to justify the irreducibility of the modules. We need to compare 3(O) and
thy, carefully. Recall the notation of the partition of O (2.3.3). The factors
of 3(0) isomorphic to sp(r;), contribute r;/2 factors of the form gl(a;) to
mgr. The factors of type so(r;) with r; odd, contribute a d;, and rj2_1
gl(a;). The factors so(r;) of type D (r; even) are more complicated. Write

the strings coming from this factor as in (2.3.6),

(_

ai—1+ az-—l
Viyouo
2 19 3 2

+ ;)

{eq:3.2.2}

{eq:3.2.3}

{eq:3.2.4}

{eq:3.2.5}

{eq:3.2.7}

{sec:3.3}
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with the v; satisfying the assumptions of theorem 3.1. If r; is not divisible
by 4, then vy = 0, and mpc # mg. This is also the case when r; is divisible
by 4 and v; = 0. In all situations, we consider

It (X)- (3.3.1)

In the p-adic case, the only way Ins, (x:) can become reducible in the
deformations in section 3.2 is if the associated nilpotent orbit changes, and

this does not happen. For the v; attached to factors of type D in 3(0), it is
important in the argument that we do not deform to (0).

Example. Assume O = (2,2,2,2) C sp(8). The parameters of the form
h/2+ v are

(—=1/2+v1,1/2+v1;-1/2 + 1,1/2 + 1), (3.3.2)
and, because paramters are up to W —conjugacy, we may restrict attention
to the region 0 < v < vy. In this case 3(O) = s0(2), and the unitarity region
is 0 < £v; 4+ vy < 1. Furthermore mpe = gl(2) X gl(2), but mg = mpe only
if 0 < v;. When v; = 0, mgr = sp(4) x gl(2), the nilpotent orbit is rewritten
(2,2;(2,2)), and ho/2 = (1/2,1/2). For v; = 0, the induced representations

Sp(8
Intyer, (X)) = Tndgh) oy o [L0(1/2,1/2) @ Ly (=1/2+v3,1/2+w5)] (3.3.3)
are induced irreducible in the range 0 < vy < 1. For 0 < vy the representation
IndZh ) L((=1/24v1+8,1/24 v +8); (<1/2=1 —1,1/2— 11~ 1))] (3.3.4)

is induced irreducible for 0 < ¢t < 1/2 — ;.

The main point of the example is that IndgpL(é)) [L(-1/2+1t,1/24t)] is
reducible at ¢ = 0. So we cannot conclude that L(y) is unitary for a (v, v9)

with 0 < vy from the unitarity of L(x) for a parameter with v; = 0. O

In the case of real groups, the same irreducibility results hold, but are
harder to prove. Given y, consider the root system

Ay ={aeA:{x,a) € Z}. (3.3.5)

Let G, be the connected split real group corresponding to this root sys-
tem. Then x determines an irreducible spherical representation Lg, (x). The
Kazhdan-Lusztig conjectures for nonintegral infinitesimal character provide
a way to prove any statement about the character of L(x) by proving it for
Lg, (x)- This is beyond the scope of this paper (or my competence), I refer
to [ABV], chapters 16 and 17 for an explanation.

Since Gy is not simple, it is sufficient to prove the needed irreducibility
result for each simple factor. This root system is a product of classical
systems as follows. Recall the set A, in section 2.8. Each A, contributes as
follows.

G of type B: Every 0 < 7 < 1/2 contributes a type A. Every 7 =
0,1/2 contributes a type C.

G of type C: Every 0 < 7 < 1/2 contributes a type A. Every 7 =0
contributes a type B, while 7 = 1/2 contributes type D.

{eq:3.3.1}
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G of type D: Every 0 < 7 < 1/2 contributes a type A. Every 7 =
0,1/2 contributes a type D.

To prove that Ins,., (x) is irreducible, it suffices to prove the following
result.

Proposition. Assume § is of type A or D. Let

a; — 1 n a; — 1
Viy. ..
2 () ) 2
be given in terms of strings, and let m = gl(ay) % --- X gl(ay) be the corre-
sponding Levi component. Assume that x is integral for type A and type D,

in addition in type D assume that the coordinates of x are all in 1/2+ Z. If
the strings are strongly nested, then

Ini(x) = Ind§[L(x))-

The proof will be in section 10.

X =(..;— +vi...)

4. K-

4.1. In the real case we will call a K—type (u, V') quasi-spherical if it occurs
in the spherical principal series. By Frobenius reciprocity (u, V') is quasi-
spherical if and only if VETB £ 0. Because the Weyl group W (G, A) may
be realized as Nx(A)/Zk(A), this Weyl group acts naturally on this space.

The representations of W(A,,_1) = S,, are parametrized by partitions of

n, written as a := (ay,...,ax), a; < a;+1. The representations of W (B,,) =
W (Cy,) are parametrized as in [L1] by pairs of partitions, which we write as

J((ah'":a’T)v(bl:'"7bs))7
a; < 41, bj < bj+1, Zai + ij =n. (4.1.1)

Precisely the representation parametrized by (4.1.1) is as follows. Let k =
> ai, I =) bj. Recall that W = S,, x Z5. Let x be the character of Z3
which is trivial on the first k Zy’s, sign on the last [. Its centralizer in S, is
Sk % S). Let o(a) and o(b) be the representations of Sk, S; corresponding
to the partitions a and b. Then let o(a, b, x) be the unique representation of
(Sk % S;) x Z% which is a multiple of x when restricted to Z§', and o(a) @ (b)
when restricted to Si x S;. The representation in (4.1.1), is

o(a,b) = I”d(vgk,xsl)ng [o(a,b,x)] (4.1.2)

If a # b, the representations o(a,b) and o(b,a) restrict to the same ir-
reducible representation of W(D,), which we denote again by the same
symbol. When a = b, the restriction is a sum of two inequivalent repre-
sentations which we denote o(a,a)r, r7. Let W, 1 := Sg, x -+ x S,, and
Warr i= Sa, X --- x S;,, be the Weyl groups corresponding to the Levi

{p:3.3}

{sec:4}

{eq:4.0.4}

{eq:4.0.5}
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{1:4.2}

{def:4.2}

{p:4.2}

{eq:4.2.3}

{eq:4.2.4}
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components considered in Remark (2) in section 2.7. Then o(a,a); is char-
acterized by the fact that its restriction to W, ; contains the trivial represen-
tation. Similarly o(a, a);s is the one that contains the trivial representation
of Wajlj.

4.2. Symplectic Groups. The group is Sp(n) and the maximal com-
pact subgroup is U(n). The highest weight of a K-type will be written as

play, ..., a,) with a; > a1 and a; € Z, or
plalt, ..., apf) = (a1, ..., a1, ..., Qk, ..., Q). (4.2.1)
—_——— —_———
1 Tk

when we want to emphasize the repetitions. We will repeatedly use the
following restriction formula

Lemma. The restriction of p(ai,...,a,) to U(n —1) x U(1) is

> by, bpo1) @ plbn),

where the sum ranges over all possible a1 > by > ag > --- > b, 1 > a,, and
bn = Zlgign a; — Z1§j§n—1 bj.
Definition. The representations pe(r,n —r) := p(2",0" ") and po(k,n —
k) = pu(1%,072k —1*) are called
Proposition. The relevant K —types are quasispherical. The representation
of W(Cy) on VM is

pre(r,n — 1) <— ol(n —r), (r)],

oy = k) < ol(k,n — £), (0))

The K-types p(0"™",(=1)"), dual to p.(r) are also quasispherical, and
could be used in the same way.

Proof. We do an induction on n. Consider the case n = 2. There are four
relevant representations of U(2) with highest weights (2,0), (1,-1), (2,2)
and (0,0). The first representation is the symmetric square of the standard
representation, the second one is the adjoint representation and the fourth
one is the trivial representation. The normalizer of A in K can be identified
with the diagonal subgroup (+1,£1) inside U(1) x U(1) C U(2). The Weyl
group is generated by the elements

o B [ ) 22

The restriction to U(1) x U(1) of the four representations of U(2) is

(
(2,0) — (2) ® (0) + (1) ® (1) + (0) ® (2),
(L,-1) — (1)@ (=1)+ (0) @ (0) + (-1) ® (1),
(2,2) — (2) ® (2), (4.2.3)
(0,0) —> (0) ® (0).
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The space VM is the sum of all the weight spaces (p) ® (¢) with both p
and q even. For the last one, the representation of W on VM is o[(2), (0)].
The third one is 1-dimensional so V™ is 1-dimensional; the Weyl group
representation is ((0),(2)). The second one has V™ 1-dimensional and
the Weyl group representation is o((11),(0)). For the first one, VM is 2-
dimensional and the Weyl group representation is ((1),(1)). These facts
can be read off from explicit realizations of the representations.

Assume that the claim is proved for n — 1. Choose a parabolic subgroup
so that its Levi component is M' = Sp(n — 1) x GL(1) and M is contained
init. Let H=U(n —1) x U(1) be such that M ¢ M'NK C H.

Suppose that p is relevant. The cases when £ = 0 or r = 0 are 1-
dimensional and are straightforward. So we only consider &k, r > 0. The
K-type p(2",0™7") restricts to the sum of

(270" @ u(0) (4.2.4)
w2775 1,07 @ p(1) (4.2.5)
(270" @ p(2). (4.2.6)

Of the representations appearing, only u(27,0""~!) ® u(0) and
w(2771,1,0" " 1) ® u(2) are quasispherical. So the restriction of VM to
W(Cp-1) x W(C}) is the sum of

o[(n —r—1),(r)] ®a[(1), (0)] (4.2.7)
ol(n —r),(r—1)]®a[(0),(1)] (4.2.8)

The only representations of W(C),) containing (4.2.7) in their restrictions
to W(Cp—1) are

ol(l,n—r —1),(r)] (4.2.9)
ol(n —r), (r)]. (4.2.10)

But the restriction of ¢[(1,n —r — 1), (r)] to W(Cp—1) x W(C}) contains
o[(1,n—r—1),(r—1)]®0c[(0), (1)], and this does not appear in (4.2.7)-(4.2.8).
Thus the representation of W(C,,) on VM for (4.2.9) must be (4.2.5), and
the claim is proved in this case.

Consider the case u(1*,0!, —1%) for k > 0. The restriction of this K-type
to U(n — 1) x U(1) is the sum of

p(1k 0l —1% "1 @ p(-1) (4.2.11)
(1P~ 0l —1%) @ u(1) (4.2.12)
p(1F=1 0 — 171 & 1(0) (4.2.13)
p(1%,071 —1%) @ u(0) (4.2.14)
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Of the representations appearing, only (4.2.13) and (4.2.14) are quasispher-
ical. So the restriction of VM to W (C,_1) x W(C1) is the sum of
ol(k — 1,k +1), (0)] @ o[(1), (O)], (1.2.15)
o[(k,k+1-1),(0)] ® a[(1), (0)]. (4.2.16)

The representation (4.2.16) can only occur in the restriction to W(Cp_1) %
W(Cy) of o[(1,k,k+1—1),(0)] or o[(k,k +1),(0)]. If & > 1, the first one
contains o[(1,k — 1,k +1 — 1),(0)] in its restriction, which is not in the
sum of (4.2.15) and (4.2.16). If k¥ = 1 then (4.2.15) can only occur in the
restriction of ¢[(0,1 4+ 2), (0)], or o[(1,1+ 1), (0)]. But V™ cannot consist of
o[(0,1+2),(0)] alone, because (4.2.15) does not occur in its restriction. If it
consists of both ¢[(0,1 + 2), (0)] and o[(1,1), (0)], then the restriction is too
large. The claim is proved in this case. O

4.3. Orthogonal groups. Because we are dealing with the spherical case,
we can use the connected component of the orthogonal group. A K—type
will be identified by its highest weight in coordinates, p(ai,...,a,), or if
there are repetitions, p(al?,...,a ).

4.4. We describe the relevant K-types for the orthogonal groups SO.(a, a).

Definition (even orthogonal groups). The K —types for SOe¢(a,a)
are

el [a/2) = ) 2= p(09/2) @ (2", 0f) (44.1)
po(k,[a/2] — k) := u(1*,0) @ u(1*, 0.
where r +1 = [a/2].

Proposition. The relevant K —types are quasispherical. The representation
of W(D,) of O(a,a) on VM is

ol(r,a — 1), (0)] — 1 (0142l @ (2", b, (4.4.3)
ol(a — k), (k)] — (1,00 @ p(1k,0h, (4.4.4)

When 1 =0, and a is even,
o[(a/2,a/2),(0)] s p(0) @ (2% 42), (4.4.5)

ol(a/2),(a/Dlrrr +—  p(1Y*H£1) @ p(1? £1). (4.4.6)

We will prove this together with the corresponding proposition for O(a+1, a)
in section 4.6.

4.5. We describe the relevant K-types for O(a + 1, a)

{eq:4.2.16}
{eq:4.2.17}
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Definition (odd orthogonal groups). The K -types for O(a+1,a)
are
pre(a — 7, 7r) := p(0l@tD/2ly @ y2r, 0h) (4.5.1)
po(a — k, k) == p(1%,0Y @ p(1*,0%) (4.5.2)
pola — k, k) == p(1F1, 00 @ p(1¥,0%) (4.5.3)

where r +1 =1[a/2] in (4.5.1), k+1=[(a+1)/2], k+s=[a/2] in (4.5.2),
and k+1+1=[(a+1)/2], k+s=][a/2] in ({.5.3).

Proposition. The representations of W(B,) on VM for the relevant K-
types are

ol(r,a—1),(0)] <+ pO@D2) g 42, 0h (4.5.4)
ol(a — k), (k)] s p(1F 0l D2=ky @ 1k ole/217h) (4.5.5)
o[(k), (a — k)] s p(1FFE olletD/2=ky o qk ole/2l=ky - (4.5.6)
When a is even,
ol(a/2),(a/2)] — 1(197%) @ p(19271 +1). (4.5.7)
When a is odd,
ol(a/2),(a/2)] —  p(1@D2 11y @ p(eD2) (4.5.8)

The proof will be in section 4.6.

4.6. Proof of propositions 4.4 and 4.5. We use the standard realization
of the orthogonal groups O(a + 1,a) and O(a,a). Let

M = {(770,7]1, e Nay, €15 - - ,Ga) L, ej = :|:1, H’m = H 6j = 1} (461)
viewed as the subgroup of O(a + 1) x O(a) with the n;, €; on the diagonal.
With the appropriate choice of a 2 R%, M C Ng(a), and the action is

(m,ej) . ( ey Ly - - ) = ( - NEEET - - ) (462)

Then M is the subgroup of M determined by the relations n; = €;, j =
1,...,a. Similarly for O(a) x O(a) but there is no 7.

We do the case O(a + 1,a), O(a,a) is similar. The representations p,(k)
and f1o(a— k) can be realized as A C*!' @ AF €, and A\FF Cotl o AF(C).
Let e; be a basis of C¢*! and fj a basis of C*. The space VM is the span of
the vectors e;; A- - -Ae;, & fi, A -Afi,, and egAej; A- - -Aej, @ fiy A - -Afi,. The
elements of W corresponding to short root reflections all have representatives
of the form ny = —1,n; = —1, the rest zero. The action of S, C W on the
space VM is by permuting the e;, f; diagonally. Claims (4.4.4-4.4.5) and
(4.5.5-4.5.6) follow from these considerations, we omit further details..

For cases (4.4.3) and (4.5.4) we do an induction on r. We do the case
O(a,a) only. The claim is clear for r = 0. Since the first factor of p.(r) is
the trivial representation, we only concern ourselves with the second factor.

{p:4.5}
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Consider A" C* @ A" C®. The space of M —fixed vectors has dimension a,r,
and a basis is

{eq:4.6.3} e, N~ Ne;j,. Qe N---Ne;, (4.6.3)
As a module of S, this is
{eq:4.6.4} Indg g [trivetri]= > (ja—j) (4.6.4)
1<5<r

On the other hand, the tensor product consists of representations with high-
est weight 1(2%,1%,07). From the explicit description of /\k C*, and the
action of M, we can infer that VM for B # 0 is (0). This is because the
representation occurs in A®™’ C* @ A* C?, which has no m—fixed vectors.
On the other hand, p(27,0") for j < r occurs (for example by the P-R-V
conjecture). By the induction hypothesis, (j,a — j) occurs in pu(27,0), for
j < r, and so only (r,a — r) is unaccounted for. Thus VM for p.(r) cannot
be zero, so it must be (r,a — r). The claim now follows from the fact that
the action of the short root reflections is trivial, and the description of the

irreducible representations of W (B,).

{sec:4.7}
4.7. General linear groups. The maximal compact subgroup of GL(a, R)
is O(a), the Weyl group is W(A,—1) =S, and M = O(1) x --- x O(1). We

-

a
list the case of the connected component GL(a, R)* (matrices with positive

determinant) instead, because its maximal compact group is K = SO(a)
which is connected, and irreducible representations are parametrized by their

highest weights.
{def:4.7}

Definition. The K —types are the ones with highest weights
(2%, 0.
The corresponding Weyl group representations on VM are o[(k,a — k)].

We omit the details, the proof is essentially the discussion about the

representation of S, on A C* ® A C* for the orthogonal groups.
{sec:5.8}
4.8. Relevant W—types.

{d:5.8} Definition. Let W be the Weyl group of type B,C,D. The following W —types
will be called
{eq:4.8.1}  oc(r,n—r) :=0o[(n—r),(r)], oo(k,n — k) :=o[(k,n —k),(0)] (4.8.1)

In type D forn even, and r = n/2 there are two W — types, o.[(n/2), (n/2)]1,11 :=
ol(n/2),(n/2)lr,11- If the root system is not simple, the relevant W —types
are tensor products of relevant W —types on each factor.
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5.

5.1. Recall that X (v) denotes the spherical principal series. Let w € W.
Then there is an intertwining operator

Hw,v): X(v) — X(wv). (5.1.1)
If (u,V) is a K—type, then I induces a map
Iyv(w,v) : Homg[V, X (v)] — Homg[V, X (wv)]. (5.1.2)
By Frobenius reciprocity, we get a map
Ry (w,v) : (VHENB _ (y+)ENB, (5.1.3)

In case (u, V) is trivial the spaces are 1-dimensional and Ry (w,v) is a
scalar. We normalize I(w,v) so that this scalar is 1. The Ry (w,v) are
meromorphic functions in v, and the I(w,v) have the following additional
properties.

(1) If w = wy -we with {(w) = {(wy) +€(ws), then I(w,v) = I(wy,wav)o
I(wg,v). In particular if w = s4, - - sq, is a reduced decomposition,
then I(w) factors into a product of intertwining operators I;, one
for each sq,;. These operators are

Ij © X(Saj4y -+ Say V) — X(Sa; - Say, " V) (5.1.4)

(2) Let P = MN be a standard parabolic subgroup (so A C M) and
w € W(M, A). The intertwining operator

I(w,v) : X() = IndS[Xy(v)] — X(wv) = IndS[ Xy (wr)]
is of the form I(w,v) = Ind$, [y (w,v)].
(3) If Re{(v,a) > 0 for all positive roots «, then Ry (wp, v) has no poles,
and the image of I(wp,v) (wo € W is the long element) is L(v).

(4) If —7 is in the same Weyl group orbit as v, let w be the shortest
element so that wy = —¥. Then L(v) is hermitian with inner product

(v1,v9) := (v1, I(w, v)ve).
Let a be a simple root and P, = M,N be the standard parabolic subgroup
so that the Lie algebra of M, is isomorphic to the si(2,R) generated by the
root vectors Ei,. We assume that 0FE, = —E_,. Let Dy = v/—1(Eq — E_g)
and so = eV 1"Da/2 Then s2 = my, is in M N M,. Since the square of
any element in M is in the center and M normalizes the the root vectors,

Adm(D,) = £D,. Grade V* = @V,* according to the absolute values of
the eigenvalues of D, (which are integers). Then M preserves this grading

and
VoM = P vHM.
i even

The map v, : sl(2,R) — g determined by

1% |:8 [1):| = Eon 1/}04 |:8 (:-l):| =FE_qo
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determines a map

v, : SL(2,R) — G (5.1.5)
with image G, a connected group with Lie algebra isomorphic to sl(2, R).
Let R, be the maps (5.1.3) for G,.
Proposition. On (V)M

By (s, 7) {Id if m =0,
ViSa, V) = 2j+1—<wv,a> ;
H0§j<m 2§+1+<Z,g> Id if m#0.
In particular, I(w,v) is an isomorphism unless (v,&) € —N.
Proof. The formula is well known for SL(2, R). The second assertion follows
from this and the listed properties of intertwining operators. O

Corollary. For relevant K—types the formula is

Ry ( ) Id on the +1 eigenspace of sq,
v(Sa,V) = e _
“ L_ig:gi Id on the -1 eigenspace of sq.

When restricted to (V*)M, the long intertwining operator is the product of
the R, corresponding to the reduced decomposition of wy and depends only
on the Weyl group structure of (V*)M.

Proof. Relevant K —types are distinguished by the property that the eigen-
values of D, are 0, £2 only. The element s, acts by 1 on the zero eigenspace
of D, and by —1 on the +2 eigenspace. The claim follows from this. O

5.2. We now show that the formulas in the previous section coincide with
corresponding ones in the p—adic case. In the split p-adic case, spherical
representations are a subset of representations with Z-fixed vectors, where 7
is an Iwahori subgroup. As explained in [B], the category of representations
with 7 fixed vectors is equivalent to the category of finite dimensional repre-
sentations of the Iwahori-Hecke algebra H := H(Z\G/Z). The equivalence
is

V — VL (5.2.1)

The papers [BM1] and [BM2] show that the problem of the determination of
the unitary dual of representations with Z fixed vectors, is equivalent to the
problem of the determination of the unitary dual of irreducible representa-
tions of H with real infinitesimal character. In fact it is the affine graded
Hecke algebras we will need to consider, and they are as follows.

Let A := S(a), and define the affine graded Hecke algebra to be H :=
C[W] ® A as a vector space, and usual algebra structure for C[W] and A.
Impose the additional relation

wta = Sa(W)ta+ < w,a >, w € a, (5.2.2)

where ¢, is the element in C[W] corresponding to the simple root a. If X (x)
is the standard (principal series) module determined by x, then

X =Hou Cy. (5.2.3)

{eq:5.1.5}
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The intertwining operator I(w, x) is a product of operators I,, according to
a reduced decomposition of w = 54, - - - 54,. If a is a simple root,

1
rq = (taax — l)ﬁ’ In : 2@ 1, = arq ® Ly . (5.2.4)

The I(w,v) have the same properties as in the real case. The r, are mul-
tiplied on the right, so we can replace a with —(v, @) in the formulas. Fur-
thermore,

CWl=> VeV
oW

Since r, acts as multiplication on the right, it gives rise to an operator
To(Sa,v) 1 V) — V.

Theorem. The Ry (sq,v) for the real case on relevant K—types coincide
with the 4 (sq,v) on the Vi = (V)M

Proof. The operators R, and r, act the same way:

1d on the + 1 eigenspace of
To(8a,V) = § 1=(r,a) 1d b 1 o £ (5.2.5)
T (v.a) on the — 1 eigenspace of ¢,

The assertion is now clear from corollary (5.1) and formula (5.2.2). We
emphasize that the Hecke algebra for a p-adic group G is defined using the
dual root system of the complex group G so that there is no discrepancy
between a and & in the formulas. O

5.3. The main point of section 5.2 is that for the real case, and a rele-
vant K-type (V, i), the intertwining operator calculations coincide with the
intertwining operator calculations for the affine graded Hecke algebra on
the space VM. Thus we will deal with the Hecke algebra caclulations exclu-
sively, but the conclusions hold for both the real and p-adic case. Recall from
section 2.3 that to each x we have associated a nilpotent orbit O, and Levi
components mpc and mgr. These are special instances of the following situ-
ation. Assume that O is written as in (2.3.4) (i.e. ((a1,a1),..., (a, ar); (d;))
with

g of type B: (d;) all odd; they are relabelled (229 + 1,...,2x9, + 1),

g of type C: (d;) all even; they are relabelled (2x,...,2x9,),

g of type D: (d;) all odd; they are relabelled (2xq, ..., 2%2m—1).

Similar to (2.3.5), let
m:=gl(ay) x --- x gl(ag) x g(ng), no=mn-— Zai. (5.3.1)

We consider parameters of the form x = 71/ 2+

{t:5.2}
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Write xo for the parameter 2/2, and x; := (—‘lgl + V..., ‘”2’1 +v;). We
focus on x( as a parameter on §(ng). We attach two Levi components

Je :

B gl(2w2m_1 + 2290 + 2) X -+ X gl(Q.ZIIl + 2x0 + 2) X g(.’lf?m)
C gl(2w2m_1 + 2x2m_2) XX gl(2$’1 + 21’0) X g(xzm)

D glQ2xom-—1 + 2x9m—2+2) X -+ x gl(2x1 + 220 + 2)

go :

B gl(2xom + 2xom-—1 +2) X -+ X gl(2z9 + 221 + 2) X §(x0)

C  glQ2xom + 2xom—1) X -+ X gl(2x9 + 2x1)§(x0)

D gl(2x2m73 + 2294 + 2) X -ee X gl(2w2m,2 + 1) X g(zzgm,l).

(5.3.2)
There are 1-dimensional representation L(x.) and L(x,) such that the spher-

ical irreducible representation L(x») = X(xp) with infinitesimal charac-
ter xo is the spherical irreducible subquotient of X, := Ind]GDe (xe) and

X, = Indgo (xo) respectively. The parameters x. and Yy, are written in
terms of strings as follows:
Xe:
B: ... (—.1'21‘,1, e ,:1321;2) e (—:L‘Qm, . .,—1)
C: ...(—.’L'Ql;l +1/2,---,l’2i—2—1/2)---(_352771+1/2,---,—1/2)
D : ...(—1‘27;,1,...,1'21;2)...
(5.3.3)
Xo:
B: ...(—.’L'Qi,...,.%’gi_l)...(—xo,...,—l)
cC: ... (—.'If2i + 1/2,. vy I9i-1 — 1/2) e (—.’IIO + 1/2,. . .,—1/2) (534)
D: ... (_3721'; ces ,in_l) ce (—me_Q, ceey —1)(—$2m_1 +1,... ,O)

Theorem. For the Hecke algebra, p-adic groups,
[o[(n —r),(r)] : Xe] =[ol(n—7),(r)] : Lixo)],
[o[(k,n = k),(0)] : Xo] = [o[(k,n—Fk),(0)] : L(xo)]
hold.
The proof is in section 6.7.

For a general parameter, the strings defined in section 2 and the above
construction defines parabolic subgroups with Levi components gl(aq) X - - - X
gl(ax) X ge and gl(aq) x - - - x gl(a,) X §,, and corresponding L.(x) and L,(x).
We denote these induced modules by X, and X, as well.

Corollary. The relations
[ol(n —r), ()] : Xe] =[ol(n—7),(r)] = L],
[o[(k,n — k), (0)] : Xo] = [o[(k,n —k),(0)] : L(x)]

{eq:5.3.2}
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hold in general. For real groups,
[pe(r,n — 1) o Xe] = [pe(r,n—71) + L(X)],
[o(kyn — k) + Xo] = [po(k,n — k) = L(x)]

The proof is in section 6.8. Section 5 explains the passage from the calcula-
tions with W —types and the Hecke algebra to the relevant K —types in the
real case.

6.

6.1. The proof of the results in 5.3 is by a computation of intertwining
operators on the relevant K—types. It only depends on the W—type of
VM so we work in the setting of the Hecke algebra. The fact that we can
deal exclusively with W —types, is a big advantage. In particular we do not
have to worry about disconnectedness of Levi components. We will write
GL(k) for the Hecke algebra of type A and G(n) for the types B, C or D
as the case may be. This is so as to emphasize that the results are about
groups, real or p—adic.

The intertwining operators will be decomposed into products of simpler
operators induced from operators coming from maximal Levi subgroups. We
introduce these first.

Suppose M is a Levi component of the form
GL(a1) X -+- x GL(a;) x G(ny). (6.1.1)

Let x; be characters for GL(a;). We simplify the notation somewhat by
writing
a; — 1 a; — 1

12 +1/Z',...,ZT+1/Z-). (6.1.2)
The parameter is antidominant, and so L(y;) occurs as a submodule of
the principal series X ((;)). The module is spherical 1-dimensional, and the

action of fraka is

Xi ¢ (Vi) = (=

ai—l ai—l

Xi(w) = {w, ( 5 + Vi, — 5 +v;)), w € a, (6.1.3)
while W acts trivially. The trivial representation of G(ng) corresponds to
the string (—ng +¢,...,—1+ €) where

0 H of type B,
e:=41/2, H of type C, (6.1.4)
1, H of type D.

We abbreviate this as (v9). Again L(xo) is the trivial representation, and
because o is antidominant, it appears as a submodule of the principal series
X (x0).- We abbreviate

X ) ) = IndF g o) xam) [0Xi @ triv]. (6.1.5)

faeciflyy
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The module Xy (... (;)...) is a submodule of the standard module X ()
with parameter corresponding to the strings
a; — 1 a; — 1

5 + Voo y——— 4V, ot 6, ..., —1 4 €). (6.1.6)

()= .

In the setting of the Hecke algebra, the induced modules (6.1.5) is really
Xyl (v)...) =Hem, [Q xi ® triv].

Let w; ;+1 € W be the shortest Weyl group element which interchanges the
strings (v;) and (v;41) in v, and fixes all other coordinates. The intertwining
operator Iy, ., : X(v) — X (w;;y1v) restricts to an intertwining operator

IM,i,i—I—l(- .. (l/i)(l/ﬂ,l) . ) .

Xp(oo W) Wig1) ) — Xm0 Wig)(w5) - ). (6.1.7)

This operator is induced from the same kind for GL(a; + a;+1) where M =
GL(a;) x GL(aj+1) C GL(a; + a;41) is the Levi component of a maximal
parabolic subgroup.

Let w; € W be the shortest element which changes v; to —v;, and fixes
all other coordinates. It induces an intertwining operator

IM,l(- .. (I/l)(l/())) : XM( e (Vl): (Vo)) — leM(- .. (—Vl), (1/0)). (618)

In this case, wyM = M, so we will not always include it in the notation. In
type D, if ng = 0, the last entry of the resulting string might have to stay
— L 4+ v, instead of - L _ y,. This operator is induced from the same kind
on G(a; + ng) with M = GL(a;) x G(ng) C G(a; + np) the Levi component

of a maximal parabolic subgroup.

Lemma. The operators Iy ;i1 and Inr; are meromorphic in v; in both the
real and p-adic case.

(1) Inzii+1 has poles only if aigl + v — M“Tl_l +v; € Z. If so, a pole
only occurs if
a; — 1 ai+1 — 1 a; — 1 aj1 — 1

5 +VZ'<—T+Z/Z'+1, 5 +v < 9

+ Vig1.

(2) Inry has a pole only if ‘”2_1 +v; = e(mod Z) In that case, a pole only
occurs if
a) — 1

+ v < 0.

Proof. We prove the assertion for Iy ;;1, the other one is similar. The fact
that the integrality condition is necessary is clear. For the second condition,
it is sufficent to consider the case M = GL(a;) x GL(a2) C GL(a; + a2).
If the strings are strongly nested, then the operator cannot have any pole
because X is irreducible. Remains to show there is no pole in the case

{eq:6.1.6}
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when —“22_1 + vy < —‘”2—_1 + v, but ‘“2_1 +uv > a22_1 + vy. Let

M= L2 0 x GL(2 40— ) x GL(ay),

a;—1 as — 1
(l/{):(— 12 + V1, 22 +y2)

(6.1.9)

’ ag — 1 a; —1
(2):( +1+ 2 7—+V2)

2 2

az — 1 as — 1

(Vé):(VQ):(— 22 +V27"'7 22 +V2).

Then Xp((v1)(r2)) C Xp((V])(v)(v5)), and Ips ;9 is the restriction of
Ly 501,12, (V1) (v3) () © Tngr 23((v1)(v5)(v3)) to Xy Because the strings
(v1)(v3) are strongly nested, Iy, ;11,2 has no pole, and Iy 23 has no pole
because it is a restriction of operators coming from SL(2)’s which do not
have poles. The claim follows. O

Let o be a W—type. We are interested in computing r,(w, ... (v;)...),
where w changes all the v; for 1 <4 to —v;. The operator can be factored into
a product of 7 (w; 41, *) of the type (6.1.7) and r,(w, *) of the type (6.1.9).
These operators are more tractable. Here’s a more precise explanation. Let
M be the Levi component

GL(a1) x -+-x GL(a; + aj+1) X ... in case (6.1.7) (6.1.10) {eq:6.1.11}
GL(ay) x -+- x G(a; + ng) in case (6.1.8) (6.1.11) {eq:6.1.12}

Since Xy is induced from the trivial W (M) module,

Homyy[o, Xar((v4))] = Homwany[olwan : triv @ X, (), (Vig1)) © triv]

in case (6.1.7) (6.1.12) {eq:6.1.13}
Homw [o, X ((v3))] = Homw aplolwar ¢ triv @ X, ((v), (v))]
in case (6.1.8) (6.1.13) {eq:6.1.14}

where M; ;11 = GL(a;) x GL(a;4+1) is a maximal Levi component of GL(a; +
aij+1) and M; = G(a; + ng) is a maximal Levi component of G(a; + ng). To
compute the ry(w;it1,*) and rqy(wy, *), it is enough to compute the cor-
responding r,; for the o; ocuring in the restriction o |y (p) in the cases
GL(a;) x GL(a;11) C GL(a; + aj+1) and GL(a;) X G(ng) C G(a; +ng). The
restrictions of relevant W —types to Levi components consists of relevant
W —types of the same kind, i.e. o[(n —r), ()] restricts to a sum of represen-
tation of the kind o, and o[(k,n—k), (0)] restricts to a sum of o,. Typically
the multiplicities of the factors are 1.
We also note that

Xy lw= Y Ve (V)" (6.1.14) {eq:6.1.15}
cEW

So the 74 (w,*) map (V)W M) to (V)W (wM),
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In the next sections we will compute the cases of Levi components of
maximal parabolic subgroups.

6.2. GL(a) x GL(b) C GL(a + b). This is the case of I; ;11 with i < [.
Let n = a+band G = GL(n) and M = GL(a) x GL(b). The module
Xar((v1), (v2)) induced from the characters corresponding to

(— a—1 a—1 b—-1

b—1
TV e ), (o b o ) (6.2.1)

has the following S, structure. Let m := min(a, b) and write o(k,a+b—k)

for the module corresponding to the partition (k,a +b—k), 0 < k < m.
Then

Xu((), () lw= P olk,a+b—k). (6.2.2)

0<k<m

Lemma. For 1 < k < m, the intertwining operator Inry2((v1)(v2)) re-
stricted to o gives

1 -2 - +m+D+j

To(katb—k) (@ b, V1, v0) = - — -
o(ksa ) (1/1+a2—1)—(—le+V2—1)—]

0<j<k—1
Proof. The proof is an induction on a, b and k. We omit most details but
give the general idea. Assume k < m, the case k = m is simpler. Embed
Xn((11), (12)) into Xy ((¢'), (v"), (v2)) corresponding to the strings
a—1 a—3 a—1 b—1 b—1
(— 5 +uv,..., 5 +I/1)(?+I/1)7(—T+V2,...,T+V2).
(6.2.3)

The intertwining operator Ips 1 2(v1,v2) is the restriction of

IM/’LQ(VI, vo, V") o ]M/’Zyg(yl; V" v) (6.2.4)

to Xpr((v1), (r2)) C X ((¢")(v”)(v2)). By an induction on n we can assume
that these operators are known. The W—type o(k,n — k) occurs with mul-
tiplicity 1 in X (11), (12)) and with multiplicity 2 in X ((V), (v7), (v2)).
The restrictions are
o(k,n—k) lwoy =triveo(k—1,b+1-k) +triveo(k,b—k) (6.2.5)
for IM’,I,Q (626)
O'(k?, n — k’) ’W(M’) = O'(]., b) + O'(O, b+ ].) for IMI’273 (627)
The representation o(k,n — k) has a realization as harmonic polynomials in
S(a) spanned by

IT e =€) (6.2.8)
1<I<Kk
where (i1, 1), ..., (ig, jo) are £ pairs of integers iy # ji, and 1 < iy, jr < n.
We apply the intetwining operator to the S, x Sp—fixed vector
ei= Y  o-[(e1—e€ar1) X+ X (e — €apr)]- (6.2.9)

0ESa X Sh



{eq:6.2.9}

{eq:6.2.10}

UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 37

The intertwining operator Iy o 3, has a simple form on the vectors

ey = Z o-[(e1—€at1) X -+ X (€ — €g1x)], iIn (0,6 + 1)
0ESa—1XSp41
(6.2.10)
€2 1= Z g- [(61 - €a+1) X X (Ek—l - €a+k—1)(6a - €a+k)]7 in U(lvb)
0ESG_1XS1XSp
(6.2.11)

which appear in (6.2.7). They are mapped into scalar multiples (given by
the lemma) of the vectors e}, ef, which are invariant under S,_; x Sy x Si,
and transform according to triv ® o(0,b+ 1) and ¢riv @ o(1,b). We choose

!/
€1 = €1,

ey = Y o-l(er—ea) XX (61— €ark2)(En — €ath1)]
0E€ESg—1XSpxS1
(6.2.12)
The intertwining operator I 1 2 has a simple form on the vectors invariant
under S, x Sp x S transforming according to o(k,n —k — 1) and o(k —
1,n — k). We can choose multiples of

f1= (6.2.13)

> oller—ea) X X (-1 — €ayr—2)(ek — €atr1));
0E€Sa—1XSpXxS1
ino(k—1,n—k)
fo = (6.2.14)

Z o[(e1 —€q) X -+ X (€pg—1 — €qtk—2)
0ES,_1XSpXS1
(ep+ - +e€11+€ + €k + -+ en—1— (n—2k+ 1e,)]
ino(k,n—k—1)

The fact that f transforms according to o(k,n—1) follows from (6.2.8). The
fact that fo transforms according to o(k—1,n) is slightly more complicated.
The product [[(e1 — €4) X -+ X (€x_1 — €44k_2) transforms according to
o(k—1,k—1) under So;_o. The vector (ep + -+ €41+ €4 + € + -+ +
€n—1—(n—2k+1)e,) is invariant under the S, _o_1 acting on the coordinates
€ky - - - €y €qtks -5 En—1- Since o(k,n —k — 1) does not have such invariant
vectors, the product inside the sum in (6.2.14) must transform according to
o(k—1,n—k). The average under o is nonzero. The operator I, 2 3 maps fi
and f2 into multiples (using the induction hypothesis) of the vectors f], f5
which are the S, x S,_1 X S1 invariant vectors transforming according to
o(k,n—1) and o(k —1,n — k). The composition Iy 190 Iy 23 maps e into

{eq:6.2.11}
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a multiple of

¢i= Y o-[(er—eps1) X X (e — eppi)]. (6.2.15) {eq:6.2.14}
UGSbXSa

The multiple is computable by using the induction hypothesis and the ex-
pression of

e in terms of ey, eq,

! !

e}, e, in terms of fi, fo, and
e’ in terms of f{, fi.

For example for the case k = 1, we get the following formulas.

e="bler + -+ €) —aleat1+ -+ &),
e1r=b+D(er+-+e1)—(a—1)(ea+ - +€n),
eg =beg — (€ay1 + -+ €n),
fi=bler+--+e1)—(a—1)(eg+ -+ €n1),
fo=(e1+-+e1)+(ea+--F+€en-1) — (n—1)ey,

{eq:6.2.14a} ¢ = —aler + -+ ) — bleges + -+ €n), (6.2.16)
ef=0b+1)(e1+-+e-1)—(a—1)(e+ - +€n),
ey = —(€a + -+ €n—1) + blen),
1=—(a+1)(er+ - +e)+bleps1 + -+ €en—1),
fé: (€144 e) +(eop1 + - Fep1) — (n— Dep.
Then
e= 2" 1e S L
Tbh+1 ' b1
n a—1
ey = it/
{eq:6.2.15} (6.2.17)
¢h= ——fi— —f
A P
r_ N I b !
e = n—lfl n_1f2-
|
{sec:6.3}
6.3. GL(k) x G(n) C G(n + k). In the next sections we prove theorem 5.3
in the case of a parabolic subgroup with Levi component GL(k) x G(n) for
the induced module
{eq:6.3.1} X (1) () = IndS[L(x1) ® L(xo)]- (6.3.1)
The strings are
k—1 k-1

{eq:6.3.2} (—T—i—l/,...,T—|—V)(—n—|—1—|—e,...,—|—e). (6.3.2)
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Recall that € = 0 when the Hecke algebra is type B, e = 1/2 for type C, and
e = 1 for type D, and

re(v) : (VAWM — ()W (M), (6.3.3)

g g

We will compute r, (w1, (¢)(v9)) by induction on k. In this case the relevant
W —types have multiplicity < 1 so r, is a scalar.

6.4. We start with the special case ¥ = 1 when the maximal parabolic
subgroup P has Levi component M = GL(1) x G(n) C G(n+1). In type D
we agssume 1 > 1. Then

Xy lw=o[(n+1),(0)] + o[(1,n),(0)] + o[(n),(1)], (6.4.1)

and all the W —types occuring are relevant. The operator r,(v) is the re-
striction to (V*)W(M) of the product

T120 " OTpnt1 O il OTppt1 O OT12 (6.4.2)

as an operator on V. Here r;; is the r,(w,*) corresponding to the root
€; — €; and 141 is the r, corresponding to €,1 or 2¢,; in types B and C,
and €, + €,41 in type D. Since the multiplicities are 1, this is a scalar.

Proposition. The scalar r, (w1, ((v)(v))) is

oe(1,n) = of(n), (1)] oo(1,n) = o(1,n), (0)]

n+l—v n+l—v
B nil—l—y _nil—i—u

(6.4.3)

C 1/24n—v 1/24n—v 1/2-v

1/2+n+v 1/24n+v  1/24v

n—v n—vl-v
D ntv ntv 1+v

Proof. We do an induction on n.

The reflection representation o[(n), (1)] has dimension n+1 and the usual
basis {¢;}. The W (M )—fixed vector is €;. The representation o[(1,n), (0)]
has a basis €? — e? with the symmetric square action. The W (M)—fixed
vector is € — L(e3 + - + €2 4).

The case n = 0 for type C is clear; the intertwining operator is 1 on
1o(1,0) = triv and }glz on f1e(0,1) = sgn. We omit the details for type B.

In type for n = 1, i.e. Do, the middle W—type in (6.4.1) decomposes further
o[(2), (0)] + o[(1), W)]r + o[(1), (V)]zr + [(0), (2)]- (6.4.4)

The representations ¢[(1), (1)]7,77 are 1-dimensional with bases €; + €;. The
result is straightforward in this case as well.

We now do the induction step. We give details for type B. In the case
oe(1,n), embed Xy in the induced module from the characters correspond-
ing to

W) (=n)(—n+1,....). (6.4.5)
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Write M' = GL(1) x GL(1) x G(n—1) for the Levi component corresponding
to these three strings. Then the intertwining operator I : Xy ((v)(v)) —
X ((—=v)(vp)) is the restriction of

Ingr12((=n), (=v)(10)) © Ingr 2((=n) (¥)(10)) © Tngr 1 2(v, (—n), (v0)). (6.4.6)

The r, have a corresponding decomposition

(ro)ar12((=v), (=n)(v0)) o (re) mr 2((—n)(v) (1)) o (TU)MI,1,2((V)(—TL2((5V2)7))-
We need the restrictions of ue(1,n) and u,(1,n) to W(M'). We have h

IndWE loltn = 1), ()] = o[(n + 1), (0)] + 20{(n), (1] + o[(1,n), (0)]
+ol(1,n = 1), ()] + ol(n = 1),@)] + ol(n - 1), (1,1)], (a)
Indyy (59 [o[(n), (0)]] = ol(n + 1), (0)] + o[(n), (1)] (b)
(6.4.8)
Indyy (5 sl [(n = 1), (0)]] = ol(n + 1), (0)] + o[(1,m), (0)]+

o (1), 0)] ®
)

) g

[( ),(0)] +ol(n), ] +o[(L,n-1), W] +ol(n-1),2)] ()

Indy (55 s, [o1(0), (D] @ ol(n = 1), (0)]] = o[(1,n), (0)] + 0[(1,1,m), (0)]+
a[(n), ( )] +U[(1m)7( )] +al(n —1),(1,1)] (d)

Thus pe(1,n) occurs with multiplicity 2 in X ;. The W(M') fixed vectors
are the linear span of €1, €. The intertwining operators Ips 12 and Ipp o
are induced from maximal parabolic subgroups whose Levi components we
label M; and M,. Then €; + ey transforms like ¢riv ® triv under W (M)
and €; — € transforms like sgn ® triv. The vector € is fixed under W(By,)
(which corresponds to Ms) and the vector e, is fixed under W(B,,_1) and
transforms like p1,(1,n) under W(B,,). The matrix r, is, according to (6.4.7),

1 v—n+l 1 0 1 v+ctn—1
2 24+v—
V+Z+n +% " '{0 c+n1u] ’ y{tuﬁﬁ— c+q+n . (6“19)
14+v—n+1 24v—n ctn—1+v ctv4n ct+14+v+n

n+l—v
n+1+v

So the vector €; is mapped into €1 as claimed. For 0,(1,n) we apply

the same method. In this case the operator Iy o is the identity because in
the representation u,(1,n) the element ¢, corresponding to the short simple
root acts by 1.

The calculation for type D is analogous, we sketch some details. We
decompose the strings into

W) (—=n+1,...,-1)(0), (6.4.10)

and M' = GL(1) x GL(n — 1) x GL(1). Then
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{eq:6.4.11} Ini((v)(w)) = (6.4.11)
Dyap((=n+1,..., =1 (=v)(0)) o Ly 1 ((=n + 1,..., =1)(v)(0))o
Ly a2(()(=n+1,...,=1)(0)).
O

6.5. In this section we consider (6.3.2) for £ > 1, n > 1 and the W—types
oge(m,n + k —m) for 0 < m < k. These are the W—types which occur in

X
Proposition. The r,(wi, ((v)(vy)) for o = oc(m,n + k —m) are scalars.
They equal
Type B:
n+1—(— +v)—
I1 : ( 2 )= J (6.5.1)
o<icm_1 M + (5= +v) =7
Type C:
+1/2— L+v)—
Im - /2= 2 V) =] (6.5.2)
0<j§m1n+1/2+(2 +v)—j
Type D:
1 .
— (= + —
Im ° ( 2 V) =] (6.5.3)
0<j<m-1 T (5= +v)—J

Proof. The proof is by induction on k. The case k = 1 was done in section
6.4 so we only need to do the induction step. For types B,C factor the
intertwining operator as follows. Decompose the string

k—3+y)(k—1
2 2

()50 = (g o)) (65.4)

and let M' := GL(k—1)xGL(1)xG(n),and M" = GL(1)xGL(k—1)xG(n).
Thus

Iy = D o200 =) () n))e
I 20 (55 = ) an))e (655)
I (05 4 0)00)
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Inp 12 and Ipgr o were computed earlier, while I 5 is known by induction.
Then
ge(m,n +k —m) lw(GLk-1)xw(G(nt+1)=
triv @ [triv ® g.(1,n) + triv ® o.(0,n + 1) + (6.5.6)
ge(m,n +k —m) [w(Grni)xw(Gntk—1))=
(k) @triv+ (1,k - 1) @ triv] @ triv + . .. (6.5.7)
oe(m,n +k —m) |W(GL(1)><W(G(n+k—1)):
triv @ [triv @ oe.(m —Ln+k—m)+triv®o.(m,n+k—-1—m)]+...
(6.5.8)

where ... denote W—types which are not spherical for W (M), so do not
matter for the computations. The W—type o¢(m,n+k—m) =2 A" o(1,n+
k — 1). Tt occurs with multiplicity 2 in Xpp for 0 < m < min(k,n) and
multiplicity 1 for m = min(k,n). We will write out an explicit basis for the
invariant S; x Sk x W(B,,) vectors. Formulas (6.5.2)-(6.5.4) then come
down to a computation with 2 x 2 matrices as in the case kK = 1.. Let

e:= T p—— Z [€1 A= A €m). (6.5.9)
oESE
This is the S x W(By,) fixed vector of g.(m,n + k — m). It decomposes
as
e=ey+e = fo+ fr (6510)
where
1
O ik —1—m)! 2. olanAenl,
gESE_1XS1
1
il 117 1D DA GRS
g€SK_1%X51
: (6.5.11)
fo=———— >, o-laAAemi),
m!(k —1—m)! e by
1
fi= ' ' Z eLNT-[ea N A€l
(m — DIk —m)! oS e,
Let also
66:66’: ’Z [61/\"'/\€m],
(m T 0ES
e = Z o-let N Nepm—1 A (€m — €;)]s (6.5.12)
oE€ESEL_1XS1
e'll = Z (7-[(—61—|—6m+1)/\62/\"'/\6m+1].

0ESTXSK_1
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Then
k—m , m, m, m,
ey = 2 ey + ?el, el = ?eo - ?el,
{eq:6.5.13} b m (6.5.13)
eq = fo+ fi, el = fo— fi

We now compute the action of the intertwining operators. The following
relations hold:

n+6—(b+y)
I oleg) = e , T oler) = ) e,
waleo) =ea Twale) = e
2v—1
IM/712(€6) = eg, IMI712(€I1) — me/{?
nte— (-5 +v)—j (6.5.14)
L(fo) = H 2 fo,

0<j<m—2 nte+ (52 +v)—j

10 nt+e— (-5t +v)—j

I 1 —_
we2(f1) n—i—e—i—(k%g%—l/)—j

f1>

0<j<m—1
where € = 1 in type B, e = 1/2 in type C, and € = 0 in type D. Then
n+e— (5 +v)

IM’,Q eg+ey) =ey+
( ) n+e+ (5L +v)

Substituting the expressions of eg, e; in terms of e, €/, we get
[k—m TTH—&—(’“%I—H/)
k kn+e+ (5L +v)

Applying Iy to this has the effect that ef is sent to e and the term in ¢}

is multiplied by 231% and €} is replaced by €. Substituting the formulas

for ef and e in terms of fy, fi, and applying Ips» o, we get the claim of the
proposition. O

ml_n+e—(%+y)

e+ — el. (6.5.16
b+ = e (6516)

6.6. We now treat the case 0 = g,(m,n + k —m). We assume n > 0 or else
these W —types do not occur in the induced module Xj;.

Proposition. The r,(wy, ((v)(vy)) are scalars. They equal
10 v-EH-M+j (n)-(v+5H+j
0<icm—1 VT EY—(n)—j W) —(—v-51—j

(6.6.1)

Proof. The intertwining operator Ip;(v) decomposes in the same way as
(6.5.5). Furthermore, o,(m,n+k—m) = N" oe(1,n+k—1). The difference
from the cases o, is that while 0.(1,n+k—1) is the reflection representation,
and therefore realized as the natural action on €1,...€,4%, 0o(1,n +k — 1)
occurs in S%0.(1,n + k — 1), generated by €2 — e? with 7 # j. We can apply
the same technique as for o.(m,n + k — m), and omit the details.

O
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6.7. GL(k) C G(k) in type D. In this section we consider the maximal
Levi components M := GL(k) C G(k) and M' := GL(k)' C G(k) for type
D,,. The parameter corresponds to the string (v) := (—% +uv,..., 162;1 +v)
or (V') := (—%—Fy,...,—%—y).

k even: The W —structure of X/((v)) and Xy ((v)") is oe[(n—r), (1)]
for 0 <r < k/2,and o.[(k/2), (k/2)]1, or 0c[k/2), (k/2)] respectively,
with multiplicity 1. There are intertwining operators

(W) : Xpr(w)) — X ((=0)),

IM/((I/)’) : .XMI((I/)I) — XM/((—I/),).
corresponding to the shortest Weyl group element changing ((v)) to
((—v)). They determine scalars r,((v)) and r,((v)).

k odd: The W —structure in this case is o.[(n — r), (r)] with 0 < r <
[k/2] for both X, and Xjp, again with multiplicity 1. In this
case there is a shortest Weyl group element which changes ((v))

to ((—=v)"), and one which changes ((v)") to ((—v)). These elements
give rise to intertwining operators

In((v) : Xar((v)) — Xar ((=v)"),
Iy ((v)) = X (v)) — Xar((=v))-

Because the W —structure of X5, and X is the same, and W —types
occur with multiplicity 1, these intertwning operators define scalars
ro(v) and rq, ((v)).

(6.7.1)

(6.7.2)

Proposition. The scalars ry((v)) and r,((v)') are
(-1 —j
Toe[(n—r),(r ((V)) = Tk—1 ., N . (673)
[(n—=r),(r)] ogr(%—'—y)_]

These numbers are the same for (v)) and ((v)'), and representations with
subscripts 1,11 they depend only on r.

6.8. Proof of theorem 5.3. We use the results in the previous sections
to prove the theorem in general. We give the details in the case of the group
of type B and ¢¢. Thus the Hecke algebra is type C. There are no significant
changes in the proof for the other cases. Recall the notation from section
2.3. Write

v=(zom — 1/2, .. mom —1/2,...,1/2,...,1/2)

Then v is dominant, so X (v) has a unique irreducible quotient L(r). We
factor the long intertwining operator so that

X(v) 5 X.(v) 2 X(-v). (6.8.1)

The claim will follow if the decomposition has the property that the operator
I; is onto, and I is into, when restricted to the o, isotypic component.

{sec:6.7}
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The operator I is a composition of several operators. First take the long
intertwining operator induced from the Levi component GL(n),

X(@om —1/2,...,...,1/2) — X(1/2,..., wom — 1/2), (6.8.2)

corresponding to the shortest Weyl group element that permutes the en-
tries of the parameter form increasing order to decreasing order. The im-
age is the induced from the corresponding irreducible spherical module
L(1/2,...,29m — 1/2) on GL(n). In turn this is induced irreducible from
1-dimensional spherical characters on a GL(xg) X -+ X GL(x2y,) Levi com-
ponent corresponding to the strings

(1/2,.. .00 —1/2) ... (1/2, ..., 2m — 1/2)

or any permutation thereof. This is well known by results of Bernstein-
Zelevinski in the p—adic case, [V1] for the real case.
Compose with the intertwining operator

X(ooo(1/2, . @om — 1/2)) — X (oo (—2om — 1/2,...,—1/2)), (6.8.3)

all other entries unchanged. This intertwining operator is induced from the
standard long intertwining operator on G(xs,) which has image equal to
the trivial representation. The image is an induced module from characters
on GL(xg) X -+ - X GL(x2m—1) X G(x2m ). Now compose with the intertwining
operator

X (1/2,.. zom—1)(—x9m +1/2,...,-1/2)) (6.8.4)
— X(...(—xom—1+1/2,...,-1/2) (=29 + 1/2,...,—1/2))
(again all other entries unchanged). This is /s 2,1 from the earlier sections,

so its restriction of (6.8.4) to the o, isotypic component is an isomorphism.
Now compose this operator with the one corresponding to

X(..(1/2,...,29m—2)(—22m—1 +1/2,...,1/2)...) (6.8.5)
— X( .(—xgm_l,... , Lom—2 — 1/2) )
with all other entries unchanged. This is induced from GL(zg) x --- X

GL(z9m—2 + Tom—1) X G(x2m) and the image is the representation induced
from the character corresponding to the string

(—xom—1 —1/2,1/2, ..., Zomm—2) on GL(x2m—2 + Tam—1)-
Now compose further with the intertwining operator
X(.o.(=xom-1+1/2),...,20m—2 — 1/2)(—x9m — 1/2,...,-1/2)) (6.8.6)
— X((—zom-1+1/2,... 2999 —1/2) ... (—x9m — 1/2,...,=1/2))

from the representation induced from

GL(xg) X -+ X GL(x2m—3) X GL(x2m—2 + Tom—1) X G(z2m)
to the induced from

GL(xz9m—9 + Tam—1) X GL(x0) X -+ - X GL(x9m-3) X G(om).
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By lemma 6.2, this intertwining operator is an isomorphism on any o,
isotypic component. In fact, because the strings are strongly nested, the
irreducibility results for GL(n), 3.3 imply that the induced modules are
isomorphic.

We have constructed a composition of intertwining operators from the
standard module X (v) where the coordinates of v are positive and in de-
creasing order (i.e. dominant) to a module induced from

GL(xom-2 + Tam—1) X GL(x9) X - -+ X GL(xom—3) X G(x2m)
corresponding to the strings
((—xam—1+1/2,.. ., 22m—2)(1/2,...,20 — 1/2),...
v (—xom +1/2,...,-1/2))

so that the restriction to any o, isotypic component is onto. We can repeat
the procedure with x9,,—4,Z2,m—3 and so on to get an intertwining operator
from X (v) to the induced from

GL(z9m—1 + Tam—2) X -+ X GL(x1 + x¢) X G(z21,)
corresponding to the strings
((—xom-1+1/2,...x9m—2) ... (—x1 + 1/2,...,20 — 1/2),
(—xom +1/2,...,-1/2)).
This is the operator I, and it is onto on the o.(x) isotypic components.

We now deal with I,. Consider the group G(z1 + o + z2,,) and the Levi
component M = GL(x1 + xo) X G(x2m). Let M’ be the Levi component,
M' := GL(zam—1 + Toam—2) X --- X GL(z1) x GL(z0) x G(w2y,). (6.8.7)

Then X, embeds in X (... (—214+1/2,---—1/2)(1/2,...,20—1/2)(—zom+
1/2,...,-1/2)). The intertwining operator Iy y,41 which changes the string
(xo — 1/2,...,1/2) to (—x¢ + 1/2,...,—1/2) is an isomorphism on the o,
W —types, by the results in sections 6.1-6.5. Since the strings are strongly
nested, the operators Ins; ;41 are all isomorphisms, so we can construct an
intertwining operator to an induced module X~ (v") where

M" = GL(x1) x GL(m) X GL(%2m, + Tom—2) X -+ X G(z2m),

V= (—x1+1/2,- = 1/2) (w0 + 1/2,...,-1/2)...) (6.8.8)
which is an isomorphism on the o, isotypic components. Repeating this
argument, for x3, To up to T, 1,T2,_2 We get an intertwining operator
from X, to an induced module XM(3)(V(3)) where
M®) .= GL(z1) X GL(x0) % - - - x GL{(x9m_1) X GL(Z2m—2) X G(2m)

V) = (—a +1/2,...,1/2) (=0 + 1/2),...,—1/2) ...

(—xgm_l + 1/2,...,—1/2)(—$2m_2 + 1/2,...,—1/2)(—$2m + 1/2,,1/2)
(6.8.9)
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which is an isomorphism on the ¢, isotypic components. Let M® :=
GL(%om + - - -+ x0). Then M®) ¢ M@, and the induced module from M)
to M@ is irreducible because the strings are strongly nested on the GL
factors. Thus the intertwining operator on M () which maps this induced
module to X, (—v) is an isomorphism. So the induced intertwining op-
erator to G is therefore injective and maps to X (—v). The composition of
all these operators is I, and is therefore injective on the o.-isotypic compo-
nents. The proof is complete in this case.
The case of o, is similar, and we omit the details.

6.9. Proof of Corollary 5.3. We give details for G of type B and the
W —types o.(m,n —m). We factor the long intertwining operator

X(v) 25 X.(v) 2 X(-v) (6.9.1)

such that I; is onto all the o.[(n — k), (k)] isotypic components, and I is
into. The module X, is defined by the strings specified in 5.3, equation
(5.3.3). We will do an induction on the number of strings. Recall the sets
A; with 0 < 7 < 1/2 from section 2.8. By conjugating by the Weyl group,
assume v is dominant. We can apply intertwining operators coming from
SL(2)'s which are isomorphisms because the (v, ) are not integers, we can
map X (v) isomorphically to X (¢'), where v/ is such that the coordinates in
any A, are adjacent. Furthermore, we can permute the sets A, to be in any
order by using an intertwining operator which is an isomorphism. So assume
that the coordinates in Ay are rightmost, and the leftmost set labelled A,
contains the largest coordinate. Assume also that the next set A, is such
that 71 + » = 1. Let

Ur i= (1,0 .,01,...,05,...,0a5) (6.9.2)
S—— S——
ni Ns
be the coordinates in A, in decreasing order, and let (a,,a, + 1,...,a1)

be the longest string that can be extracted. Then there is an intertwining
operator that maps

X(vry) — X(v;,) (standard modules for GL(|A-,])),

/ "
v, = ar,a, +1,...,a5)
T1 T1 T T ) s LS
no._ (6.9.3)
Vp = QLo y QLo Gpyeee s Gy Gp gLy ooy Gpgl, .o )
——— —_—— ——— ———
ny—1 np—1 Npr41

If My = GL(|Ar, | —s+7r—1)xGL(s —r+1), then the above operator maps
X (vr,) onto the induced module

nd§y Y Nx () ® Li(ay, .., a,). (6.9.4)

This operator induces up to one for G(n), which leaves all other coordinates
unchanged. Precisely, let M' := GL(|A;| —s+7r—1) x GL(s =7+ 1) x
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G(n— A+ |). Composing with the previous operator, we get an intertwining
operator
I': X(v) — Ind$u[X(vV)) ® L(ay, . .. ,a5) ® X (V)] (6.9.5)
which is onto the induced module on the right.
Consider My :=GL(s —r—1)xG(n—|A|) CGn—|A,|+s—71+1),
and ) .
Indg AT L, e @ X)) (6.9.6)
If there is no by such that by+a, = 1, then (—a,, ..., —ay) is one of the strings
for X.. We would like to map (6.9.6) to the similar induced module where
L(ay,...,as) isreplaced by L(—as, ..., —a,), and verify that the intertwining
operator is onto the o[(n — k), (k)] isotypic components. The results about
I; i+1 and I; in sections 6.1-6.5 imply the claim. The harder case is when
there is a b satisfying a, + b, = 1. Write

Vry = (D1 bise by by, (6.9.7)
mi me

and let (by,...,b,) be the longest string that can be extracted starting with
b;. The string in X, is (—as, ..., —ap, by, ... by). Let

M3 ::GL(S—t+U—T+2)XG(n_|A71|_S+r_u+t_2)’
V3 1= ((bl,...,bl,...,bu+1,...,bu+1,bu,...,bu,...,bt,...,bt), (6.9.8)
N——— N— S —— N——
my Mayt1 My —1 m—1

Then there is an intertwining operator

IndAGl'(Qn_‘ATJ'FS—T%-I)[L(aT’ o ;a/s) ® X(l/”)] . (6 . 9)
Indg T L Cag, L —ag, by, b)) © X ()] -

Let
My :=GL(|Ar|—s+r—1)xGL(s—r4+u—t+2) CGL(|Ar | —u+t—1),

and wy 2 be the shortest Weyl group element which interchanges the factors
in My. The corresponding intertwining operator
GL(|Ary | —u+t—1)

Indy, (X (V) ® L(—as, ...b;)] —
G D (L, b © X ()]
is an isomorphism on the o[(n — k, k)] isotypic components. Letting
M*:= GL(|A,, |—u+t—1)XGL(|As, | —s+r—1)xG(n—| A, |+u—t+1) C G(n),
the operator in (6.9.9) induces to an operator
Ind$ [ X(V)) @ L(—ay, ..., b)) ® X (v3)] —
Indgl,QMAL[L(—ar, b)) @ X (VL) @ X ()],

which is onto the o[(n — k), (k)] isotypic components of the module on the
right. Applying the induction hypothesis to (v, ;v3), and composing with

T1)

(6.9.10)
Ind

(6.9.11)
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the intertwining operators in (6.9.5) and (6.9.11) yields the operator I, with
the claimed properties.

To construct Is when there is no b, satisfying a, + b; = 1 we can apply
the induction hypothesis. We do the case when there is such a b; which is
harder. We have to change the coordinates (b, . ..,by) to (=by, ..., —b;). We
can do this with a succession of intertwining operators I; ;11 and I;. Note
that if there are any coordinates in the set A,, that are bigger than b, then
the difference to b, is strictly larger than 1. Write

M’ :=GL(s—r4+u—t+2)xGn—s+r—u+t—2).

Then

X, = Ind{ [L(=as, ..., ba) ® X.(°)]. (6.9.12)

Let v5 be the antidominant parameter conjugate to v°. By induction there
is an injective operator

Xe — Ind{ P [L(=as,. .., b,) ® X (v5)]. (6.9.13)

Let
MS=GL(n—s+t—u+r—2)xGL(s —t+u—r+2).

The intertwining operator coming from the shortest Weyl group element
in w € W(GL(n)) that interchanges (—as,...,b,) with vs can only have a
kernel because of coordinates belonging to A;, or A,,. But moving the string
past such coordinates can be done via operators I; ;11 which do not have
kernels. The crucial property is that a, is the largest coordinate, so —a,, is
smaller than any coordinates in #°, nd all coordinates in »° are nonpositive.

So we get an injective map from X, to Indgg\z)e,[X(VE’) ® L(—ag,...,by)]
Next note that

G(s—t+u—r+2
L(=as,...,by) C Inde(s_ﬁl;jG)L(u_m)[L(—as, o —ay) ® L(by, ..., by)].

(6.9.14)
The operator I for GL(u —t+ 1) C G(u —t+ 1) is an isomorphism on the
ol(s—r+u—t+2—k), (k)] isotypic components because the coordinates
are in A,,, and 75 # 0. So the corresponding induced operator for G(n) is
an isomorphism on the o[(n — k), (k)] isotypic components. Finally let

M" = GL(n—s+r—u+t—2)xGL(s—r+1)x GL(u—t+1) C GL(n) C G(n).
There is an intertwining operator
IndS%[X (V%) ® L(=as, ..., —a,) @ L(=by, ..., =b)] — X(=v) (6.9.15)

induced from one in GL(n). The fact that this operator is injective follows
from the property that a, is the largest coordinate, and the fact that the
coordinates in A,, are either less than or equal to b, or else are strictly
greater than b, + 1.

{eq:6.9.12}

{eq:6.9.13}

{eq:6.9.14}

{eq:6.9.15}
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7.

{sec:7}1}
7.1. We will need the following notions.
Definition. We will say a spherical irreducible module X is if
the form is positive on all the relevant W —types. Similarly, for an induced
module, means that all relevant W —types occur with the same
multiplicity in X as in L(x).
{sec:7.2}

7.2. We recall (6.1.4),

1/2 G of type B, (H of type C)

e=<0 G of type C, (H of type B)

1 G of type D.

{a:7.2) . | |
Definition. A string of the form (f +v,...,F +v) with f,F € e+ Z is
called adapted, if it is

of even length for G of type B,
of odd length for G of types C,D.
Otherwise we say the string is not adapted.
We will consider the following case. Let @ C § correspond to the partition
{eq:7.2.1} O <+ ((ar,a1),. .. (ar,a,);dy, ..., d)) (7.2.1)
so that O meets the Levi component th = gl(a;) x --- x gl(a,) x §(ng).
The intersection of O with each gl(d;) is the principal nilpotent, and the
intersection with g(ng) is the even nilpotent orbit with partition (dy, ..., ds).
Let
xi = (fi + vi,..., Fi +v4), 1<i<r,
{eq:7.2.2} . (7.2.2)
X0 = h0/27
and x be the parameter for g obtained by concatenating the x;. Then L(x)
is the spherical subquotient of
{eq:7.2.3} Ind5 [ Q) Lix:) ® L(xo)] (7.2.3)
1<i<r
The next theorem gives necessary conditions for the unitarity of L(x).
{t:7.2}

Theorem. Assume that in type D, Oy # (0) or the rank is even. The
representation L(x) is unitary

(1) Any string that is not adapted can be written in the form
{eq:7.2.4} (-E+4+71,....,E—1+471) 0<7<1/2, E=e(mod Z). (7.2.4)
(2) Any string that is adapted can be written in the form
(-E+71,...,E+71) 0<7<1/2, E=¢€(mod Z),
{eq:7.2.5} or (7.2.5)
(-E—-1+71,...,.E—1+71) 0<71<1/2, E=e(modZ).
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This is simply the fact that the v; satisfy 0 < v; <1/20r1/2 <vy; < 1lin
theorem 3.1. The proof will be given in the next sections. It is by induction
on the dimension of §, the number of strings with coordinates in an A, with
T # 0, and by downward induction on the dimension of ©. The unitarity of
the representation when there are no coordinates in any A, with 7 # 0 is
done in section 9.

7.3. Consider the representation L(x) corresponding to the strings
(a+etv,...,A+e+v)(—zo+e,...,—14¢€), Ja|<A 0<v<l, (7.3.1)
where a, A € Z, and € is as in (7.2).

Proposition. In type D, assume that if there is no string (—zo+e,...,—1+
€), then A —a+ 1 is even. Let L(x) correspond to (7.3.1). The hermitian
form is negative on the following W —type:
(1) If 9 < A then the form is negative on o[(A — 1), (zo — a + 2)] for
a < x9. When zo+1 < a, the form is negative on o[(xo+A—a), (1)].
(2) If —xo < a <0, then the form is negative on o[(1 — a,zo + A), (0)].
When 0 < a < x, the form is negative on o[(1,z9 + A — a), (0)].

Proof. This is a corollary of the results in section 6.2. 0

7.4. Initial Step. We do the case when there is a single A, with 7 >
0, and the coordinates form a single string which we write as in (7.3.1),
(a+e+v,...,A+e+rv). Solet O be a nilpotent orbit with partition
((A—a+1,A—a+1);d,...,d;) which meets the Levi component m =
gl(A —a+1) x §(ng). Let O be the intersection of O with §(ng). In type
D, either Qg # (0) or else A —a + 1 is even. Theorem 7.2 is implied by the
following proposition.

Proposition. Assume Oy is even, and x is attached to O. Then L(x) is
r-unitary only if a + ¢ = —A — €, and the following hold.
(1) If(a+e+v,...,A+ e+ v) is adapted, then v = 0, unless there is
dj =A—a+1, in which case 0 <v < 1.
(2) If(a+e+v,...,A+e+v) is not adapted, then 0 <v < 1/2.

Proof. We do the case of g of type C only, the others are similar. So € = 0,
and adapted means the length of the string is odd, not adapted means the
length of the string is even. The nilpotent orbit Oy corresponds to the
partition (2xz9 + 1,...,2x9, + 1) and the parameter has strings

(1,...:130)(0,1,...,.1‘1) (]_, ..,me).
The partition of O is (29 + 1,...,229, + 1, A—a+1,A —a+1).
We want to show that if A+a > 0, or if A+a = 0 and there is no x; = A,
then L(x) is not r-unitary. We do a downward induction on the rank of g
and a downward induction on the dimension of @. So the first case is when

O is maximal, i.e. the principal nilpotent (m = 0). The claim follows from
proposition 7.3. So we assume that m is strictly greater than 0.

{sec:7.3}

{eq:7.3.1}

{p:7.3}

{sec:7.4}

{p:7.4}
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Assume x2; < A < x2i11. This case includes tbe possibility zo, < A. We
will show by induction on rank of § and dimension of O that the form is
negative on a o[(n — r), (r)]. So we use the module X,. If there is any pair
Zoj = X2j+1, the module X, is unitarily induced from GL(2z2; 4+ 1) x G(n —
2x9; — 1) and all W—types o[(n —r), (r)] have the same multiplicity in L(x)
as in X,. We can remove the string corresponding to (x2jr2j4+1) in X, as
explained in section 3.2, lemma (3). By induction on rank we are done.
Similarly we can remove any pair (z2;, 2j4+1) such that either z9;11 < |a| or
A < xy; as follows. Let M := GL(x9j + 29541 +1) X G(n — 25 — x9541 — 1).
There is x3s such that L(x) is the spherical subquotient of

Ind§[L(—22j41, - - -, T25) ® L(xm)]- (7.4.1)
Write
Xt = (—Zoj41 +t,..., 25 +t;XM)- (7.4.2)
The induced module
Xe(xz) := Ind§)[L(—22j41 + t,... 225 + 1) @ L(xm))- (7.4.3)

Tj41— L)

has L(x;) as its irreducible spherical subquotient. For 0 < ¢ < , we
have X¢(L(x¢)) = Xe(xt). Thus the signatures on the o[(n—7), (r)] in L(x¢)
are constant for ¢ in the above interval. At ¢t = Z2H—22 X (¢) is unitarily
induced from triv ® X] on GL(z; + x2j41 + 1) X G(n — x5 — z9j41 — 1)
and we can remove the string corresponding to (z2;x2;+1). The induction
hypothesis applies to X.

When A + a = 0, we are reduced to the case
@0 > (2z0 + 1,221 + 1,229 + 1), 29 < A<z <29, (7.4.4)

We reduce to (7.4.4) when A +a > 0 as well. We assume m = 2i + 2,
since pairs (25, 22;41) with A < x9; can be removed. Suppose there is a
pair (25, 22;+1) such that |a| < x9j41, and j # 4. The assumption is that
x9; < A < X941 50 Toj41 < X9 < A.

We consider the deformation y; in (7.4.2) with

0<t <y, a <0,
—v <t <0, a > 0.

In either case X¢(L(xt)) = Xe(L(x)), so the multiplicities of the o[(n —
), (r)] do not change until ¢ reaches v in the first case, —v in the second
case. If the signature on some o[(n — r), (r)] isotypic component is positive
semidefinite on L(y), the same has to hold when ¢t = v or —v respectively.
The corresponding nilpotent orbit for this parameter is strictly larger, but it
has two strings with coordinates which are not integers. For example, if a <
0, the strings for X.(L(x,)) are (aside from the ones that were unchanged)

(—x2j41+v,..., A+ V), (a+v,...,z25 +v). (7.4.5)

We can deform the parameter further by replacing the second string by
(a+v—t,...,x9;+v—1t') with 0 <t < v. The strings of the corresponding
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Xe do not change until ¢' reaches v. At ¢’ = v the corresponding nilpotent
orbit O’ has partition

(.2lal+1,..., 20001 +1,..., A+ 21+ 1, A+ 29541 +1,...) (7.4.6)

which contains © in its closure. Since x2j4+1 < A, the induction hypothesis
applies. The form is indefinite on a W—type o[(n —r), (r)], so this holds for
the original y as well.

We have reduced to case (7.4.3), i.e. the partition of Oy has just three
terms 2xg + 1,2x1 + 1,229 + 1). We now reduce further to the case

Op +— (220 +1), 1z < A (7.4.7)
which is the initial step.
Let I(t) be the induced module coresponding to the strings
(—z1+t,...,za+t)(a+v,...,A+v)(—xg,...,—1). (7.4.8)
i.e. induced from
GL(z1 + x9) X GL(—a+ A+ 1) x G(xg). (7.4.9)

Consider the irreducible spherical module for the last two strings in (7.4.8),
inside the induced module from the Levi component GL(—a + A + 1) X
G(zo) C G(—a + A+ 1+ xp). By section 7.1, the form is, negative on
o[(zo —a+ A),(1)] if 2o < a, negative on o[(A), (zo +1—a)]if a < z¢. In
the second case the form is positive on all o[(A + r), (29 + 1 — a — )] for
l<r<n+1l—a.Soletry:=1or zg+1—a depending on these two cases.
The multiplicity formulas from section 6.2 imply that

[o[(n=r0), (ro)] = I()] = [o[(n="r0), (ro)] : L(x)] for 0<i<

Thus signatures do not change when we deform ¢ to 257, where I(t) is
[(n—

unitarily induced. We conclude that the form on L(x) is negative on o[(n
70); (10)]-

Assume x2; 1 < A < Xo4. In this case we can do the same arguments using
X, and o[(k,n — k), (0)]. We omit the details. O

7.5. Induction step. The case when the parameter has a single string
with coordinates in an A, with 0 < 7 < 1 was done in section 7.4. So we
assume there is more than one string. Again we do case g of type C, and
omit the details for the other ones.

Write the two strings as in (2.6),

(e+71,...,E+11), (f+710,....F+m). (7.5.1)
where 0 < 73 < 1/2 and 0 < 75 < 1/2. Recall that because we are in type
C,e,E,f,F€Z,and ¢ =Q.

We need to show that if ' + f > 0 or FF+ f < —2 when F + f is
even, or F'+ f < —1 when F + f is odd, then the form is negative on a
relevant W —type. Since r-reducibility and r-unitarity are not affected by

{eq:7.4.6}

{eq:7.4.7}

{eq:7.4.8}

{eq:7.4.9}

(7.5}

{eq:7.5.1}



{eq:7.5.2}
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small deformations, we may as well assume that (f + 79,...,F + 1) is the
only string with coordinates in A.,, and (e + 71,...,E + 71) the only one
with coordinates in A, .

The strategy is as follows. Assume that L(y) is r-unitary. We deform
(one of the strings of) x to a x; in such a way that the coresponding in-
duced module is r-irreducible over a finite interval, but is no longer so at
the endpoint, say ty. Because of the continuity in ¢ the module L(x,) is
still r-unitary. But the induction hypothesis applies, and we get a contra-
diction. Sometimes we have to repeat the procedure before we arrive at a
contradiction.

So replace the first string by

(e+7m +t,....,.E+71 +1). (7.5.2)
If x=(e+m,...E+71;xMm), then

xt=(e+mn+t,....,E+7m+t;xm),
X(x¢) :=Ind§;[Le+ 1 +t,....,E+71 +1)® L(xnm),

where m=gl(E—e+ 1) xg(n—E+e—1),

If E < |e|, we deform ¢ in the negative direction, otherwise in the positive
direction. If ¢ + 7 reaches 0 or 1/2, before the nilpotent orbit changes,
we should rewrite the string to conform to the conventions (2.6.10) and
(2.6.11). this means that we rewrite the string as (¢/ +7{,..., E' + 7{) with
0 <7 <1/2, and continue the deformation with a ¢ going in the direction
t <0if E' < ||, and ¢ > 0 if E' > |e/|. This is not essential for the
argument. We may as well assume that the following cases occur.

(1) the nilpotent orbit changes at tg = —71,
(2) the nilpotent orbit does not change, and at tg = —7,
le], |E| > xom + 1.
(3) the nilpotent orbit changes at a to such that 0 < 7 + ¢ < 1/2,

In the first case, the induction hypothesis applies, and since the string (f +
To,..., F' + 1) is unaffected, we conclude that the signature is negative
on a relevant W —type. In the second case the form is negative definite on
o[(n—1),(1)]. In the third case, the only way the nilpotent orbit can change

is if the string (e+711 +to, ..., B4+ 71 +tp) combines with another string as in
section 7.4, equation (7.4.6). If 7 +t¢ # 72, the induction hypothesis applies,
and since the string (f + 72,..., F' 4+ 7») is unaffected, the form is negative

on a relevant W —type. If the nilpotent does not change at t = ™ — 7,
continue the deformation in the same direction. Eventually either (1) or (2)
are satisfied, or else we are in case (3), and the strings in (7.5.1) combine to



{eq:7.5.3}
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give a larger nilpotent. There are four cases:
(1) e<f<ELF e<f<E<F
(2) f<e<F<E, f<e<F<E
(3) e<E=f-1<F,
4) f<F=e—-1<E.

(7.5.3)

Assume |e| < E. Then 1y < m. If e <0, we look at the deformation (7.5.2)
for —m <t < 0. If the nilpotent changes for some —r; < t < 0, the string
(f+712,...,F 4+ 1) is not involved, the induction hypothesis applies, so the
parameter is not r-unitary. Otherwise at ¢ = —7; there is one less string
with coordinates in an A, with 7 # 0, and again the induction hypothesis
applies so the original parameter is not r-unitary. Thus we are reduced to
the case 0 < e < E. Then consider the nilpotent orbit for the parameter
with t = —711 + 7.

In cases (1), (2) and (3) of (7.5.3), the new nilpotent has just one string

(e+7,....,F+m), (7.5.4)

instead of (7.5.1), and e + F' > 0. The induction hypothesis applies, so the
parameter is not r-unitary, nor is the original one.
In case (4) of (7.5.3), the new nilpotent corresponds to the strings

(f+72...,E+m) (7.5.5)

The induction hypothesis applies, so f + £ = 0,—2 if f + F is even or
f+ FE = —1if it is odd. Consider again the deformation —1 4+ » < ¢ < 0.
We may as well assume that the parameter is r-irreducible in this interval,
or else we can apply the argument from before. So we arrive at the case
when ¢t = —1 4 19. The new nilpotent corresponds to the strings

(f+7. .., E-14+m), (e—1+4+m7), (F+m). (7.5.6)

Write the parameter as (x';e — 1+ 79, F + 7). Since e — 1 = F), the induced
module

I = Indgp oy -y lL{e = 1+ 72, F + 12) ® L(Y)] (7.5.7)

is unitarily induced from a module which is hermitian and r-irreducible. But
the parameter on G'L(2) is not unitary unless e — 1 = F' = 0. Furthermore
f+E-1=0,-2if f+Fisoddor f+ E—1=—1if f + E is even. So
the original parameter (7.5.1) is

(1+7‘1,...,E—|—7’1), (—E—i—Tz,...,Tg) FE even,

7.5.8
1+7,...,E+m), (-E—-1+m,...,m) Eodd. (7.5.8)

The first string satisfies 1 + E > 0. Apply the deformation (—E + 75 +
t,..., 7 +t) with —5 < t < 0. We may as well assume that the paameter
stays r-irreducible in this interval. But then the induction hypothesis applies
at t = —7y because there is one less string with coordines in A, with 7 # 0.

{eq:7.5.4}

{eq:7.5.7}

{eq:7.5.8}

{eq:7.5.9}

{eq:7.5.10}
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Assume |e| > E. The same argument applies, but this time it ise < E <0
that requires extra arguments, and in case (3) instead of case (4) of (7.5.3)
we have to consider several deformations.

7.6. Proof of necessary condition for unitarity in theorem 3.1. We
first reduce to the case of theorem 7.2. The difference is that the coordinates
in Ay may not form a h /2 for an even nilpotent orbit. However r-reducibility
and r-unitary are unaffected by small deformations. So we can deform the
strings (notation as in (2.9.3)) corresponding to x4, . .., x} with coordinates
in Ap, so that their coordinates are no longer in Ay. Then the assumptions
in theorem 7.2 are satisfied.

The argument now proceeds by analyzing each size of strings separately.
In the deformations that we will consider, strings of different sizes cannot
combine so that the nilpotent orbit attached to the paramter changes.

Fix a size of strings with coordinates not in Ay. If the strings are not
adapted, they can be written in the form

(—E—1+7,...,E+7) 0<7<1/2, E=e(modZ).  (7.6.1)

So there is nothing to prove. Now consider a size of strings that are adapted.
Suppose there are two strings of the form

(-E—-1+7,....,E—-14m7), 0<7,<1/2, E=¢€¢(modZ). (7.6.2)
Let m:=gl(2E + 1) x g(n — 2FE — 1), and write
x=(-E-1+7,....,E=14+71;—-E—-1+47,...,E=147);xm). (7.6.3)
The module

IndG[L(-E - 1+7,....,E—1+7;-E—1+7,...,E—14+7)® L(xm)]

(7.6.4)
is r-irreducible, and unitarily induced from a hermitian module on M where
the module on GL(2E +1) is not unitary. Thus L(x) is not unitary either.
So L(x) is unitary only if for each 7; there is at most one string of the form
(—E—l—l—Ti,...,E—l—l—Ti).

Suppose there are two strings as in (7.6.1) with 7 < 7. If there is no
string —E 4+ 73,...,E 4+ 713) with 7y < 13 < 79, then when we deform (—F —
1+ +t....,E—14+7+1) for 0 <t <1 — 71, X(x¢) stays r-irreducible.
At t = 9 — 71 we are in case (7.6.2), so the parameter is not unitary.

On the other hand suppose that there are two strings of the form

(—E+7,...,E+ 1), same ;. (7.6.5)
Let m be as before, and write
x=((-E+7,....,E+1;—-E+7,....,E+7);xMm)- (7.6.6)
The module

Ind§[L(~E+7,....E+75;—E+7,....E+7)® Lxm)]  (7.6.7)



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 57

is irreducible, and unitarily induced from a hermitian module on M where
the module on GL(2E + 1) is unitary. Thus L(y) is unitary if and only if
L(x ) is unitary.

So we may assume that for each 7; there is at most one string of the form
(=E+71i,....,E+7).

Similarly if there are two strings of the form (-E + 71,...,E + 71) and
(=E 4+ 1,...,E 4+ 1), such that there is no string of the form (-F — 1+
T3,..., B — 14 13) with 7,73 < 79, we reduce to the case (7.6.5).

Let 13 be the largest such that a string of the form (—E + 7,..., E + 1)
occurs, and 741 the smallest such that a string (—E — 1+ 7441,...,E —
1+ 7i41) occurs. If 7 > 7441, we can deform (—E + 71 +¢t,..., B+ 7 + 1)
with 0 <t <1 — 7% — 7g41. No r-reducibility occurs, and we are again in
case (7.6.2). The module is not unitary. If on the other hand 7, < 7341, the
deformation (—E — 147441 +t,..., E—14+7p41—t) for 0 <t < 1—7 —Tp41
brings us to the case (7.6.5).

Together the above arguments show that conditions (1) and (2) of theorem
3.1 in types C,D must be satisfied. Remains to check that for the case of
adapted strings, if there is an odd number of a given size 2F + 1, then there
isadj=2E+1.

The arguments above (also the unitarity proof in the case O = (0)) show
that an L(x) is unitary only if it is of the following form. There is a Levi com-
ponent m = gl(a1) X - - - x gl(a,) X §(n—>_ a;), and parameters x1, - .., Xr, X0
such that,

L(x) = Ind§;[X) L(xi) @ L(xo)], (7.6.8)

with the following additional properties:

(1) The x; for i > 0 are as in lemma (1) of section 3.2, with 0 < v < 1/2,
in particular unitary.
(2) xo is such that there is at most one string for every A, with 7 # 0.

To complete the proof we therefore need to consider the case of L(yp). If
L(x) is unitary, then so is the parameter where we deform all but one 7 # 0
to zero. But for such a parameter the necessary conditions for unitarity are
given in section 7.4.

8.

In this section we review some well known results for real nilpotent orbits.
Some additional details and references can be found in [CM].

8.1. Fix a real form g of a complex semisimple Lie algebra g.. Let 8. be
the complexification of the Cartan involution 8 of g, and write — for the
conjugation. Let G be the adjoint group with Lie algebra g., and let

Gc = UOc + Sc, g=%t+s (811)

{eq:7.6.8}
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be the Cartan decomposition. Write A, C G, for the subgroup correspond-
ing to a., and G and K for the real Lie groups corresponding to g and
e.

Theorem (Jacobson-Morozov).

(1) There is a one to one correspondence between Gc-orbits O of nilpo-
tent elements and G.-orbits of Lie triples {e, h, f} i.e. elements
satisfying

[h7e]:2€7 [hﬂf]:_Zfﬂ [e7f]:h'
This correspondence is realized by completing a nilpotent element
e € O to a Lie triple.
(2) Two Lie triples {e, h, f} and {e', b, f'} are conjugate if and only
if the elements h and h' are conjugate.

8.2. Suppose e € g is nilpotent. Then one can still complete it to a Lie
triple e, h, f € g. Such a Lie triple is called real or p—stable. A Lie triple
is called Cayley if in addition 8(h) = —h, 6(e) = f. Every real Lie triple is
conjugate by G to one which is Cayley.

Theorem (Kostant-Rao). Two real Lie triples are conjugate if and only
if the elements e — f and €' — f' are conjugate under G. Equivalently, two
Cayley triples are conjugate if and only if e — f and €' — f' are conjugate
under K.

8.3. Suppose e € s, is nilpotent. Then e can be completed to a Lie triple
satisfying

Oole) = —e,  Oh)=h,  6.(f)=—F. (8.3.1)
We call such a triple #-stable. To any Cayley triple one can associate a
f-stable triple as in (8.3.1), by the formulas

€:= %(e+f+ih), hi=ile—f), f:= %(e%— f—ih). (8.3.2)

A Lie triple is called normal if in addition to (8.3.1) it satisfies @ = f, h =
—h.

Theorem (Kostant-Sekiguchi).

(1) Any 6-stable triple is conjugate via K. to a normal one.

(2) Two nilpotent elements €, € € s are conjugate by K., if and only
if the corresponding Lie triples are conjugate by K.. Two 6-stable
triples are conjugate under K if and only if the elements h, h' are
conjugate under K.

(3) The correspondence (8.3.2) is a bijection between G orbits of nilpo-
tent elements in g and K. orbits of nilpotent elements in s..

Proposition. The correspondence between real and 0 stable orbits is com-
patible with closure relations.

Proof. This is the main result in [BS]. O
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8.4. Let p = m+n be a real parabolic subalgebra and e € m, be a nilpotent
element. Let p. = m. + 1, be the complexification of p. Let ¢. := Ad M, - e.
According to [LS], the induceed orbit from ¢, is the unique G, orbit €, which
has the property that €. N [c. + n.] is dense (and open) in ¢ + n,.
Proposition (1). Let E=e¢+n € e+ n,.

(1) dim Zpy,(e) = dim Z¢, (E).

(2) €.N[ec + 0] is a single P, orbit.

This is theorem 1.3 in [LS]. In particular, an element E' = e'4+n’ € c.+n,
is in €, if and only if the map

adE' i pe — Thc+n,,  adE'(y) = [E,y] (8.4.1)

is onto.
Another characterization of the induced orbit is the following.

Proposition. The orbit €. is the unique open orbit in AdG.(e + n.) =
AdGe(c. +n.), as well as in the closure AdG.(e +n.) = AdG(¢; + ne).

We omit the proof, but note that the statements about the closures follow
from the fact that G./P. is compact.

Proposition (2). The orbit €. depends on c¢. C m,, but not on n.

Proof. This is proved in section 2 of [LS]. We give a slightly different proof.
Let £ € ho C m, be an element of the Cartan subalgebra h. such that
(&,a) > 0 for all roots a € A(n,, h.). Then by a standard argument,

AdP.(§+e) =&+ .+ . (8.4.2)

Again because G./ P, is compact,

JAdGe(te + e)\ | AdGe(t€ + €) = AdGe(e + ne). (8.4.3)
t>0 t>0

Thus if we change P, to a parabolic subgroup which is associate, (i.e. its
Levi component is conjugate to M,.) then & is replaced by a conjugate of &
by the Weyl group. The claim follows, because the left hand side of (8.4.3)
remains unchanged. O

We now consider the case of real induction. Let e € m be a nilpotent
element, and ¢ := Ad Me.

Definition. The p—induced set from ¢ to g is the finite union of orbits
¢ := AdGE; such that one of the following equivalent conditions hold.
(1) & is open in AdG(c+n) and |J&; = AdG(e +n).
(2) The intersection €; N [c+ n] is open in ¢ + n, and the union of the
intersections is dense in ¢ + n.
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We write
ind3(c) = ] €. (8.4.4)
and we say that each E; is real or p—induced from e.

We omit the details of the proof of the equivalence of the two statements.

Proposition (3). The p—induced set depends on e and the Levi component
m, but not on n.

The proof is essentially identical to the one in the complex case. We omit
the details.

In terms of the f-stable versions € of e, and EZ of F;, p—induction is
computed in [BB]. This is as follows. Let h. C m, be the complexification
of a maximally split real Cartan subalgebra b, and £ € Z(m,)Ns. an element
of b such that

a € A(n,b) if and only if a(&) > 0.
Then

JAdKo(E;) = | Ad Ko (t + @)\ | Ad K (t€ +€). (8.4.5)

t>0 t>0

8.5. Let q. = [.+u. be a f-stable parabolic subgroup, and write g, = I, +u.
for its complex conjugate. Let e € I. N 5. be a nilpotent element.

Proposition. There is a unique K.—orbit orbit Ok (E) so that its inter-
section with Ok, (€) + (u. N s.) is open and dense.

Proof. This follows from the fact that e + (u. N s.) is formed of nilpotent
orbits, there are a finite number of nilpotent orbits, and being complex, the
K_.—orbits have even real dimension. O

Definition. The orbit Ok, (E) as in the proposition above is called 8—induced
from e, and we write
ind2 (O () = O(E),

and say that E is 8—induced from e.

Remark. The induced orbit is characterized by the property that it is the
(unique) largest dimensional one which meets e + u.Ns.. It depends on e as
well as q., not just e and [,.

8.6. Consider Zs x sl(2,C), where the nontrivial element § € Zs acts on
s1(2,C) by (8.3.1). Let (m, V) be an irreducible representation of sl(2,C) of
dimension n + 1 and let {v;} be a basis so that

w(e)fui = Q;V;42, W(h)vi = iv, W(f)Ui = Vj—2. (861)

Proposition. The representation (7,V') extends in two inequivalent ways
to Zo % sl(2,C) according to whether 6 acts by £1 on vy,.

Proof. This is straightforward. O

{eq:8.4.4}
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In general, for a not necessarily irreducible (7, V), we define its signature
to be the pair of integers (ay,a_), where ay is the dimension of the 1
eigenspace of 6 on the kernel of 7(e).

8.7. u(p,q). Let V be a complex finite dimensional vector space of dimen-
sion n. There are two inner classes of real forms of gi(V'). One is such that 6
is an outer automorphism. It consists of the real form GL(n,R), and when
n is even, also U*(n). The other one is such that 6 is inner, and consists of
the real forms U(p, q) with p + ¢ = n. In sections 8.7-8.13, we investigate p
and 6 induction for these forms, and then derive the corresponding results
for so(p, q) and sp(n, R) from them in sections 8.14-8.15. The usual descrip-
tion of u(p, q) is that V' is endowed with a hermitian form ( , ) of signature
(p,q), and u(p, q) is the Lie algebra of skew hermitian matrices with respect
to this form. Fix a positive definite hermitian form (, ). We will identify the
complexification of g := u(p,q) with g, := gl(V'), and the complexification
of U(p, q) with GL(V'). Up to conjugacy by GL(V),

(v,w) = (fv,w), 62 =1, (8.7.1)

The eigenspaces of § on V will be denoted V*. The Cartan decomposition
is g. = €. + 5., where £ is the +1 eigenspace, and s the —1 eigenspace of
Ada@.

We need some results about closure relations between nilpotent orbits.
For a §-stable nilpotent element e, we write a(e¥) for the signature of
on the kernel of ¥, and a(e*) = a, (e*) + a_(e*) for the dimension of the
kernel. If it is clear what nilpotent element they refer to, we will abbreviate
them as ay (k).

Theorem. Two 6—stable nilpotent elements e and €' are conjugate by K.
if and only if ¥ and €'* have the same signatures. The relation Ox,(e') C
Ok, (e) holds if and only if for all k,

ay (™) > ay(eb), a_ (") >a ().

Proof. For real nilpotent orbits, the analogue of this result is in [D]. The
theorem follows by combining these results with proposition 8.3. We omit
most of the details, except a few which will be useful later.

Let e be a #-stable nilpotent orbit. Decompose

V=V

into Zgs % sl(2) representations, and let ¢; be the eigenvalue of § on the
highest eigenweight of V; (also the kernel of ). We encode the information
about e into a tableau with rows equal to the dimensions of V; and alternate
signs + and — starting with the sign of €;. The number of +’s and —’s in the
first column gives the signature of # on the kernel of e. Then the number of
+ in the first two columns gives the signature of # on the kernel of e? and
so on. The total number of +’s equals p, the number of —’s equals q. Write
V = V4 4+ V_, where Vi are the £1 eigenspaces of §. The element e is given
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by a pair (4, B), where A € Hom[V,,V_], and B € Hom[V_,V,]. Then
ef is represented by (ABAB...,BABA...), k factors each, and a4 (k) is
the dimension of the kernel of the corresponding composition of A and B.
The fact that the condition in the theorem is necessary, follows from this
interpretation. O

8.8. A parabolic subalgebra of gl(V') is the stabilizer of a generalized flag
0)=Wo W1 &---CWp=VW. (8.8.1)
Fix complementary spaces Vj,
Wi=W,_1 +Vj, ¢ > 0. (8.8.2)
They determine a Levi component

(= gl(Vh) x -+« x gl(Vi). (8.8.3)

8.9. In order to get a #-stable parabolic subalgebra, one needs to asume
that the W; are stable under 6, or equivalently that the restriction of the
hermitian form to each W; is nondegenerate. In this case we may assume
that the V; are 0-stable as well, and let q. = [ + u. be the corresponding
parabolic subalgebra of gl(V'). If we denote the signature of V; by (p;, i),
then

leNg=ulp,q) X X ulpk, k) (8.9.1)

8.10. To get the complexification of a real parabolic subalgebra, start with
a partial flag

0)=Wo & & W (8.10.1)

such that the hermitian form is trivial when restricted to Wy, and complete
it to

O)=WoG - CWigWi G- GWG =V (8.10.2)
Choose transverse spaces
W, =W,_1+V,, W =W, +V, Wi =Wr+ V.  (8.10.3)
They determine a Levi component
e =gl(V1) x -+« x gl(Vi) x gl(Vp) x gl(V}7) x -+ x gl(V}"), (8.10.4)
so that
leNg=gl(V1,C) x - x gl(Vk,C) x ulpo, qo), (8.10.5)

where (po,qo) is the signature of Vj.
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8.11. Let now q. = [, + u. be a maximal # stable parabolic subalgebra
corresponding to the flag Wy = Vi ¢ Wy = Vi + Vo = V. Then

[, = Hom([V1,Vi] + Hom([V, V3] = gl(V1) x gl(Va),  u, = Hom[Vh, Vi].

(8.11.1)
Write n; := dim Vj, and 6 = 6, + 05 with 6; € End(V;). A nilpotent element
e € gl(V,) satisfying e = —efly, can be viewed as a f—stable nilpotent

element in [, by making it act by 0 on V;. Let E = e + X, with X € u, (so
X € gl(V) acts by 0 on V1). Then X6y = —6; X. Decompose

v, =P wy (8.11.2)

where W' are irreducible Zy x sl(2, C) representations such that the eigen-
value of #> on the highest weight v; is ¢;. Order the W;“ so that dim W; >

dim W; 1. Write Ay (k) for the signatures of E¥ and a. (k) for the signatures
of e*.

Proposition. The signature (A, (k), A_(k)) of E* satisfies
Ay (k) >dim Vi 4 +ayp(k—1)+

+max [0, #{i| dmW > ke = (—DF1} — dim VOV,
A_(k) >dimVi_+a_(k—1)+
+max [0, #{i| dmW >k e; = (—DF} —dim VTV,
Proof. Since EF = eF + XeF~1, an element v € V5, is in the kernel of E*
if and only if e~ is in the kernel of X as well as e. Thus Vi C ker E.
This accounts for the terms dim Vli. Since kereF~! C ker XeF~! N ker ek,
this accounts for the terms a4 (k — 1).
The representation theory of si(2,C) implies

kere NTmef ™1 = span{v{ | e-vf' =0, dimWS >k} (8.11.3)

If the sign of v; is €, and v; = ef~1wj, then the sign of 6 on w; is €;(—1)F L.

Then X : VJ" — V] “, and the minimum possible dimension of the kernel
of X on the space in (8.11.3) is the last term in the inequalities of the
proposition. The claim follows. O

8.12. We now construct an F such that the inequalities in proposition &.11
are equalities.
For any integers a, b, let
K := span{ first a v; with ¢; = 1}, (8.12.1)
K, := span{ first b v; with ¢; = —1} o
Note that

XKH v,  X(K;)cVr. (8.12.2)
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Theorem. Let £ = e + X with notation as in 8.12.2. Choose X such
that it is nonsingular on K;tb for as large an a and b as possible. Then

Ad K (E) = indge.

Proof. From the proposition it follows that the A% of any element in e +
(ue. N s.) are minimal when they are equal to the RHS of proposition 8.11.
Theorem 8.7 implies that if a nilpotent element achieves this minimum, its
orbit contains any other e + X in its closure. This minumum is achieved
by the choice of X in the proposition, bering in mind that the W; were
ordered in decreasing order of their dimension. Thus Ad K (F) has maximal
dimension among all orbits meeting e + (uNs) and so the claim follows from
the observation at the end of 8.5. O

This theorem implies the following algorithm for computing the induced
orbit in the case g = u(p, q). Suppose the signature of V; is (a4,a_). Then
add a4 +’s to the beginning of largest possible rows of e starting with a —
and a_ —’s to the largest possible rows of e starting with a +. If a is larger
than the number of rows starting with —, add a new row of size 1 starting
with +. The similar rule applies to a_.

If e € gl(V1), the analogous procedure applies, but the a; +’s are added
at the end of the largest possible rows finishing in — and a_ —’s to the end
of the largest possible rows finishing in +.

Because induction is transitive, the above algorithm can be generalized
to compute the f-induced of any nilpotent orbit. We omit the details.

8.13. Suppose p. = m. + n. is the complexification of a real parabolic sub-
algebra corresponding to the flag (0) C Vi Cc Vi +Vy C Vi + Vp + Vj¥, and
let e C gl(Vp) be a real nilpotent element. The rest of the notation is as in
section 8.4.

Theorem. The tableau of an orbit Ad G(E;) which is in the p—induced set
mdg(c), is obtained from the tableau of e by adding 2 to dim Vi of the largest
rows leaving the signs unchanged.

Proof. We use (8.4.2) and (8.4.3). Let a € Hom[V7, V{*] ® Hom[V}*, V1] be
nondegenerate such that a? = Id ® Id, and extend it to an endomorphism
& € gl(V) so that its restriction to Vj is zero. This is an element such that
the centralizer of ad £ is m, in particular, [£,e] = 0. Let

PX)=X"4an X" 4. 4ag (8.13.1)

be any polynomial in X € gl(V'). Suppose t; € R are such that ¢; — 0, and
assume there are g; € K such that t;g;(¢ +e)g; ' — E. Then

ker t" P(gi(¢ + €)g; 1) = ker P(€ + e). (8.13.2)

{t:8.12}
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On the other hand,
P P(gi(6 +€)g; ') = [tigi(§ + €)g; '™+

e - - (8.13.3)
—l—am_lti[tigi(f—i—e)gi ] +---+t"Id - E™,

as t; — 0. Thus
dimker E™ |y, > dimker P({ +¢) |y, - (8.13.4)

Choosing P(X) = (X% — 1)X", we conclude that E must be nilpotent.
Choosing P(X) = X™, (X £ DX™ ! or P(X) = (X2 - 1)X™ 2 we can
bound the dimensions of ker E™ |y, to conclude that it must be in the closure
of one of the nilpotent orbits given by the algorithm of the theorem. The
fact that these nilpotent orbits are in (8.4.3) follows by a direct calculation
which we omit. O

~

8.14. sp(V). Suppose g, = sp(Vy), where (Vp,(, )) is a real symplectic
vector space of dimension n. The complexification (V, (, )) admits a complex
conjugation —, and we define a nondegenerate hermitian form

(v,w) := (v, W) (8.14.1)

which is of signature (n,n). Denote by u(n,n) the corresponding unitary
group. Since sp(Vp) stabilizes ( , ), it embeds in u(n,n), and the Cartan
involutions are compatible. The results of sections 8.1-8.3 together with
section 8.6 imply the following classification of nilpotent orbits of sp(Vp) or
equivalently 8-stable nilpotent orbits.

(1) To each orbit we assign a tableau so that every odd part occurs an
even number of times. Rows of equal size are interchangeable.

(2) The entries in each row alternate + or —. Odd sized rows occur in
pairs, one starting with + the other with —.

A parabolic subalgebra of sp(V) is the stabilizer of a flag of isotropic
subspaces
(0) =Wy C--- C Wy, (8.14.2)
so that the symplectic form restricts to 0 on W;. As before, complete this
to a flag

O)=WoC---CW,CWyC---CW;=VW. (8.14.3)
We choose transverse spaces
Wi=Wia+Vi, We=We+W, Wi, =W+V (8.14.4)
in order to fix a Levi component. We get
[ gl(V1) x -+ x gl(V) x sp(W). (8.14.5)

If we assume that V;, W are f-stable, then the corresponding parabolic
subalgebra is 6-stable as well, and the real points of the Levi component are

lo = u(p1,q1) X -+ X u(pg, q) x sp(Wo)- (8.14.6)
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where (p;, ¢;) is the signature of V;. The parabolic subalgebra corresponding
to (8.14.4) in gl(V') satisfies
U2 u(pr, i) X X u(pr, ) X u(no, no) X u(qe, pr) X - - - X u(qr, p1). (8.14.7)
For a maximal #-stable parabolic subalgebra, the Levi component [ satis-
fies [ = u(p1,q1) x sp(Wp). Let e € sp(W) be a #-stable nilpotent element.
The algorithm for induced nilpotent orbits in section 8.9 implies the follow-
ing for ind{* (e).

(1) add p +’s to the beginning of the longest possible rows starting with
—’s, and ¢ —’s to the beginning of the longest possible rows starting
with +’s.

(2) add g +’s to the ending of the longest possible rows starting with
—’s, and p —’s to the beginning of the longest possible rows starting
with +’s.

Unlike in the complex case, the result is automatically a partition for a
nilpotent element in sp(V).

For a maximal real parabolic subalgebra, we must assume that V| =
Vi, W = W. Let Vio and Wy be their real points. The Levi component
satisfies

(= gl(Vio) x sp(Wo). (8.14.8)
The results in section 8.13 imply the following algorithm for real induction.

(1) add 2 to dimV) largest possible rows of e leaving the signs un-
changed.

(2) Suppose dim V; is odd and the last row that would be increased by
2 is odd size as well. In this case there is a pair of rows of this size,
one starting with + the other with —. In this case increase these two
rows by one each leaving the sign unchanged.

~

8.15. so(p,q). Suppose g. = so(Vp), where (Vp,( , )) is a real nonde-
generate quadratic space of signature (p, q). The complexification admits a
hermitian form ( , ) with signature (p,q) as well as a complex nondegen-
erate quadratic form ( , ), which restrict to ( , ) on V5. The form ( , )
gives an embedding of o(p,q) into u(p,q) with compatible Cartan involu-
tions. The results of sections 8.1-8.3 together with section 8.6 imply the
following classification of nilpotent orbits of so(V) or equivalently f-stable
nilpotent orbits.

(1) To each orbit we assign a tableau so that every even part occurs an
even number of times. Rows of equal size are interchangeable.

(2) The entries in each row alternate + or —. Even sized rows occur in
pairs, one starting with + the other with —.

(3) When all the rows have even sizes, there are two nilpotent orbits
denoted I and II.
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A parabolic subalgebra of so(V) is the stabilizer of a flag of isotropic
subspaces
(0) =Wy C--- C W, (8.15.1)
so that the quadratic form restricts to 0 on W. As before, complete this to
a flag

0)=WoC---CWyCWC---CW;=V. (8.15.2)
We choose transverse spaces
Wi=Wia+Vi, We=We+W, W, =W+V® (8.15.3)
in order to fix a Levi component,
[2gl(V1) X -+ x gl(V) x so(W). (8.15.4)

To get a #-stable parabolic subalgebra we must assume V;, W are §-stable
and so V; = V*, W = W. If the signature of V; with respect to ( , ) is
(pi» 4i), and that of W is (po, qo), then

lo Zulpr,q1) X -+ X u(pk, qr) x s0(po, qo)- (8.15.5)
The parabolic subalgebra corresponding to (8.15.2) in ¢l(V) satisfies

[,N

= u(pr,q1) X - - xu(pr, qr) X u(po, qo) X w(pg, qx) X - - - X u(p1,q1). (8.15.6)

For a maximal #-stable parabolic subalgebra, the Levi component [ satisfies
[ = u(p1,q1) x so(Wy). Let e € so(IW) be a f-stable nilpotent element. The
algorithm for induced nilpotent orbits in section 8.9 implies the following
for ind}* (e).

(1) add p; +’s to the beginning of the longest possible rows starting
with —’s, and ¢; —’s to the beginning of the longest possible rows
starting with +’s.

(2) add p; +’s to the ending of the longest possible rows starting with
—’s, and g1 —’s to the beginning of the longest possible rows starting
with +’s.

Unlike in the complex case, the result is automatically a partition for a
nilpotent element in so(V).

For a maximal real parabolic subalgebra, we must assume that Vi =
Vi, W = W. Let V1o and Wy be their real points. The Levi component
satisfies

[ = gl(vl,l]) X SO(W()). (8157)
The results in section 8.13 imply the following algorithm for real induction.

(1) add 2 to dimV; largest possible rows of e leaving the signs un-
changed.

(2) Suppose dim V; is even and the last row that would be increased by
2 is even size as well. In this case there is a pair of rows of this size,
one starting with + the other with —. Increase these two rows by
one each leaving the sign unchanged.
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(3) When there are only even sized rows and dim V is even as well, type
I goes to type I and type II goes to type IL

9.

In this section we prove the unitarity of the representations of the form
L(x) where y = h/2. As already mentioned, in the p—adic case this is
done in [BM1]. It amounts to the observation that the Iwahori-Matsumoto
involution preserves unitarity, and takes such an L(x) into a tempered rep-
resentation.

The idea of the proof in the real case is described in [B2]. We give details
of a simpler argument in the case G = So(2n + 1). Only minor changes are
required for the other cases. We will do an induction on rank.

9.1. We rely heavily on the properties of the wave front set, asymptotic
support and associated variety, and their relations to primitive ideal cells
and Harish-Chandra cells. We review some facts. Since this is not the main
purpose of the article, we refer to [SV], [V2] and [BV1], [BV2], [B3] for the
details.

Let 7 be an admissible (g., K') module. we review some facts from [BV1].
The distribution character O, lifts to an invariant eigendistribution 6, in
a neighborhood of the identity in the Lie algebra. For f € C°(U), where
U C g is a small enough neighborhood of 0, let f;(X) := ¢~ dimee f(t=1X).
Then

0:(f) =t i@ () + S Da (. (911)

j i>0

The D; are homogeneous invariant distributions (each D; is tempered and
the support of its Fourier transform is contained in the nilpotent cone). The
po; are invariant measures supported on real forms O; of a single com-
plex orbit O, and Po; (R) is the Liouville measure on the nilpotent orbit
associated to the symplectic form induced by the Cartan-Killing form. Fur-
thermore d = dimc O./2, and the number ¢; is called the multiplicity of
O;(R) in the leading term of the expansion. The closure of the union of
the supports of the Fourier transforms of all the terms occuring in (9.1.1) is
called the asymptotic support, denoted AS(w). The leading term in (9.1.1)
will be called AC (7). We will use the fact that the nilpotent orbits in the

leading term are contained in the wave front set of 6, at the origin, denoted
W F(m).

Alternatively, [V2] attaches to each 7 a combination of f-stable orbits
with integer coefficients

AV (r) =) ;05 (9.1.2)
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where O; are nilpotent K.—orbits in s.. The main result of [SV] is that
AC(r) in (9.1.1) and AV (w) in (9.1.2) correspond via theorem 8.3. Pre-
cisely, the leading term in formula (8.3.2), and (9.1.2) are the same, when
we identify real and 6 stable nilpotent orbits via the Kostant-Sekiguchi cor-
respondence. The algorithms in section 8 compute the associated variety of
an induced representation as a set, which we also denote by AV (7)) when
there is no possibility of confusion. The multiplicities are computed in the
real setting in [B4] theorem 5.0.7. The formula is as follows. Let v; € O;
and v;; = v; + X;; be representatives of the induced orbits O;; from O; .
If AV(m) =3 ¢jOjm, then

c |Ca (vi
AV (indy (m Z ]|C'p Oij. (9.1.3)

We use [SV] to compare multiplicities of real and # induced modules. For-
mula (9.1.3) is straightforward for real induction and AC(r). Its analogue
for # stable induction and AV (7) is also straightforward. It is the passage
from AC(w) to AV () that is nontrivial.

9.2. Fix a regular integral infinitesimal character xre¢q. Denote by G(xreg)
the Grothendieck group of the category of (g., K') modules with infinitesimal
character X,eq. Recall from [V2] (and references therein) that there is an
action of the Weyl group on G(xreg), called the coherent continuation action.
Then G(x,eq) decomposes into a direct sum according to blocks B3,

Xreg @ gB Xreg (921)

We give the explicit description of this representation in all types.

Type B: In order to conform to the duality between type B and type C in
[V2], we only count the real forms with p > ¢. The representation G(X;eq)
equals

G(Xreg) Z Ind%gwaxwkxst [sgn @ sgn ® o1, T] @ triv], (9.2.2)

a,b,T

where 7 is a partition of s, and a + b + 25 + t = n. The multiplicity of a

o[, Tr] in one of the induced modules in (9.2. 2) is as follows. Choose a 7
that fits inside both 7, and 7z, and label it by e’s. Add “a” r and “b” 7' to
Tr, at most one to each row, and “t” ¢, at most one to each column, to 7;, or
Tr. The multiplicity of ¢ in the induced module for a given (7, a,b) is then
the number of ways that 7;, 7z can be filled in this way. This procedure
uses induction in stages, and the well known formula

Indg" (triv) = Y o[(k),D)]. (9.2.3)
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Example. Let g. = so(5). The real forms are so(3,2), so(4,1),so(5). The
choices of (1,a,b,t) are

(1,1,0,0), (1,0,1,0), (1,0,0,1),

(07 27070)7 (07 17 ]‘70))’ (051’07 1)’ (05 0’ 270)’ (05 0’]‘71)’ (05 0’ 07 2)'

Let o = 0[(1), (1)]. Then its multiplicity is given by the number of lalEZhQnéglg
(=) 6, &, (9.2.5)
0, 0, (c,r), 0, (c,7"), (c,c).
For o = 0[(0), (2)] we get
.9 / (9.2.6)
0, 0,rr"), (0,rc), 0, (0,7'¢c), (0,cc).
O

The following formula sorts the representations according to the various
real forms of SO(p, q) with p+ ¢ = 2n + 1. A representation occuring in G,
labelled as above, occurs in SO(p, q) with

0 if #r' > $r,

- (9.2.7)
1 otherwise.

p=n+1+|#r' — #r| —¢, Whereez{

In the above example, (e,e), (c,c), (0,77), (0,7¢) and (0,cc) belong to
50(3,2) while (¢,r") and (0,7'c) belong to so(4,1).

To each pair of partitions parametrizing a representation of W,

T, = (To,...,TQm), TR — (7‘1,...,T2m71), T STZ'+2, (928)

Lusztig attaches a symbol

T0 T2+1 rom +m
( 1 rg+1 ... Tom—1+m —1 ) (9.2.9)

The symbol is called special if
ro<ri<ro+1<rg+1<---<rop +m. (9.2.10)

Two representations belong to the same double cell if and only if their sym-
bols have the same entries. Given a special symbol of the form (9.2.9), the
corresponding nilpotent orbit O, has partition obtained as follows. Form
the set

(2r9; + 20 + 1,295 1 +2j — 2}, (9.2.11)
and order the numbers in increasing order, zg < --- < x9y,. The partition of
0. is

(xo,x1 — 1, .., — iy .., Tom — 2m). (9.2.12)
Type C: The representation G(X,ey) is obtained from the one in type B

{eq:9.2.4}
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by tensoring with sign. Thus
G(Xreg) = Z I”dg&WZSxWaxWb [sgn ® o[r, 7] ® triv ® triv],  (9.2.13)

a,b,T
where 7 is a partition of s, and a+b+2s+t = n. This takes into account the
duality in [V2] of types B and C. We write r for the sign representation of
Si, and ¢ and ¢ for the trivial representations of W,, Wj. A representation
of W is parametrized by a pair of partitions (7, 7r), with

TL = (T0y -« s Tom), TR = ("1, -, T2m—1), r; < Tiya. (9.2.14) {eq:
The associated symbol is
70 rg +1 e rom +m .
( | rs+1 ... Pom—1 +m —1 ) ;» (9.2.15)  {eq:
and it is called special if
ro<ri <ro+1<rg+1<---<rop +m. (9.2.16) {eq:
Two representations belong to the same double cell if their symbols have
the same entries. Given a special symbol as in (9.2.15), the nilpotent orbit
O, attached to the double cell has partition obtained as follows. Order the
set
{27‘2,’ + 21, 27“2]‘_1 + 25 — 1} (9217) {eq:
in increasing order, zg < --- < Z9,,. Then the partition of O, is
(o, ... &j — J,. .., Tam — 2m). (9.2.18) {eq:
Type D: Since in this case o[, Tr] and o[Tg, 71| parametrize the same
representation, (except of course when 77, = 7 which corresponds to two
nonisomorphic representations), we assume that the size of 77 is the larger
one. The Cartan subgroups are parametrized by integers (t,u,2s,p,q), p +
q+ 2s+t+ u = n. There are actually two Cartan subgroups for each s > 0,
related by the outer automorphism of order 2. Then G(xreq) equals
W), . .
G(Xreg) = Z I”dW:xbewgstthu [sgn®sgn®o |7, T r1&trivetriv].
p+q+2s+t+u=n
(9.2.19) {eq:
The sum is also over 7 which is a partition of s. We label the o by e’s,
trivial representations by ¢ and ¢ and the sgn representations by r and 7’
These are added to 77, when inducing. In this case we count all the real
forms SO(p,q) with p+q = 2n, and p =n + #r' — #r. If
T, = (To,...,TQm_Q), TR = (7“1,...,7°2m_1), (9.2.20) {eq:
then the associated symbol is
ro ro+1 ... rom_o+m-—1 .
(n r3+1 ... Topoi+m— 1) ' (9221)  {eq:
A representation is called special if the symbol satisfies
ro<r<ro4+1<r3+1<---<rg9yp 1+m—1. (9.2.22) {eq:
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Two representations belong to the same double cell if their symbols have
the same entries. The nilpotent orbit O, attached to the special symbol is
given by the same procedure as for type B.

Let h, C g. be an abstract Cartan subalgebra and let 11, be a set of
(abstract) simple roots. For each irreducible representation L£(7), denote
by 7(v) the tau-invariant as defined in [V2]. Given a block B and disjoint
orthogonal sets Sy, Se C Il,, define

B(S1,S2)={yeB| S C7(y), Sant(y) =0} . (9.2.23)
If in addition we are given a nilpotent orbit O, C g., we can also define
B(S1,82,0.) = {y € B(S1,S2)| WF(L(v)) c O.} . (9.2.24)

Recall the special case of a complex algebra g, viewed as a real Lie algebra.
Then the case S1, So = 0 is called the double cone C(O.). The double cell

corresponding to O, will be denoted C(O,).
Let W; = W(S;), and define
mg(c) =[o: Ind%lwi(Sgn ® Triv)], (9.2.25)
mp(o) = [0: G(Xreg)] -

Theorem (1).

B(S1,82,00) = Y. mp(o)ms(o) .
o®oeC(0O;)

Assume that O is even. Then X := h/2 is integral, and it defines a set S
by

Sy =S(\) ={a € Ily|(a,A) =0} . (9.2.26)
Then the special unipotent representatz’ons attached to © are defined to be
Unip(O UB 0, S\ (9.2.27)

In the classical groups case, mp(o) is straightforward to compute. For the
special unipotent case, mg(o) equals 0 except for the representations occur-

ing in the corresponding left cell EL(OC) when it is 1. These representations
are in 1-1 correspondence with the conjugacy classes in Lusztig’s quotient
of the component group A(O). See [BV2] for details.

Theorem (2).
i@l =5 S mat)
B sect(o,)
Definition. We say that a nilpotent orbit O. is smoothly cuspidal if it
satisfies
Type B, D: all odd sizes occur an even number of times,
Type C: all even sizes occur an even number of times.
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For O(R), a real form of O, write A(O(R)) for its (real) component group.

Proposition. For smoothly cuspidal orbits, A(O) = A(O). In particular,
ICE(O.)| = |A(O)|. Furthermore,
Unip(0))] = Y |A(O(R))]
O(R)
where the sum is over all real forms O(R) of O,.
Proof. This is theorem 5.3 in [B2]. It consists of a direct calculation of

multiplicities in the coherent continuation representation using the results
developed earlier in this section. O

9.3. Two representations w, 7’ are said to be in the same Harish-Chandra
cell if there are finite dimensional representations F, F' such that #' is a
factor of 7 ® F' and 7 a factor of 7’ ® F'. In this case WF(r) = WF(n').
We say that a Harish-Chandra cell is attached to a complex orbit O, if

AdG.(WF(r)) = O,.
The set of representations in a Harish-Chandra cell gives rise to a repre-
sentation of the (complex) Weyl group.

Theorem ([McG]). In the classical groups Sp(n), SO(p,q), each Harish-
Chandra cell is of the form EL((’)C).

9.4. We now return to type G = So(2n + 1). Consider the spherical irre-
ducible representation L(x») with X = h/2 corresponding to a nilpotent
orbit O in sp(n). If the orbit @ meets a proper Levi component t, then
L(O) is a subquotient of a representation which is unitarily induced from
a unipotent representation on m. By induction, L(x3) is unitary. Thus we
only consider the cases when © does not meet any proper Levi component.
This means

O = (2xo, . ..,2T0m), 0<mp < < < Tig1 < -+ < Tom, (9.4.1)
so these orbits are even.

Because of assumption (9.4.1), the W F-set of L(x) satisfies the property
that

AdG(WF(L(xp)))
is the closure of the special orbit (in the sense of Lusztig) dual to O. This
is the orbit O, with partition

(1,...,1,2,...,2,....2m,....2m,2m+1,...,2m + 1), (9.4.2)
——— ——— ~ PN ~

71 79 T9m T2m+1

where
T2i41 = 2(Xom—2i — Tam—2i-1 + 1),

T2 = 2(Tom—2i41 — Tam—2; — 1),
rom+1 = 229 + 1.
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The columns of O, are (2z9y, + 1,2x9,,1 — 1,...,2x0 + 1).

Definition. Given an orbit O, with partition (9.4.2) or more generally a
smoothly cuspidal orbit, we call the split real form Oy, the one which, for
each row size,
Type C,D: the number of rows starting with + and — is equal,
Type B: in addition to the condition in types C,D for rows of size less
than 2m + 1, for size 2m + 1, the number of starting with + s one
more than those starting with —.

Theorem. The W F-set of the spherical representation L(xp) with O sat-
isfying (9.4.1) is the closure of the split real form Oy of the (complex) orbit
O, given by (9.4.2).

Proof. The main idea is outlined in [B2]. We use the fact that if 7 is a
factor of 7/, then WF(n) C WF(x'). We do an induction on m. The claim
amounts to showing that if E occurs in AS(L(x»)), then the signatures of
E, E?,... are greater than the pairs

(me + 1; x?m): ($2m + Xom—1,Tom + mefl); ceey

oo (@om -+ m, o + -+ 21), (9.4.3)

(xom + -+ z1+x0+ 1,20 + - - + 21 + 20).
The statement is clear when m = 0; L(x ) is the trivial representation. Let
O; be the nilpotent orbit corresponding to

(21’0, e ,21’27,172). (944)

By induction, AS(L(O1)) is the split real form of the nilpotent orbit corre-
sponding to the partition

(1,...,1,2,...,2,...,2m—2,....2m —22m—1,....2m — 1), (9.4.5)
H/_/W_/ - 7 - v

~ ~"

i ! ! !
] Y Tom—2 Tom—1

where the columns are (29, 2+1,2x9,,-3—1,...,2z9+1). Let p be the real
parabolic subalgebra with Levi component g(n — zo,, — Zom—1) X gl(zoy, +
Tom—1). There is a character x of gl(x2,, + ®2m—1) such that 7 := L(xp)
is a factor of n' := indy*[L(x,) ® x]. But by section 8, WF(x') is in the
closure of nilpotent orbits corresponding to partitions

(2,...,2,....2m,....2m,2m + 1,...,2m + 1), r; + 79 even,  (9.4.6)
N o . A >

~ ~

(ri4r2)/2 T2m T2m41
(1,1, 2,...,2 ,....2m,...,.2m,2m+1,...,2m+ 1), r1 +r2 odd. (9.4.7)
N—— ~ ~ AN ~ _
(T1+7'2—1)/2 T2m T2m+1

It follows that the signatures for EF in WF(L(x»5)) are greater than the
pairs
(at,a-), (Z2m + Tam—1, Tom + Tam-1),-- - (9.4.8)
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for some ay + a_ = x9,, + 1. Also, each row size greater than two and less
than 2m + 1 has an equal number that start with + and —. For size 2m + 1
there is one more row starting with + than —.

The same argument with 0, corresponding to

e — e —
(2z0, . .. 2Tom—2, 2Tom—1, 2T2m)

shows that WF(L(xs)) is also contained in the closure of the nilpotent
orbits with signatures
(Tom + 1, 22m), (T2 + 1+ ay, w2 +a),

(9.4.9)
(Tom + 1+ Zom—1 + Tom—2,Tom + 1 + Tom—1 + Tom—2), ... ,

for some a4 + a— = x9mym—1. The claim follows. O

9.5. Consider the special case when
i) :xl—l §x2:x3—1 S S.%‘Qm_Q :me_l—l szm. (9.5.1)

The component group A(O) has size 2™. We produce 2™ irreducible rep-
resentations so that their AS equals the closure of Oyy. We assume g is
so(2p + 1,2p). Let h be the compact Cartan subalgebra. We write the
coordinates

(al,...,ap ‘ bl,...,bp) (952)

where the first p coordinates before the | are in the Cartan subalgebra of
s0(2p + 1) the last p coordinates are in so(2p). The roots €; & €;,¢; with
i,J < p are all compact and so are €,4 & €,4; with k,I < p. The roots
€; £ €ptk, €ptr are noncompact. Let g. = . + u. be a f-stable parabolic
subalgebra with Levi component

U= u(@2i,+1,T2iy) X w(@2iy, T2ip 1) X -+ X @(T2m), (9.5.3)
where the i; are the numbers 0,...,m — 1 in some order. The parabolic
subalgebra ¢, corresponds to the weight

€ = (mP2n+t, L 1% T gem | e T 02,
or (9.5.4)
¢ ::(Tn$%1+1,...,1x2“n*170$2m‘ | Tnth,.. _71$2¢7n,1+170962m)7

depending whether m is odd or even.

The derived functor modules Ry (§) from characters on [. have AC-set
contained in Ogp. To get infinitesimal character x, these characters can
only be

& = %(1/2,...,1/2), (9.5.5)

on the unitary factors u(wa;; 11, Z2i;) or u(w2;;, T2;;+1), and trivial on g(w2m)-
We need to show that there are choices of parabolic subalgebras g. as in
(9.5.3) and characters as in (9.5.5) so that we get 2™ nonzero and distinct
representations. For this we have to specify the Langlands parameters.
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For each subset A := {ki,...,k} C {0,...,m — 1}, k; in decreasing
order, label the complement A¢ := {¢,...,¢;}, and consider the #—stable
parabolic subalgebra g 4 as in (9.5.3) and (9.5.4) corresponding to

(i1 yimer} = {k1y oy b1y 0} (9.5.6)

We will consider the representations R, , (€4), where &4 is the concatenta-
tion of the fii; with + for the first r, and — for the last .

Lemma.

i (gA)_{ 0 if i # dim(ue 4 N &),

fe.4 nonzero irreducible if i = dim(u, 4 NE).

Proof. The vanishing part follows from [KnV], chapter V, section 7. Ac-
cording to proposition 5.93, it is sufficient to show that

y ,K j—
ind" | (ZF ) i=Ulg) @, 2 | (9.5.7)

aC,A

is irreducible. Here Z# R is the 1—dimensional module corresponding to

514 - p(uc,A)a with

puc,a) ::% Z a

OLGA(LLA,C)

The derived functors are normalized so that if W has infinitesimal character
X, then so do R, (W).

But generalized Verma modules of this kind have characteristic varieties
which are unions of nilpotent orbits in g., and multiplicities; basically the
definition of the associated cycle applies. Since @ is even, the results from
[BV2] apply. The associated cycle of (9.5.8) is O, from (9.4.2), and the mul-
tiplicity is 1. Any composition factor cannot have associated cycle strictly
smaller than Q.. So if there is more than one factor, the multiplicity of O,
must be strictly larger than 1.

To show that Rﬁﬁ(uc’fm%)(ffq) # 0, we use the bottom layer K — types
defined in chapter V section 6 of [KnV]. To simplify the notation slightly,
we write

ar = Toky+1, b1 = Toky,s .-, Qp = Tok,, by = Tog, 41 T even,
(9.5.8)
a1 = Tog, 41, b1 = Topy, ..., ar = Top, 41, by = T9g, T 0dd.
Let also a :=)_aj, b:=)_b;. Note that |a; — b;| = 1, and also |a — b| = 1.
Then
1= E+2p(uns) — p(u) = (19,0P | 1°,079) (9.5.9)

is dominant, therefore bottom layer. The aforementioned results then imply
the nonvanishing. The derived functor module is irreducible because the
multiplicity is 1. O
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We will need to use the intermediate parabolic subalgebras

Gea C s Cdea C e (9.5.10)
with Levi components

4 =u(ay,b1) x -~ xu(ar,b,) x g(n —a—b),
oA (9.5.11)
[c,A = ’LL((I, b) X g(n —a—- b)7

Apply induction in stages from qc,a to q; 4 first. On the factor g(n —a —b)
the K — type p in (9.5.9) is trivial, so the Langlands parameter is that of
the spherical principal series. Similarly on the u(a;,b;) assume the infini-
tesimal character is x; := (max(aj,b;),...,min(a;,b;)), and the Langlands
parameter is that of a principal series with the appropriate 1-dimensional
Langlands subquotient. Let h C hy C [’07 4 be the the most split Cartan
subalgebra. In particular the real roots are

Qg = €4+€dtp, Zaj <d< Zaj+min(aj,bj), 0<s<r—1.(9.5.12)
J<s J<s

For each factor u(aj, b;) the Langlands parameter is of the form A;, v; where
Aj €hant, and v; € hy Ns.. Then

A= (1729 | 1/2"%), (9.5.13)

while
(vj,0q) = max(aj,b;) — (d — Z aj) (9.5.14)

J<s
Proposition. The representations Rgiﬁ(uc"‘mc)(&) have Langlands param-

eters (\Y,v) where A9 is obtained by concatenating the \; in (9.5.13) and
v satisfies (9.5.14).

Proof. There is a nonzero map X[/C()\G, —v) — Ly(AY, —v) given by the
Langlands classification. Thus there is a map

dim €.,
Ry e [Xe(\, )] — 95.15)
dim €N, _ pdimé o
— Ry o (L (XY, —v)) = REM R (Ea),
which is nonzero on the bottom layer K —type (9.5.9). On the other hand,
because these are standard modules,

X(\C ) ifi=dim€ Nu,,

] (9.5.16)
0 otherwise.

Ri(Xe(AC,v)) = {

The proof follows. O
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9.6.
Theorem. The spherical unipotent representations L(x») are unitary.

Proof. Write g(n) for the Lie algebra containing (). There is a (real) para-
bolic subalgebra p* with Levi component m* := gl(n1) X - - - X gl(ng) x g(n)
in gt of rank ny + -+ + ny + n, such that the split form O;l of

OF:=(1,1,3,3,....,2m - 1,2m — 1,2m + 1)

is induced from O on g(n), trivial on the gi’s. We will consider the repre-
sentation

I(r) := Ind%, [triv ® - -- @ triv @ 7. (9.6.1)

We show that the form on I(r) induced from 7 is positive definite; this
implies that the form on 7 is definite. We do this by showing that the
possible factors of I(r) have to be unitary, and the forms on their lowest
K —types are positive definite.

Combining proposition 9.2 with (9.2.3), we conclude that there are 3™-2™
unipotent representations in the block of the spherical irreducible representa-
tion; all the factors of I(w) are in this block. The number 3™ also equals the
number of real forms of OF. We describe how to get 3™ -2™ representations.
For each O;v we produce one representation m such that AC(7) = (’);-“. Then
theorem 9.3 implies that there is a Harish-Chandra cell with 2™ represen-
tations with this property. Since these cells must be disjoint, this gives the
required number.

From section 9.1, each such form (9]7" is f-stable induced from the trivial
nilpotent orbit on a parabolic subalgebra with Levi component a real form
of gl(1) x gl(3) x --- x gl(2m — 1) x gc(m). Using the results in [KnV], for
each such parabolic subalgebra, we can find a derived functor induced mod-
ule from an appropriate 1-dimensional character, that is nonzero and has
associated variety equal to the closure of the given real form. Actually it
is enough to construct this derived functor module at regular infinitesimal
character where the fact that it is nonzero irreducibile is considerably easier.
The results listed in section 9.3 imply that there are 2" distinct represen-
tations in this cell which are nonzero distinct when we apply translation
functors to infinitesimal character Az .

So in this block, there is a cell for each real form of O, and each cell has
2™ irreducible representations with infinitesimal character x . In particular
for Ogpy, the Levi component is u(1,0) x u(1,2) x u(3,2) x --- x so(m,m +
1). For this case, section 9.5 produced exactly 2™ parameters; their lowest
K —types are of the form p.(n—k, k). These are the only possible constituents
of the induced from L(x ). Since the constituents of the restriction of a
te(n — k, k) to a Levi component are again p.(m — [,1)’s, the only way
L(xp) can fail to be unitary is if the form is negative on one of the K —types

{sec:9.6}



UNITARY SPHERICAL SPECTRUM FOR SPLIT CLASSICAL GROUPS 79

te(n — k, k). But sections 5 and 6.2 show that the form is positive on the
K —types pe of L(xy)- O

10.

10.1. To complete the classification of the unitary dual we also need to
prove the following theorem.

Theorem. Assume O is even, and such that x;—1 = x; = 2,41 for some 1.
Let m = gl(z;) x g(n—x;), and Oy C g(n—z;) be the nilpotent orbit obtained
from O by removing two rows of size x;. Then

L(xg) = zndgg"gxi)x Gl [tV @ L(xo,)]-

In the p—adic case this follows from the work of Kazhdan-Lusztig ([BM1]).
In the real case, it follows from the following proposition.

Proposition. The associated variety of a spherical representation L(xp) is
giwven by the sum with multiplicity one of the following nilpotent orbits.

Type B, D: On the odd sized rows, the difference between the number
of +’s and number of —’s is 1, 0 or -1.

Type C: On the even sized rows, the difference between the number of
+’s and number of —’s is 1, 0 or -1.

The proof of the proposition is lengthy, and follows from more general re-
sults which are unpublished ([B5]). We will give a different proof of theorem
10.1 in the next sections.

Remark. When O; is even, but O is not, and just @; = x;41, the proof
follows from [BM1] in the p—adic case, and the Kazhdan-Lusztig conjectures
for nonintegral infinitesimal character in the real case. We have already used
these results in the course of the paper. O

The outline of the proof is as follows. In section 2, we prove some auxiliary
reducibility results in the case when O is induced from the trivial nilpotent
orbit in a maximal Levi component. In section 3, we combine these results
with intertwining operator techniques to complete the proof of theorem 10.1.

10.2. We need to study the p—induced modules from the trivial module on
m C g(n) where m 2 gl(n), or m = gl(a) x g(b),

Type B. The nilpotent orbit @ corresponds to the partition 2z = 2z; = 2a,

in sp(n,C). The infinitesimal character is (—a + 1/2,...,a — 1/2) and the

nilpotent orbit O, corresponds to (1,1,2,...,2,3). We are interested in the
N——

2a—2
composition series of

Indgy on [triv]. (10.2.1)

{sec:10}1}

{t:10.1}

{p:10.1}

{sec:10.2}

{eq:10.2.10}



{eq:10.2.3}

{eq:10.2.1p}

{eq:10.2.2}

{eq:10.2.3a}

{eq:10.2.4a}

80 DAN BARBASCH

There are three real forms of O,,

+ - + + - 4+ -+ -
+ - + - -

- + -+ -+

: : : (10.2.2)
+ - + - + -

- + -+ -+

+ + +

+ — +

The associated cycle of 10.2.1 is the middle nilpotent orbit in (10.2.2) with
multiplicity 2. Section 6 shows that there are at least two factors character-
ized by the fact that they contain the K —types which are the restrictions

to S[O(2a + 1) x O(2a)] of

(0,0,...,0;+ | 0,0,...,0,+)

10.2.3
(1,0,...,0;— | 0,0,...,0;—). ( )

Thus because of multiplicity 2, there are exactly two factors. The nonspher-
ical factor has Langlands parameter

A =(1/2,0,...,010,...,0),

(10.2.4)

v=0,a—1/2,a-1/2,...,3/2,3/2,1/2).
The Cartan subalgebra for the parameter is such that the root €; is non-
compact imaginary, €;, €; £ €; with j > ¢ > 2, are real. The standard module
X (A, v) which has X(\“,v) as quotient is the one for which v is dom-
inant. Thus we take the Cartan subalgebra such that eg, is noncompact
imaginary, €;, €; = €; with ¢ < j < 2a are real, and the usual positive system
0" = {ei, i £ € }icj.

Type C. The nilpotent orbit O corresponds to the partition 2zy = 2z, =
2a+1 < 222 = 2b+ 1 in so(n,C). The infinitesimal character is
(—a,...,a)(=b,...,—1) (10.2.5)

The nilpotent orbit O, is induced from the trivial one on gl(2a + 1) x g.(b)
and corresponds to

(1,...,1,2,2,3,...,3). (10.2.6)
N—— ——
2b—2a—2 2a

We are interested in the composition series of

TndC2atb+1)

GL(2a+1)x G ()] 1T (10.2.7)

{eq:10.2.1}
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There are three real forms of (10.2.6),

+ - + + - + + - +
-+ - -+ - -+ -
+ - + + - + + - +
-+ - -+ - -+ -
+ - + - -+

10.2.
+ - ~- + -+ (10.2.8)
+ + +
+ + +

The AC cycle of (10.2.7) consists of the middle nilpotent orbit in (10.2.8)
with multiplicity 2. By a similar argument as for type B, we conclude that
the composition series consists of the representations with parameters

(b—i_?"'Ja—H+7Q+7Q+7Q+J"'Jl+7l+ul+7g+ )7 (1029)
(b",...,a+1",a,—a+1,...,,1,0,0), o
with lowest K —types
0,...,0,...,0),
(1,...,1,0,...,0,—1,...,—1). (10.2.10)
—— —— ———
a+1 b—1 a+1

Type D. The nilpotent orbit @ corresponds to the partition 2z = 2z; =
2a+ 1 in so(n,C). The infinitesimal character is (—a,...,a). The real forms
of the nilpotent orbit O are
+ —
-+
P (10.2.11)
+ —
-+
There are two nilpotent orbits with this partition labelled I, 1. Each of
them is induced from m 2 gl(2a), there are two such Levi components. We
are interested in the induced modules

Indgs on [triv). (10.2.12)

The multiplicity of the nilpotent orbit (10.2.11) in the AC cycle of (10.2.12)
is 1, so the representations are irreducible.

We summarize these calculations in a proposition.
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Proposition. The composition factors of the induced module from the triv-
ol representation on m all have relevant lowest K —types. In particular, the
induced module is generated by spherically relevant K —types. Precisely,

the representation is generated by the pic,

the representation is generated by the o,

the representation is generated by pe(0) = uo(0).

10.3. We now prove the irreducibility result mentioned at the beginning
of the section in the case of type B; the other cases are similar. Let x4,
be the nilpotent orbit where we have removed one string of size 2a. Let
m := gl(2a) x g(n — 2a). Then L(x3) is the spherical subquotient of the
induced representation

I(a,L(xp,)) = Indy[(=a+1/2,...,a = 1/2) ® L(xp,)]- (10.3.1)

It is enough to show that if a parameter is unipotent, and satisfies =; | =
T; = Tiy1 = a, then I(a, L(xp,)) is generated by its K —types of the form
tte. This is because by theorem 5.3, the K—types of type p. in (10.3.1)
occur with full multiplicity in the spherical irreducible subquotient, and the
module is unitary.

First, we reduce to the case when there are no 0 < x; < a. Let v be the
dominant parameter of L(xs), and assume ¢ is the smallest index so that
z;—1 = a. There is an intertwining operator

X(w) —I1(1/2,...,20 = 1/2;...51/2,... ;@i 9 — 1/2;1) (10.3.2)

where I is induced from gl(zo) % - - X gl(@i—2) x g(n—>_, ;4 ;) with char-
acters on the gl’s corresponding to the strings in (10.3.2) and the irreducible
module L(v') on g(n — >, _;_; 7;). The intertwining operator is onto, and
thus the induced module is generated by its spherical vector. By the induc-
tion hypothesis, the induced module from (—a+1/2,...,a— /2) @ L(v") on
9l(2a) x g(n — X<, @;) is irreducible. But

I(1/2,...,m0 —1/2;...;1/2,..., 250 —1/2;—a+1/2,...,a — 1/2;V") =

I(—a+1/2,...,a—1/2;1/2,...,00 — 1/2;2...51/2,...,2; o —1/2,V")
(10.3.3)
This module maps by an intertwining operator onto I(a, L(x,)), so this
module is generated by its spherical vector.

So we have reduced to the case when
o = I1 = T2 = aQ, or

Suppose m = 1, so we are in the first case. The infinitesimal character is

(a—1/2,a1/2,a—1/2,...,1/2,1/2,1/2),

{p:10.2}
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each coordinate occuring three times. The induced module
I(—a+1/2,...,a—1/2) (10.3.5)

of g(2a) is a direct sum of irreducible factors computed in section 10.2;
in particular it is generated by K —types of the form pu.(2a — k, k) (with
k =0,1). Consider the module

Ia—1/2;...;1/2;—a+1/2,...,a—1/2), (10.3.6)

induced from characters on GL(1) x --- x GL(1) x GL(2a). It is a direct
sum of induced modules from the two factors of (10.3.5). Each such induced
module is a homomorphic image of the corresponding standard module with
dominant parameter. So (10.3.6) is also generated by its p. isotypic com-

ponents. But then
Ia—1/2;...51/2;—a+1/2,...,a—1/2) =
(a -1/ / / /2) (10.3.7)

I(—a+1/2,...,a—1/2;a—1/2;...;1/2)

so the latter is also generated by its p. isotypic components. Finally, the
intertwining operator

Ia—1/2;...;1/2) — I(1/2,...,a—1/2) (10.3.8)
is onto, and the image of the intertwining operator
I(1/2,...,a—1/2) — I(-a+1/2,...,—-1/2) (10.3.9)
is onto L(—a+1/2,...,—1/2). Thus
I(—a+1/2,...,a—1/2;L(—a+1/2,...,-1/2)) (10.3.10)

induced from g¢l(2a) x g(a) is generated by its u, isotypic components. Since
the multiplicity of these K —types in the induced module is the same as in
the irreducible spherical module, it follows that they must be equal.

Now suppose that m > 1 in the first case, or m > 2 in the second case.
The parameter has another zo, 1 < T2,. We use an argument similar to
the one above to show that the module

I(—:L’gm_l + 1/2,...,$2m — 1/2,L(X@Z)), (10311)

where O, is the nilpotent orbit with partition obtained from O by removing
2T9m—1, 222m, is generated by its u. isotypic components. The claim then
follows because the induced module is a homomorphic image of (10.3.11).
Precisely, X (v) maps onto

I(.%’zm_l +1/2,...,$2m—1/2;1/2,...,$0 —1/2;...;1/2,...,x2m_2 —1/2;

L(—{Ij‘zm_l + 1/2, —Xom—1 + 1/2, ceey —1/2, —1/2))
(10.3.12)
So this module is generated by its spherical vector. Replace L(—z9,,—1 +
1/2, —Tom—1 T+ 1/2, ce —1/2, —1/2) by I(—:Egmfl + 1/2, e, Tom—1 — 1/2)

The ensuing module is a direct sum of two induced modules by section 10.2.
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They are both homomorphic images of standard modules, so generated by
their lowest K —types, which are of type u.. Next observe that the map

Hxom-1+1/2,.. . @0 —1/2;1/2, ... ;20 — 1/2;...51/2, .. x99 — 1/2;
— Tom—1 + 1/2,...,1’2m,1 — 1/2) —

H(—zom-1+1/2,. . .xom —1/2;1/2, ... xg — 1/2;..51)2, ... 2opm—o — 1/2)

(10.3.13)

is onto. So the target module is generated by its p, isotypic components.
The module

I(1/2, .. w0 —1/2;...31/2, ... @om—o — 1/2) (10.3.14)

(the string —xom-1+1/2,..., 22, —1/2removed) has L(—x9m—2+1/2,...,1/2)

as its unique irreducible quotient, because it is the homomorphic image of
an X (v) with v dominant. Therefore it is generated by its spherical vector.
Combining this with the induction assumption, we conclude that

I(—xom 1 +1/2,... 20, —1/2;—a+1/2,...,a—1/2; L(O3)) (10.3.15)
is generated by its p. isotypic components. It is isomorphic to
I(—a+1/2,...,a—1/2 —xopm_1 +1/2,..., 29, — 1/2; L(03)). (10.3.16)

Finally, the multiplicities of the p. isotypic components of I (—xom-1 +
1/2,...,29m — 1/2; L(O3)) are the same as for the irreducible subquotient
L(O1)). This completes the proof of the claim in this case.

Remains to consider the case when m =2 and g = 0 < 21 = 29 = 23 =
a < x4. In this case, the module

Ia+1/2,...,24—1/2;—a+1/2,...,a—1/2; —a+1/2,...,a—1/2) (10.3.17)

is generated by its u. isotypic components because of proposition 10.2, and
arguments similar to the above. Therefore the same holds for

I(—a+1/2,... 24 —1/2;—a+1/2,....a—1/2), (10.3.18)

which is a homomorphic image via the intertwining operator which inter-
changes the first two strings. But this is isomorphic to

I(—a+1/2,...,a=1/2,—a+1/2,...,24 — 1/2). (10.3.19)

Then I(—a+1/2,...,a—1/2,L(—2z4+1/2,...,-1/2,-1/2) is a homomor-
phic image of (10.3.19) so it is generated by its p, isotypic components. By
section 5.3, the multiplicities of the p. isotypic components are the same
inI(—a+1/2,...,a—1/2,L(—x4+1/2,...,-1/2,-1/2)as in L(x). This
completes the proof of theorem 10.1. O
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