Representation of the Category ① in Whittaker Categories

Erik Backelin

1 Introduction

Let $\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+$ be a complex semisimple Lie algebra and let $\eta\colon U(\mathfrak{n}_+)\to C$ be an algebra homomorphism. Kostant [8] studied the invariants $Wh_\eta(M):=\{\mathfrak{m}\in M;\, Ker\,\eta\cdot\mathfrak{m}=0\}$ in a \mathfrak{g} -module M. We call these invariants Whittaker vectors.

If a \mathfrak{g} -module M is the direct sum of its weight spaces with respect to \mathfrak{h} (and $\mathfrak{q}|\mathfrak{n}_+\neq 0$), then M contains no nonzero Whittaker vectors. If M is an object of the category $\mathfrak O$ of Bernstein-Gelfand-Gelfand, one should therefore consider the set $\overline{Wh}_{\eta}(M)$ of Whittaker vectors in the completion (definition 3.1) \overline{M} of M. This gives the functor \overline{Wh}_{η} from $\mathfrak O$ to the category of $Z(\mathfrak{g})$ -modules. Kostant's results implies that \overline{Wh}_{η} is exact when η is regular, i.e., nonvanishing on each simple root vector.

Although Kostant did not work with the category 0, he did prove that dim $\overline{Wh}_{\eta}(M_{\chi})$ = 1 for any simple Verma module M_{χ} when η is regular. This is generalized to arbitrary Verma modules in Proposition 4.5. As a consequence, we prove in Corollary 4.6 a result about primitive vectors.

Let W_{λ} be the integral Weyl group of a dominant weight λ , and let w_0 be its longest element. \mathcal{O}_{λ} denotes the subcategory of \mathcal{O} whose objects have all their composition factors isomorphic to $L_{w\lambda}$, the simple module of highest weight $w\lambda - \rho$, $w \in W_{\lambda}$. Let $P_{w\lambda}$ be the projective cover of $L_{w\lambda}$ and consider the functor

$$\mathbb{V}$$
: $M \rightsquigarrow \operatorname{Hom}_{\mathfrak{q}}(P_{w_0\lambda}, M)$

from \mathcal{O}_{λ} to $\operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$ -mod. Soergel proved the important result that the multiplication homomorphism $Z(\mathfrak{g}) \to \operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$ is surjective [12]. Therefore, $\mathbb{V}(M)$ may just as well be

Received 10 September 1996. Revision received 14 January 1997. Communicated by David Vogan.

considered as a $Z(\mathfrak{g})$ -module. He also proved that \mathbb{V} restricted to projective objects in \mathcal{O}_{λ} is fully faithful (see Theorem 5.1).

The study of $\mathbb V$ as well as the other $\mathrm{Hom}_{\mathfrak g}(P_{w\lambda},\,\,\cdot\,\,)$ is motivated by the following. Put $P:=\oplus_{w\in W_\lambda}P_{w\lambda}$. Then for abstract reasons, $M\leadsto \mathrm{Hom}_{\mathfrak g}(P,\,M)$ gives an equivalence between the categories $\mathcal O_\lambda$ and the category of finitely generated right $\mathrm{End}_{\mathfrak g}(P)$ -modules [1]. In [2] this connection is studied and in particular it is proved that $\mathrm{End}_{\mathfrak g}(P)$ is a Koszul algebra.

 $\operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$ is a graded algebra (see Section 5). The best known way to see this grading is that it comes from a grading on $Z(\mathfrak{g})$ via the surjection $Z(\mathfrak{g}) \twoheadrightarrow \operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$. One would, however, like to see the grading on $\operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$ more directly. Joseph Bernstein therefore suggested that one should try to find another realization of the functor $\mathbb V$ where the grading becomes more obvious.

The first main result of this paper, suggested by Bernstein, is the proof for the assertions that \mathbb{V} is determined, by its exactness and the fact that $\mathbb{V}(M_{w\lambda})$ is a one-dimensional vector space for each Verma module $M_{w\lambda}$, $w \in W_{\lambda}$, and that \mathbb{V} is isomorphic to $\overline{Wh}_{\eta} \mid \mathcal{O}_{\lambda}$ when η is regular. (See Theorem 5.2 and Corollary 5.4.) Unfortunately, the original attempt to see the grading on $\mathrm{End}_{\mathfrak{g}}(P_{w_0\lambda})$ failed, since we do not have any natural grading on $\overline{Wh}_{\eta}(P_{w_0\lambda})$.

In Section 6 we consider an arbitrary $\eta.$ We prove some results about \overline{Wh}_η and consider yet another functor

$$\overline{\Gamma}_n$$
: $M \rightsquigarrow \{ \nu \in \overline{M}; \exists k: (Ker \eta)^k \cdot \nu = 0 \}$

from $\mathbb O$ to $U(\mathfrak g)$ -mod. This functor is exact and it maps the category $\mathbb O$ into the category Ω_η whose objects are finitely generated $U(\mathfrak g)$ -modules, which are locally annihilated by some power of $\operatorname{Ker} \eta$ and locally finite over $Z(\mathfrak g)$.

It is known that Ω_{η} has certain "standard"-modules (and simple modules) parameterized by the cosets in the Weyl group of a certain subgroup (McDowell [9]) (see also Miličić-Soergel [10], [11]). Soergel (unpublished) has proved that the Verma modules are mapped onto the set of standard modules in Ω_{η} by the functor $\overline{\Gamma}_{\eta}$; we prove in Proposition 6.9 that $\overline{\Gamma}_{\eta}$ maps the simple objects in 0 onto the set of simple objects in Ω_{η} .

This is used to establish our second main result, Theorem 6.2, stating that the multiplicities of simple modules in standard modules in Ω_{η} follows from multiplicities of corresponding modules in 0, which can be calculated by the Kazhdan-Lusztig algorithm.

2 Preliminaries

In the sequel, we fix a semisimple complex Lie algebra g and a Cartan subalgebra h.

We shall use the following notation (cf. [5], [6]). R denotes the set of roots, B is a basis of R, and R₊ is the set of positive roots. This gives the triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. Let Q denote the root lattice, Q_{++} the semigroup generated by the simple roots, and P the integral weights, $P_{++} := \{\chi \in \mathfrak{h}^*; \chi(H_{\alpha}) \in \mathbb{N} \text{ for } \alpha \in B\}$. ρ denotes half the sum of the positive roots.

For each $\alpha \in R_+$, choose $X_{\alpha} \in \mathfrak{g}^{\alpha}$ and $X_{-\alpha} \in \mathfrak{g}^{-\alpha}$ such that $\alpha([X_{\alpha}, X_{-\alpha}]) = 2$, and put $H_{\alpha} = [X_{\alpha}, X_{-\alpha}]$. Let W denote the Weyl group. Let s_{α} be the reflection in W corresponding to the root α . Hence, $s_{\alpha}(\lambda) = \lambda - \lambda(H_{\alpha})\alpha$ for $\lambda \in \mathfrak{h}^*$. Let $S := \{s_{\alpha}; \alpha \in B\}$ be the set of simple reflections.

Elements in \mathfrak{h}^* are called weights. A weight χ is called integral if $\chi(H_{\alpha}) \in \mathbf{Z}$, dominant if $\chi(H_{\alpha}) \notin \{-1, -2, \ldots\}$, and anti-dominant if $\chi(H_{\alpha}) \notin \{1, 2, \ldots\}$ for each $\alpha \in R_{+}$. For any g-module M, put $M^{\chi} = \{ m \in M; Hm = \chi(H)m, \forall H \in h \}$. M^{χ} is called the weight space of χ in M and elements in M^{χ} weight vectors. A primitive vector is a weight vector annihilated by n_+ .

For any Lie algebra a, let U(a) denote its enveloping algebra and Z(a) be the center of U(a). U(a)-mod denotes the category of left U(a)-modules and Z(a)-mod the category of $Z(\mathfrak{a})$ -modules. If $M, N \in U(\mathfrak{a})$ — mod, then $M \otimes_{\mathbb{C}} N$ denotes the $U(\mathfrak{a})$ -module where $x \cdot m \otimes n := (xm) \otimes n + m \otimes (xn)$ for $x \in \mathfrak{a}, m \in M$, and $n \in N$.

The Bernstein-Gelfand-Gelfand category \emptyset , [5], is the set of $M \in U(\mathfrak{g})$ -mod, such that

- (1) M is finitely generated over U(g);
- (2) $M = \bigoplus_{\chi \in \mathfrak{h}^*} M^{\chi}$;
- (3) M is locally finite over $U(n_+)$.

For $\chi \in \mathfrak{h}^*$, denote by M_{χ} the Verma module with highest weight $\chi - \rho$, L_{χ} its simple quotient, and P_{χ} the projective cover of L_{χ} . These are objects in O.

Put $\Theta_{\chi} := \{z \in Z(\mathfrak{g}); z \cdot M_{\chi} = 0\}$. Then Θ_{χ} is a maximal ideal in $Z(\mathfrak{g})$ and each maximal ideal is of the form Θ_{χ} , for some $\chi \in \mathfrak{h}^*$, and $\Theta_{\chi} = \Theta_{\varphi}$ if and only if $\varphi \in W\chi$. Let $\mathcal{O}_{\Theta_{\chi}}$ be the subcategory of \mathcal{O} , whose objects are annihilated by some power of Θ_{χ} ; equivalently, $M \in \mathcal{O}_{\Theta_Y}$ if its composition factors belong to $\{L_{w\lambda}\}_{w \in W}$. Then \mathcal{O} splits into the orthogonal direct sum

$$0 = \bigoplus_{\chi \in \mathfrak{h}^*/W} 0_{\Theta_{\chi}}.$$

Orthogonal here means that $\text{Ext}_{0}(M, N) = 0$ for $M \in \mathcal{O}_{\Theta_{\chi}}$, $N \in \mathcal{O}_{\Theta_{\varphi}}$, $i \geq 0$, when $\chi \neq \varphi$ in \mathfrak{h}^*/W .

Given a maximal ideal $\Theta = \Theta_{\chi}$ in $Z(\mathfrak{g})$, let $\chi_1, ..., \chi_s$ be the dominant weights in $W\chi$. Let $W_{\chi_i} := \{w \in W; w\chi_i - \chi_i \in P\}$ be the integral Weyl group corresponding to χ_i . Define $\mathcal{O}_{\chi_i} \subset \mathcal{O}_{\Theta_X}$ as the subcategory of all modules whose composition factors are isomorphic to $L_{w\chi}$, $w \in W_{\chi_i}$. Then \mathcal{O}_{Θ_X} decomposes into the orthogonal direct sum $\mathcal{O}_{\Theta_X} = \oplus \mathcal{O}_{\chi_i}$.

We denote by $K(\mathfrak{O})$ the Grothendieck group of \mathfrak{O} . The Verma (resp. simple) modules form a basis of the free abelian group $K(\mathfrak{O})$. If $M \in \mathfrak{O}$, $\chi \in \mathfrak{h}^*$, then $[M:M_\chi]$ (resp. $[M:L_\chi]$) denotes the coefficient of M_χ (resp. L_χ) in the expression of M in the Verma (resp. simple) module basis of $K(\mathfrak{O})$.

In this paper a category Ω which generalizes 0 is studied. Ω is the subcategory of U(g)-mod, whose objects M satisfy the following:

- (1) M is finitely generated over U(g);
- (2) M is locally finite over Z(g);
- (3) M is locally finite over $U(\mathfrak{n}_+)$.

Each object in Ω has finite length ([9], [11]), and a geometric proof is found in [10]. In Section 6.2 we define certain standard modules in Ω .

Let $\eta\colon\mathfrak{n}_+\to\mathbf{C}$ be a Lie algebra homomorphism (\mathbf{C} is considered as a commutative Lie algebra). It is called a character on \mathfrak{n}_+ . It is clear that $\eta([\mathfrak{n}_+,\,\mathfrak{n}_+])=0$. Denote also by η the induced algebra homomorphism $U(\mathfrak{n}_+)\to\mathbf{C}$. η is said to be regular if $\eta(X_\alpha)\neq 0$ for all $\alpha\in B$. If η vanishes on \mathfrak{n}_+ , we write $\eta=0$ for short. Denote by Ω_η the subcategory of Ω whose objects are locally annihilated by some power of Ker η . We refer to objects in Ω as Whittaker modules.¹

Then the category Ω splits into an orthogonal direct sum over characters on \mathfrak{n}_+

$$\Omega = \bigoplus_{\eta} \Omega_{\eta}$$
.

We also have the orthogonal direct sum $\Omega_{\eta} = \bigoplus_{\Theta \in \mathbf{maxZ}(\mathfrak{g})} \Omega_{\eta,\Theta}$, where $\Omega_{\eta,\Theta}$ denotes the set of objects with generalized central character Θ , i.e., objects that are annihilated by some power of Θ .

It is proved in Kostant [8] that for η regular, Wh_{η} gives an equivalence between Ω_{η} and the category of Artinian $Z(\mathfrak{g})$ -modules. This shows that Ω_{η} for regular η gives the least complicated blocks in Ω . In the other extreme, Ω_0 is the smallest subcategory of $U(\mathfrak{g})$ -mod containing the category 0 which is closed under extensions. Clearly, properties of Ω_{η} for general η should follow from these two cases. For instance, Miličić-Soergel [11] proved that in most cases (at least for integral central character Θ), $\Omega_{\eta,\Theta}$ is equivalent to $\Omega_{0,\xi}$ for certain singular central character ξ .

 $^{^{1}}$ Our terminology here differs from that of Kostant [8] who used the term Whittaker module only in the case of a regular η , and he used the word nondegenerate instead of regular.

The Whittaker functor

Definition 3.1. To a module $M = \bigoplus_{\chi \in \mathfrak{h}^*} M^{\chi}$ in \emptyset we associate the \mathfrak{g} -module $\overline{M} := \prod_{\chi \in \mathfrak{h}^*} M^{\chi}$, defining an exact functor from 0 to U(g)-mod.

There exists a duality functor on O which gives us a useful description of \overline{M} .

For $M \in U(\mathfrak{g})$ -mod, the full dual $M' := \operatorname{Hom}_{\mathbb{C}}(M, \mathbb{C})$ has the \mathfrak{g} -module structure defined by $x\phi(m) = \phi(x^t m)$ for $x \in \mathfrak{g}, \phi \in M', m \in M$. Here t is the anti-automorphism of \mathfrak{g} , defined by ${}^{t}|\mathfrak{h}=\mathrm{id}_{\mathfrak{h}},\,X_{\alpha}^{t}=X_{-\alpha},\,\alpha\in\mathbb{R}$. Then $\mathfrak{m}\to\phi\colon\psi\to\psi(\mathfrak{m})$ defines a canonical homomorphism $M \to M''$.

In M' we have the submodule $M^* := \{m \in M'; \dim U(n_+)m < \infty\}$. If $M \in \mathcal{O}$, then $M^* \in \mathcal{O}$ and the canonical homomorphism $M \to M^{**}$ is an isomorphism, extending to an isomorphism of g-modules

$$\overline{M} \to M^{*'}$$
. (3.1)

Let η be a character on \mathfrak{n}_+ . For $M \in U(\mathfrak{g})$ -mod we define

$$\Gamma_n(M) := \{ m \in M; \exists k: (Ker \eta)^k \cdot m = 0 \} \in U(\mathfrak{g}) - mod;$$

and for $M \in \mathcal{O}$ we put

$$\overline{\Gamma}_{\eta}(M) := \{ m \in \overline{M}; \, \exists k \colon (Ker \eta)^k \cdot m = 0 \} \in U(\mathfrak{g}) - mod \, .$$

Here Kern denotes the kernel of η in $U(\mathfrak{n}_+)$.

Lemma 3.2.
$$\overline{\Gamma}_{\eta}$$
 defines an exact functor from 0 to Ω_{η} .

Proof. Let C be the subcategory of U(g)-mod whose objects are finitely generated over $U(\mathfrak{n}_+)$. Let δ be the functor on $U(\mathfrak{g})$ -mod, defined by $\delta(M) := \operatorname{Hom}_{\mathbb{C}}(M, \mathbb{C})$ with the $U(\mathfrak{g})$ module structure defined by $(x\phi)(m) := \phi(-xm)$ for $m \in M$, $\phi \in \delta(M)$ and $x \in \mathfrak{g}$. Kostant [8, Lemma 4.5] proved that $\Gamma_n \circ \delta$ defines an exact functor from \mathcal{C} to Ω_n . Kostant's proof is based on the Artin-Rees lemma for nilpotent Lie algebras.

Define 0^- as the category 0 with the roles of \mathfrak{n}_+ and \mathfrak{n}_- interchanged. Then $0^- \subset$ \mathcal{C} . There is an equivalence of categories δ_{fin} from \mathcal{O} to \mathcal{O}^- , defined by $\delta_{fin}(M) := \{ \phi \in \mathcal{O} : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO) : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO} : \{ \phi \in \mathcalO) : \{ \phi \in \mathcalO} : \{$ $\delta(M)$; $\exists k: (\mathfrak{n}_+)^k \cdot \varphi = 0$ }. Then $\delta \circ \delta_{fin}$ is isomorphic to the completion functor; hence $\overline{\Gamma}_{\eta} \cong 0$ $\Gamma_{\eta} \circ \delta \circ \delta_{fin}$ and we conclude that $\overline{\Gamma}_{\eta} \colon \mathfrak{O} \leadsto \Omega_{\eta}$ is exact.

Remark 3.3. The functor $\overline{\Gamma}_{\eta}$: $0 \rightsquigarrow \Omega_{\eta}$ is not surjective. If $\eta = 0$, then $\overline{\Gamma}_{\eta}$ is the inclusion of O into Ω_0 . If η is regular, then Ω_η is equivalent to the category of Artinian Z(g)-modules by Proposition 4.3. But if $M \in \mathcal{O}$ has generalized central character Θ_{λ} , then M is annihilated by $J := \bigcap_{w \in W} \{z \in Z(\mathfrak{g}); z P_{w\lambda} = 0\}$, and thus also $J \cdot \overline{\Gamma}_{\eta}(M) = 0$. Therefore, no object in \mathfrak{O}

is mapped by $\overline{\Gamma}_{\eta}$ to the object in Ω_{η} corresponding to the finite-dimensional $Z(\mathfrak{g})$ -module $Z(\mathfrak{g})/I^2$.

However, if we define $\overline{\Gamma}_{\eta}$: $\Omega_0 \rightsquigarrow \Omega_{\eta}$ by $\overline{\Gamma}_{\eta}(M) := \Gamma_{\eta}(M^{*'})$, then this functor is probably surjective.

Each $M \in U(\mathfrak{g})$ -mod has the $Z(\mathfrak{g})$ -submodule $Wh_{\eta}(M) := \{ \mathfrak{m} \in M; Ker\eta \cdot \mathfrak{m} = 0 \}$. An element in this set is called a Whittaker vector. It is easy to verify that $M \rightsquigarrow Wh_{\eta}(M)$ defines a left exact functor on $U(\mathfrak{g})$ -mod. The composition of Wh_{η} with the completion functor on \mathbb{O} gives a left exact functor \overline{Wh}_{η} .

Definition 3.4. The Whittaker functor \overline{Wh}_n : $\emptyset \to Z(g)$ -mod is defined as

$$M \rightsquigarrow \overline{Wh}_{\eta}(M) := \{ m \in \overline{M}; Ker \eta \cdot m = 0 \}.$$

Thus $\overline{Wh}_{\eta}=Wh_{\eta}\circ\overline{\Gamma}_{\eta}.$ Notice that if $\eta=0$ and $M\in\mathfrak{O},$ then

$$\overline{Wh}_n(M) := \{ m \in \overline{M}; \, \mathfrak{n}_+ \cdot m = 0 \} = \{ m \in M; \mathfrak{n}_+ \cdot m = 0 \},$$

i.e., the set of primitive vectors in M.

Let $\tilde{\eta}$ be the character on \mathfrak{n}_- defined by $\tilde{\eta}(X_{-\alpha})=\eta(X_{\alpha}),\ \alpha\in B.$ Using the identification of $M^{*'}$ with \overline{M} in (3.1) we get

$$\overline{Wh}_{\eta}(M) = \{ \varphi \in M^{*\prime}; \operatorname{Ker} \eta \cdot \varphi = 0 \} = \{ \varphi \in M^{*\prime}; \varphi | \operatorname{Ker} \tilde{\eta} \cdot M^{*} = 0 \}. \tag{3.2}$$

This shows that $\dim \overline{Wh}_{\eta}(M) = \operatorname{codim}_{M^*}(\operatorname{Ker}\tilde{\eta} \cdot M^*)$. Since M^* is finitely generated over $U(\mathfrak{n}_-)$, this dimension is finite. (Similarly, $\overline{\Gamma}_{\eta}(M) = \{ \varphi \in M^{*'}; \exists k: \varphi | (\operatorname{Ker}\tilde{\eta})^k \cdot M^* = 0 \}$.)

Up to isomorphism of functors \overline{Wh}_{η} is determined by those simple root vectors on which η vanishes.

Assume η and η' are two characters on \mathfrak{n}_+ which vanish on the same simple root vectors. We define an isomorphism of functors $\overline{Wh}_\eta \leadsto \overline{Wh}_{\eta'}$ as follows: Let $f\colon Q \to \textbf{C}^*$ be a group homomorphism such that $\eta'(X_\alpha) = f(\alpha)\eta(X_\alpha)$ for each $\alpha \in B.$ Choose a set $\Psi \subset \mathfrak{h}^*$ of representatives of the cosets $\mathfrak{h}^*/Q.$ Let $M \in \mathfrak{O}$ and define for each $\mathfrak{m} \in \overline{Wh}_\eta(M)$ an element $\mathfrak{m}' \in \overline{Wh}_{\eta'}(M)$ by

$${\mathfrak m'}^{(\psi+\chi)}:=f(\chi){\mathfrak m}^{(\psi+\chi)},\quad \text{ for } \quad \psi\in\Psi \quad \text{ and } \quad \chi\in Q.$$

Here $\mathfrak{m}^{(\psi+\chi)}$ denotes the component of \mathfrak{m} in $M^{(\psi+\chi)}$. This defines a (functorial) isomorphism $\overline{Wh}_n(M) \to \overline{Wh}_{n'}(M)$.

The converse is also true, i.e., if $\overline{Wh}_{\eta}\cong\overline{Wh}_{\eta'}$, then η and η' vanish on the same weight spaces of \mathfrak{n}_+ . This can be deduced, e.g., from Proposition 6.4 below. Hence there are $2^{rank\,\mathfrak{g}}$ isomorphism classes of Whittaker functors.

4 Properties of the Whittaker functor in the regular case

Lemma 4.1 below is due to Kostant [8, Theorem 4.3]. Let us mention that a stronger version of it—where Ω_{η} is replaced by the category of all objects in U(g)-mod which are locally annihilated by some power of Kerη—can be deduced from a vanishing theorem of Wallach [13, Theorem 2.2].

Lemma 4.1 (η regular). The functor Wh_{η} restricted to Ω_{η} is exact.

Combining this with Lemma 3.2, we get the following.

Theorem 4.2 (η regular). \overline{Wh}_{η} is exact.

The following proposition is proved in [8, Theorem 4.3], and in [10]. Lemma 4.1 is the main ingredient in the proof.

Proposition 4.3 (η regular). The functor Wh_{η} defines an equivalence between Ω_{η} and the category of Artinian $Z(\mathfrak{g})$ -modules. The inverse functor is given by $V \rightsquigarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{n}_+) \otimes_{\mathbf{C}} Z(\mathfrak{g})}$ V, where the $U(n_+)$ action on the $Z(\mathfrak{g})$ -module V is given by η . In particular, each object in Ω_{η} is generated by its Whittaker vectors.

Remark 4.4. The functor \overline{Wh}_{η} is not exact when η is not regular. For instance, let \mathfrak{g} = $\mathfrak{sl}(2, \mathbf{C})$ and let $\eta = 0$; we have the surjection $P_{-\rho} \to M_{-\rho}$, but the induced homomorphism $\mathbf{C}^2 \cong \overline{Wh}_n(P_{-\varrho}) \to \overline{Wh}_n(M_{-\varrho}) \cong \mathbf{C}$ is the zero map.

The next theorem was proved in [8] for simple Verma modules.

Proposition 4.5 (
$$\eta$$
 regular). Let $\lambda \in \mathfrak{h}^*$. Then dim $\overline{Wh}_{\eta}(M_{\lambda}) = 1$.

Proof. (a) Let $M \in \mathcal{O}$ and denote by (M) its image in the Grothendieck group $K(\mathcal{O})$. Since $L^* \cong L$, when L is simple, we see that $(M^*) = (M)$. Since the Whittaker functor is exact, this shows that $\dim \overline{Wh}_{\eta}(M) = \dim \overline{Wh}_{\eta}(M^*)$. In particular, $\dim \overline{Wh}_{\eta}(M_{\lambda}) = \dim \overline{Wh}_{\eta}(M_{\lambda}^*)$.

(b) By 3.2 we have
$$\overline{Wh}_{\eta}(M_{\lambda}^*) = \{ \phi \in M_{\lambda}'; \phi | \operatorname{Ker} \tilde{\eta} \cdot M_{\lambda} = 0 \}$$
. Hence,

$$\dim \overline{Wh}_{\eta}(M_{\lambda}^{*}) = \operatorname{codim}_{M_{\lambda}}(\operatorname{Ker} \tilde{\eta} \cdot M_{\lambda}) = \operatorname{codim}_{U(\mathfrak{n}_{-})}(\operatorname{Ker} \tilde{\eta} \cdot U(\mathfrak{n}_{-})) = 1.$$

The second equality follows from the fact that M_{λ} is a free $U(\mathfrak{n}_{-})$ -module of rank 1; the last equality holds since $U(\mathfrak{n}_{-})/\operatorname{Ker}\tilde{\eta}\cong \mathbf{C}$.

Proposition 4.5 casts some light on the structure of primitive vectors in Verma modules.

Let $R_+ = {\alpha_1, \dots, \alpha_l, \dots, \alpha_n}$, where the first l roots are simple. By the Poincaré-Birkhoff-Witt theorem, $U(n_{-})$ has the vector space basis

$$D:=\{X_{-\alpha_1}^{t_1}\cdots X_{-\alpha_n}^{t_n};\,t_1,\ldots,t_n\in \textbf{N}\}.$$

Let $M_{\lambda}\subset M_{\chi}$ be two Verma modules and $\mu_{\lambda}, \mu_{\chi}$ be their canonical generators, respectively. Then $\mu_{\lambda}=P\mu_{\chi}$ for a uniquely determined $P\in U(\mathfrak{n}_{-})$. There is a unique l-tuple of natural numbers, $(t_{1}^{0},\ldots,t_{l}^{0})$, such that $\sum_{i=1}^{l}t_{i}^{0}\alpha_{i}=\chi-\lambda$. Denote by $\lambda_{t_{1}^{0},\ldots,t_{l}^{0}}$ the coefficient of $X_{-\alpha_{1}}^{t_{1}^{0}}\cdots X_{-\alpha_{l}}^{t_{l}^{0}}$ in P with respect to the basis D.

Corollary 4.6. With the notations above,
$$\lambda_{t_1^0,\dots,t_1^0} \neq 0$$
.

Proof. Let η be a regular character on \mathfrak{n}_+ . Note that $\tilde{\eta}(P) = \lambda_{t_1^0,\dots,t_l^0} \cdot \eta(X_{\alpha_1})^{t_1^0} \cdots \eta(X_{\alpha_l})^{t_l^0}$, so it suffices to prove $\tilde{\eta}(P) \neq 0$.

Put $V=M_\chi/M_\lambda$ and identify $\overline{V^*}$ with V'. We have $\overline{Wh}_\eta(V^*)=\{\varphi\in V';\; \varphi|\, \text{Ker}\, \tilde{\eta}\cdot V=0\}$. Since $\overline{Wh}_\eta(V^*)=0$ (Theorem 4.2 and Proposition 4.5), we conclude that

$$\text{Ker}\,\tilde{\eta}\cdot V=V.$$

In particular, $\overline{\mu}_{\chi}$, the image of μ_{χ} in V, belongs to $\text{Ker } \tilde{\eta} \cdot V$. So there is a $S \in U(\mathfrak{n}_{-})$ such that $S\overline{\mu}_{\chi} = \overline{\mu}_{\chi}$ and $\tilde{\eta}(S) = 0$. It is clear that we can write S = 1 - S', where $\tilde{\eta}(S') = 1$ and $S'\overline{\mu}_{\chi} = 0$. Hence, $S' = S^{''} \cdot P$ and we conclude that $\tilde{\eta}(P) \neq 0$.

5 Characterization of Soergel's functor

We shall work in the category \mathcal{O}_{λ} for a dominant weight λ . Let $\omega_0 \in W$ be such that $\omega_0 \lambda$ is anti-dominant. If $M_{w\lambda} \in \mathcal{O}_{\lambda}$ is a Verma module, then $M_{w\lambda} \supset L_{w_0\lambda} = M_{w_0\lambda}$. The projective cover $P_{w_0\lambda}$ of $L_{w_0\lambda}$ belongs to \mathcal{O}_{λ} .

Soergel [12] considered the algebra $C = \operatorname{End}_{\mathfrak{g}}(P_{w_0\lambda})$ and the exact functor $\mathbb{V} = \operatorname{Hom}_{\mathfrak{g}}(P_{w_0\lambda}, \cdot)$: $\mathfrak{O}_{\lambda} \rightsquigarrow C$ -mod. Here C-mod denotes the category of *finitely generated* right C-modules. Thus $C = \mathbb{V}(P_{w_0\lambda})$. Let $M \in \mathfrak{O}$. By Proposition 1 in [5], we have

$$\dim \mathbb{V}(M) = [M, L_{w_0\lambda}]. \tag{5.1}$$

It follows from Verma's theorem that $[M_{w\lambda}, L_{w_0\lambda}] = 1$ for $w \in W_{\lambda}$. This fact and the above formula imply dim $\mathbb{V}(M_{w\lambda}) = 1$.

Let us collect some results about the algebra C which are indispensable in the discussion below.

The multiplication map $Z(\mathfrak{g}) \to C$ is surjective (and so C is commutative). Let $J = \operatorname{Ann}_{Z(\mathfrak{g})}(P_{w_0\lambda}) := \{z \in Z(\mathfrak{g}); zP_{w_0\lambda} = 0\}$ be the kernel of this map. Then $Z(\mathfrak{g})/J \cong C$ can be identified with the cohomology algebra of a partial flag manifold. This gives C the structure of a graded algebra on which *Poincaré duality* holds. Put $C_+ = \bigoplus_{i \geq 1} C_i = \Theta_\lambda \cdot C$. The Poincaré duality implies that the socle of C, $\{c \in C; C_+ \cdot c = 0\}$, is one-dimensional;

therefore C is Gorenstein. These results were proved in Soergel [12]; see also Bernstein [3].

Since the algebra C is a finite-dimensional vector space, its Krull dimension is zero. But for Gorenstein algebras, the Krull dimension and injective dimension coincide. We conclude that C is injective as a module over itself. This gives a duality

$$F \rightsquigarrow F^* = \operatorname{Hom}_{\mathbb{C}}(F, \mathbb{C})$$
 (5.2)

in the category C-mod; so $F \cong F^{**}$ canonically.

The following result is due to Soergel.

Theorem 5.1 ([12] Struktursatz 9). Assume $M, P \in \mathcal{O}_{\lambda}$, P projective, then

$$\operatorname{Hom}_{\mathfrak{g}}(M, P) \longrightarrow \operatorname{Hom}_{Z(\mathfrak{g})}(\mathbb{V}(M), \mathbb{V}(P))$$

is bijective.

Since O has enough projectives [5], this result in a sense gives us a complete description of the category O.

The next theorem shows that V is determined by formula (5.1) and its exactness.

Theorem 5.2. Let T: $\mathcal{O}_{\lambda} \leadsto Z(\mathfrak{g})$ -mod be an (additive) functor. Assume that the following holds.

- (1) dim $T(M_{w\lambda}) = 1$, for each $w \in W_{\lambda}$;
- (2) T is exact;
- (3) If \mathfrak{a} is an ideal in $Z(\mathfrak{g})$, $M \in \mathcal{O}_{\lambda}$, then $T(\mathfrak{a}M) = \mathfrak{a}T(M)$ and

$$T(\{m \in M; am = 0\}) = \{v \in T(M); av = 0\}.$$

Then T is isomorphic to \mathbb{V} .

Remark 5.3. Note that V satisfies the hypothesis of Theorem 5.2. Also, the assumptions (1) and (2) of Theorem 5.2 imply

(1') dim
$$T(M) = [M : L_{w_0\lambda}].$$

Corollary 5.4 (η regular). \overline{Wh}_{η} is isomorphic to \mathbb{V} .

Proof of Corollary 5.4. This follows from Theorem 4.2 and Proposition 4.5, since \overline{Wh}_n clearly satisfies (3).

Corollary 5.5. Let T satisfy the hypothesis of Theorem 5.2. For M, $P \in \mathcal{O}_{\lambda}$, P projective, the map defined by T

$$\operatorname{Hom}_{\mathfrak{a}}(M, P) \longrightarrow \operatorname{Hom}_{Z(\mathfrak{a})}(TM, TP)$$

is bijective. Proof of Corollary 5.5. This follows from Theorems 5.2 and 5.1.

Proof of Theorem 5.2. (a) Let $M \in \mathcal{O}_{\lambda}$. Recall that we put $J = Ann_{Z(\mathfrak{q})}(P_{w_0\lambda})$. We shall prove $J \cdot T(M) = 0$.

Since, clearly, $J \cdot V(M) = 0$, it suffices to prove that $Ann_{Z(\mathfrak{g})}(V(M)) \subseteq Ann_{Z(\mathfrak{g})}(T(M))$. If M contains a submodule isomorphic to $L_{w\lambda}$, $w \neq w_0$, then $T(M) \cong T(M/L_{w\lambda})$ and $\mathbb{V}(M) \cong \mathbb{V}(M/L_{w\lambda})$. Therefore we may assume

for each
$$w \neq w_0$$
, there exists no injection $L_{w\lambda} \hookrightarrow M$. (*)

Now, put $M' = \sum_{f \in \mathbb{V}(M)} f(P_{w_0 \lambda})$; obviously, the inclusion $\mathbb{V}(M') \to \mathbb{V}(M)$ is onto, so we get $\mathbb{V}(M/M') = 0$. Hence, by (1'), $[M/M' : L_{w_0\lambda}] = 0$. Now, by the construction of M', zM'=0 if $z\in Ann_{Z(\mathfrak{g})}(\mathbb{V}(M))$. So, if $zM=z(M/M')\subset M$ is nonzero, it contains a simple submodule not isomorphic to $L_{w_0\lambda}$. This contradicts (*). It follows that $z \in Ann_{Z(\mathfrak{g})}(M)$; hence $\operatorname{Ann}_{Z(\mathfrak{g})}(\mathbb{V}(M)) \subseteq \operatorname{Ann}_{Z(\mathfrak{g})}(M)$.

Clearly, $Ann_{Z(q)}(M) \subseteq Ann_{Z(q)}(T(M))$ and we conclude that $Ann_{Z(q)}(\mathbb{V}(M)) \subseteq$ $Ann_{Z(\mathfrak{g})}(T(M))$. Hence, T(M) is a $C \cong Z(\mathfrak{g})/J$ -module.

(b)
$$C \cong T(P_{w_0\lambda})$$
 as C- (or $Z(\mathfrak{g})$ -) modules.

We first prove that $T(P_{w_0\lambda})$ is cyclic over $Z(\mathfrak{g})$. The support of the $Z(\mathfrak{g})$ -module $T(P_{w_0\lambda})$ is the single maximal ideal Θ_{λ} . By Nakayama's lemma, $T(P_{w_0\lambda})$ is cyclic if and only if dim $T(P_{w_0\lambda})/\Theta_{\lambda}T(P_{w_0\lambda}) = 1$. We have

$$\begin{split} \dim T(P_{w_0\lambda})/\Theta_{\lambda}T(P_{w_0\lambda}) &= \dim T(P_{w_0\lambda}/\Theta_{\lambda}P_{w_0\lambda}) = \dim \mathbb{V}(P_{w_0\lambda}/\Theta_{\lambda}P_{w_0\lambda}) \\ &= \dim \mathbb{V}(P_{w_0\lambda})/\Theta_{\lambda}\mathbb{V}(P_{w_0\lambda}) = \dim C/\Theta_{\lambda}C = 1, \end{split}$$

where the first and third equalities follow from (3), the second from (1'), and the last equality follows because C is cyclic over Z(g).

Choosing a generator of $T(P_{w_0\lambda})$, we get a surjective $Z(\mathfrak{g})$ -linear map $Z(\mathfrak{g}) \to T(P_{w_0\lambda})$. By (a), the kernel of this map contains J. Hence we get the surjection

$$C \to T(P_{w_0\lambda}),$$

which moreover is an isomorphism because dim $T(P_{w_0\lambda}) = \dim C$, by (1').

(c) Consider the diagram of morphisms of functors

where π_T and π_V are the morphisms defined by T and V respectively, and α is defined by the isomorphism $\mathbb{V}(P_{w_0\lambda}) \cong \mathsf{T}(P_{w_0\lambda})$ in (b). We shall prove that all these morphisms are isomorphisms. Then it follows that $\mathbb{V}(\cdot)^* \cong \mathsf{T}(\cdot)^*$ and so $\mathbb{V} \cong \mathsf{T}$.

- (d) It is clear that α is an isomorphism.
- (e) $\pi_{\mathbb{V}}$ is an isomorphism. (Soergel [12], part of the proof of Struktursatz 9.)
- (f) π_T is an isomorphism. (The proof we give here is identical with Soergel's proof for (e), with V replaced by T.)

Let $M \in \mathcal{O}_{\lambda}$. We must prove that $\pi_{\mathsf{T}}(M)$ is an isomorphism. By definition, $\pi_{\mathsf{T}}(M)(\varphi) =$ $T(\phi)$, for $\phi \in Hom_{\mathfrak{g}}(M, P_{w_0\lambda})$. Assume $\phi \neq 0$. Then $Im \phi$ is a nonzero submodule of $P_{w_0\lambda}$. Since $P_{w_0\lambda}$ admits a Verma flag, $[\operatorname{Im} \varphi : L_{w_0\lambda}] \neq 0$. Hence, by (1'), $T(\operatorname{Im} \varphi) \neq 0$. The exactness of T implies Im $T(\phi) = T(\text{Im }\phi)$ and we conclude that $T(\phi) \neq 0$. This proves $\pi_T(M)$ is injective.

To see that $\pi_T(M)$ is also surjective, we only have to show that both terms to the left in the diagram in (c) have the same dimension. It suffices to do this when M is simple, because $\operatorname{Hom}_{\mathfrak{g}}(\cdot, P_{w_0\lambda})$ and $\operatorname{Hom}_{\mathcal{C}}(\mathsf{T}(\cdot), \mathsf{T}(P_{w_0\lambda}))$ are exact functors. The first functor is exact because $P_{w_0\lambda}$ is an injective object in \mathcal{O} , [7]; the second because $T(P_{w_0\lambda}) \cong C$ is an injective C-module and T is exact.

When $M = L_{w\lambda}$, $w \neq w_0$, T(M) = 0, and so the upper term is zero; hence the lower term is zero by the injectivity just established.

When $M = L_{w_0\lambda}$, the lower term is isomorphic to

$$\operatorname{Hom}_{\mathfrak{g}}(L_{w_0\lambda}, \{v \in P_{w_0\lambda}; \Theta_{\lambda}v = 0\}),$$

because $\Theta_{\lambda}L_{w_0\lambda}=0$. However, $\{\nu\in P_{w_0\lambda};\Theta_{\lambda}\nu=0\}=M_{\lambda}$ ([12], Lemma 7) and $\dim \operatorname{Hom}_{\mathfrak{g}}(L_{w_0\lambda},\ M_{\lambda})=1$ by Verma's theorem; the lower term is one-dimensional. From (3) it follows that the upper term is isomorphic to

$$\begin{split} \operatorname{Hom}_{\mathbb{C}}(\mathsf{T}(\mathsf{L}_{w_0\lambda}), \, \{\nu \in \mathsf{T}(\mathsf{P}_{w_0\lambda}); \Theta_{\lambda}\nu = 0\}) & \cong \operatorname{Hom}_{\mathbb{C}}(\mathsf{T}(\mathsf{L}_{w_0\lambda}), \, \mathsf{T}(\{\nu \in \mathsf{P}_{w_0\lambda}; \Theta_{\lambda}\nu = 0\})) \\ & \cong \operatorname{Hom}_{\mathbb{C}}(\mathsf{T}(\mathsf{L}_{w_0\lambda}), \, \mathsf{T}(\mathsf{M}_{\lambda})) \cong \operatorname{Hom}_{\mathbb{C}}(\mathsf{C}, \, \mathsf{C}), \end{split}$$

and this space is also one-dimensional. (Here $C = C/C_+$ is the trivial C-module.)

6 Multiplicities of standard Whittaker modules

Let η be a character on \mathfrak{n}_+ . Put $B^1 := \{\alpha \in B; \, \eta(X_\alpha) \neq 0\}$ and $B^2 := \{\alpha \in B; \, \eta(X_\alpha) = 0\}$. Let \mathfrak{q}^i , i=1,2, be the Lie algebra generated by $X_{\alpha}, X_{-\alpha}, \alpha \in B^i$. It is clear that \mathfrak{g}^i is semisimple, and it has the triangular decomposition

$$\mathfrak{g}^{\mathfrak{i}} = \mathfrak{n}^{\mathfrak{i}}_{+} \oplus \mathfrak{h}^{\mathfrak{i}} \oplus \mathfrak{n}^{\mathfrak{i}}_{-}$$

where $\mathfrak{n}_+^i = \mathfrak{n}_+ \cap \mathfrak{g}^i$, $\mathfrak{h}^i = \mathfrak{h} \cap \mathfrak{g}^i$, and $\mathfrak{n}_-^i = \mathfrak{n}_- \cap \mathfrak{g}^i$. The Weyl group $W_i = W(\mathfrak{g}^i, \mathfrak{h}^i)$ is identified with the subgroup of W generated by the reflections \mathfrak{s}_{α} , $\alpha \in B_i$.

The category Ω_{η} contains certain standard modules $M(\chi,\eta), \chi \in \mathfrak{h}^*$, constructed as follows ([9], [11]): Denote by \mathfrak{p}_{η} the parabolic subalgebra $\mathfrak{n}^1_- \oplus \mathfrak{n}_+ \oplus \mathfrak{h}$ and put $\mathfrak{g}_{\eta} := \mathfrak{n}^1_- \oplus \mathfrak{n}^1_+ \oplus \mathfrak{h}$. Thus \mathfrak{g}_{η} is reductive. Denote by ξ^{\sharp}_{η} : $Z(\mathfrak{g}_{\eta}) \to S(\mathfrak{h})$ the Harish-Chandra homomorphism of $U(\mathfrak{g}_{\eta})$ normalized by $\xi^{\sharp}_{\eta}(z) - z \in U(\mathfrak{g}_{\eta})\mathfrak{n}^1_+$. It induces on the maximal ideals a map $\xi_{\eta} \colon \mathfrak{h}^* \to MaxZ(\mathfrak{g}_{\eta})$. Let \mathbf{C}_{η_1} be the one-dimensional representation of \mathfrak{n}^1_+ defined by $\mathfrak{\eta}_1$ and put

$$Y(\chi,\eta):=(U(\mathfrak{g}_\eta)/\xi_\eta(\chi-\rho)U(\mathfrak{g}_\eta))\otimes_{U(\mathfrak{n}^1_+)}\textbf{C}_{\eta_1}.$$

Then $Y(\chi,\eta) \in U(\mathfrak{g}_{\eta})$ — mod, but the first projection $\mathfrak{p}_{\eta} = \mathfrak{g}_{\eta} \oplus (\mathfrak{n}_{+}^{2} + [\mathfrak{n}_{+}^{1},\mathfrak{n}_{+}^{2}]) \to \mathfrak{g}_{\eta}$ defines an $U(\mathfrak{p}_{\eta})$ -module structure on $Y(\chi,\eta)$. Now put

$$M(\chi, \eta) := U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_n)} Y(\chi, \eta).$$

Note that we have $M(\chi, 0) = M_{\chi}$. $M(\chi, \eta)$ is irreducible when η is regular [10].

Proposition 6.1 ([9] and [11]). (1) $M(\chi, \eta) \cong M(\mu, \eta)$ if and only if $W^1\chi = W^1\mu$.

(2) $M(\chi,\eta)$ has a unique simple quotient $L(\chi,\eta)$. $L(\chi,\eta)\cong L(\mu,\eta)$ if and only if $W^1\chi=W^1\mu$.

(3) Each simple object in
$$\Omega_{\eta}$$
 is isomorphic to $L(\chi, \eta)$ for some χ .

Denote by $[M(\chi, \eta) : L(\mu, \eta)]$ the multiplicity of $L(\mu, \eta)$ in $M(\chi, \eta)$.

Theorem 6.2. Let $M(\chi, \eta)$ and $L(\mu, \eta)$ be given. If $\mu \in W\chi$ and there exists $w \in W^1$ such that $(w\mu)^1$ is anti-dominant and $\chi > w\mu$, then

$$[M(\chi, \eta) : L(\mu, \eta)] = [M(\chi) : L(\psi \mu)].$$

Otherwise
$$[M(\chi, \eta) : L(\mu, \eta)] = 0$$
.

This multiplicity problem was formulated and partially solved in [11]. Since our solution is given in terms of some multiplicities in the category \mathcal{O} , the multiplicity $[M(\chi,\eta):L(\mu,\eta)]$ can be calculated using the Kazhdan-Lusztig algorithm. The proof of Theorem 6.2 is postponed until the end of this section.

Before we start to analyze the functor $\overline{\Gamma}_{\eta}$, we establish some properties of \overline{Wh}_{η} . Let us introduce some more notation. For $\chi \in \mathfrak{h}^*$, put $\chi^i := \chi | \mathfrak{h}^i \in \mathfrak{h}^{i^*}$. Put $\eta^i := \eta | \mathfrak{n}^i_+$. Thus, η^1 is regular and $\eta^2 = 0$. Let

$$Wh_{n^i}(M) := \{ m \in M; Ker \eta^i \cdot m = 0 \},\$$

$$\overline{Wh}_{n^i}(M) := \{ m \in \overline{M}; \operatorname{Ker} \eta^i \cdot m = 0 \}$$

for $M \in U(\mathfrak{g}^i)$ -mod and $M \in \mathfrak{O}(\mathfrak{g}^i)$ respectively. The functors Γ_{η^i} and $\overline{\Gamma}_{\eta^i}$ are analogously defined. As usual, $\tilde{\eta}$ denotes the character on \mathfrak{n}_- defined by $\tilde{\eta}(X_{-\alpha}) = \eta(X_{\alpha})$; We similarly define $\tilde{\eta}^i$ on \mathfrak{n}_-^i .

Lemma 6.3. Let $L \in \mathcal{O}$ be simple. Then dim $\overline{Wh}_{\eta}(L) \leq 1$.

Proof. We have $\overline{Wh}_{\eta}(L) = \{ \varphi \in L^{*'}; \ \varphi | \ Ker \ \tilde{\eta} \cdot L^* = 0 \} = \{ \varphi \in L'; \ \varphi | \ Ker \ \tilde{\eta} \cdot L = 0 \}, \text{ since simple modules are self-dual. This gives } \dim \overline{Wh}_{\eta}(L) = \operatorname{codim}_{L}(Ker \ \tilde{\eta} \cdot L). \text{ Since } L \text{ is isomorphic to a quotient of } U(\mathfrak{n}_{-}) \text{ and } \ker \tilde{\eta} \subset U(\mathfrak{n}_{-}) \text{ is an ideal of codimension one, we get } \dim \overline{Wh}_{\eta}(L) \in \{0, 1\}.$

Proposition 6.4. (1) χ^1 anti-dominant implies dim $\overline{Wh}_n(L_\chi) = 1$.

(2)
$$\chi^1$$
 not anti-dominant implies $\overline{Wh}_n(L_x) = 0$.

Proof. (1): Let μ be the canonical generator of the $U(\mathfrak{g})$ Verma module M_{χ} . Then $U(\mathfrak{g}^1) \cdot \mu$ is isomorphic to the $U(\mathfrak{g}^1)$ Verma module M_{χ^1} , which by assumption is simple. Let

$$0 \neq \nu = \prod \nu^{\psi} \in \overline{Wh}_{n^1}(M_{\chi^1})$$

(such a ν exists by Proposition 4.5). Let φ' be a maximal element in the set $\{\psi \in \mathfrak{h}^{1*}; \, \mathfrak{n}^1_+ \cdot \nu^\psi \neq 0\}$, with respect to the ordering > on \mathfrak{h}^{1*} . Then choose $\alpha \in B^1$ such that $X_\alpha \cdot \nu^{\varphi'} \neq 0$, and let $\varphi = \varphi' + \alpha$. Then $\nu^\varphi = X_\alpha \cdot \nu^{\varphi'}$ is a primitive vector. Since each primitive vector in M_{χ^1} belongs to $M_{\chi^1}^{\chi^1-\rho^1}$, we conclude that $\varphi = \chi^1 - \rho^1$; hence $\nu^{\chi^1-\rho^1} \neq 0$.

Since $M_{\chi^1}=U(\mathfrak{n}^1_-)\cdot \mu$ and $[X_\alpha,\,U(\mathfrak{n}^1_-)]=0$, for each $\alpha\in B^2$, we see that $X_\alpha\cdot \nu=0$ for such α , and so ν belongs to $\overline{Wh}_\eta(M_x)$. It follows that $\nu^{\chi-\rho}\neq 0$, hence the image of ν in $\overline{Wh}_\eta(L_\chi)$ is nonzero. This proves $\dim\overline{Wh}_\eta(L_\chi)=1$.

(2): We have $\overline{Wh}_{\eta}(L_{\chi})=\{\varphi\in L'_{\chi};\,\varphi|\ Ker\,\tilde{\eta}\cdot L_{\chi}=0\}$. Therefore it suffices to show that $Ker\,\tilde{\eta}\cdot L_{\chi}=L_{\chi}$. By assumption, the $U(\mathfrak{g}^1)$ Verma module M_{χ^1} (defined in the proof of (1)) is not simple. Hence we can find a proper Verma submodule M_{ψ^1} of M_{χ^1} . Let $P\in U(\mathfrak{n}^1_-)$ be such that $P\mu$ generates M_{ψ^1} over $U(\mathfrak{n}^1_-)$. Then Corollary 4.6 implies $\tilde{\eta}^1(P)\neq 0$.

Let $\overline{\mu}$ be the image of μ in L_χ . It is clear that $P\mu$ is a primitive vector in M_χ , not proportional to μ , and we conclude that $P\overline{\mu}=0$. Hence, $\overline{\mu}=(1-P/\tilde{\eta}^1(P))\overline{\mu}=(1-P/\tilde{\eta}(P))\overline{\mu}\in Ker\,\tilde{\eta}\cdot L_\chi$. Hence, $Ker\,\tilde{\eta}\cdot L_\chi=L_\chi$.

Recall that $\overline{\Gamma}_{\eta} \colon M \rightsquigarrow \{\mathfrak{m} \in \overline{M}; \exists k : (Ker \eta)^k \cdot \mathfrak{m} = 0\}$ defined an exact functor from \mathfrak{O} to Ω_{η} . The following lemma is crucial.

Lemma 6.5.
$$\overline{\Gamma}_{\eta}(M_{\phi}) = U(\mathfrak{g}) \cdot \overline{Wh}_{\eta}(M_{\phi})$$
 for each Verma module M_{ϕ} .

Proof. (a) Let Q_{++}^i be the semigroup generated by $B^i, i=1,2.$ For $\omega \in Q_{++}^2,$ put

$$M[\omega] := \sum_{\sigma \in Q^1_{++}} M^{\varphi - \rho - \sigma - \omega}.$$

Put $\mathcal{R}:=U(\mathfrak{n}^2_-\oplus[\mathfrak{n}^2_-,\mathfrak{n}^1_-])$. The Lie algebra \mathfrak{h} acts on \mathcal{R} by means of the adjoint representation, and so \mathcal{R} decomposes into a direct sum $\sum_{\chi\in\mathfrak{h}^*}\mathcal{R}^\chi$ of \mathfrak{h} weight spaces. Let

 $\tilde{\mathfrak{h}}:=\{H\in\mathfrak{h};\ \alpha(H)=0,\ \forall\alpha\in B^1\}.$ Hence \mathcal{R} decomposes into a direct sum $\sum_{\chi\in\tilde{\mathfrak{h}}^*}\mathcal{R}^\chi$ of $\tilde{\mathfrak{h}}$ weight spaces. The reader can verify that for each $\chi\in\tilde{\mathfrak{h}}^*$, \mathcal{R}^χ is finite dimensional.

The Poincaré-Birkhoff-Witt theorem together with the fact that M is cyclic over $U(\mathfrak{n}_-)$ shows that for each $\omega \in Q^2_{++}$,

$$\mathcal{R}^{(\omega|\tilde{h})} \cdot M[0] = M[\omega]. \tag{6.1}$$

Since M[0] is cyclic over $U(\mathfrak{g}^1)$, 6.1 shows that M[ω] is finitely generated over $U(\mathfrak{g}^1)$. It is clear that M[ω] is locally finite over \mathfrak{n}^1_+ and \mathfrak{h}^1 semisimple. Thus M[ω] $\in \mathcal{O}(\mathfrak{g}^1)$.

(b) From Lemma 3.2 we get $\Gamma_{\eta_1}(\overline{M[\omega]}) \in \Omega_{\eta_1}$. Since η_1 is regular, Proposition 4.3 shows that

$$\Gamma_{\eta_1}(\overline{M[\omega]}) = U(\mathfrak{g}^1) \cdot Wh_{\eta_1}(\overline{M[\omega]}). \tag{6.2}$$

The fact that $\mathcal{R}^{(\omega|\tilde{h})}$ is finite-dimensional and 6.1 shows

$$\mathcal{R}^{(\omega|\tilde{h})} \cdot \overline{M[0]} = \overline{M[\omega]}. \tag{6.3}$$

Also, the Poincaré-Birkhoff-Witt theorem together with the fact that M is $U(\mathfrak{n}_{-})$ -free implies that the multiplication map

$$\mathcal{R}^{(\omega|\tilde{h})} \otimes_{\mathbf{G}} \overline{M[0]} \to \mathcal{R}^{(\omega|\tilde{h})} \cdot \overline{M[0]}$$

$$(6.4)$$

is an isomorphism.

(c) We prove $\Gamma_{\eta_1}(\overline{M[\omega]}) \subseteq \mathcal{R}^{(\omega|\tilde{h})} \cdot \Gamma_{\eta_1}(\overline{M[0]})$. Let $\nu \in \Gamma_{\eta_1}(\overline{M[\omega]})$. By 6.3 we can write $\nu = \sum_{i=1}^k P_i \nu_i$, for some $\nu_i \in \overline{M[0]}$, and the P_i 's are linearly independent elements of $\mathcal{R}^{(\omega|\tilde{h})}$. We must prove that each ν_i is in $\Gamma_{\eta_1}(\overline{M[0]})$, i.e., each ν_i is killed by some power of $X_\alpha - \eta(X_\alpha)$ for each $\alpha \in B^1$.

Fix $\alpha \in B^1$ and note that $\mathcal{R}^{(\omega|\tilde{h})}$ is $ad_{X_{\alpha}}$ -stable and that $ad_{X_{\alpha}}$ is a nilpotent operator on $\mathcal{R}^{(\omega|\tilde{h})}$. Thus we can choose $i_0 \in \{1, \dots, k\}$ such that

$$V:=\text{span}\{\text{ad}^t_{X_\alpha}(P_i);\, i=1,\ldots,k, t\geq 1\}\subset \mathcal{R}^{(\omega|\tilde{h})}$$

does not contain P_{i_0} . We have $(X_{\alpha} - \eta(X_{\alpha}))^n v = 0$ for some n. But

$$(X_{\alpha}-\eta(X_{\alpha}))^{n}\nu\in P_{i_{0}}(X_{\alpha}-\eta(X_{\alpha}))^{n}\nu_{i_{0}}+V\cdot\overline{M[0]}.$$

Equation 6.4 now implies $(X_{\alpha} - \eta(X_{\alpha}))^n v_{i_0} = 0$.

It follows that $P_{i_0}\nu_{i_0}$ is killed by some power of $X_\alpha-\eta(X_\alpha)$ and we conclude that $\sum_{i=1,i\neq i_0}^k P_i\nu_i$ is annihilated by some power of $X_\alpha-\eta(X_\alpha)$. An induction over k now shows that each ν_i is killed by some power of $X_\alpha-\eta(X_\alpha)$.

(d) We have $\overline{M}=\prod_{\omega\in Q_{++}^2}\overline{M[\omega]},$ so $\overline{\Gamma}_{\eta}(M)=\Gamma_{\eta}\left(\prod_{\omega\in Q_{++}^2}\overline{M[\omega]}\right)$. It is not hard to check that in fact

$$\overline{\Gamma}_{\eta}(M) = \Gamma_{\eta} \left(\bigoplus_{\omega \in Q_{++}^2} \overline{M[\omega]} \right) = \Gamma_{\eta_1} \left(\bigoplus_{\omega \in Q_{++}^2} \overline{M[\omega]} \right).$$

Each $\overline{M[\omega]}$ is $\text{Ker }\eta_1\text{-stable},$ so $\overline{\Gamma}_\eta(M)=\sum_{\omega\in Q_{++}^2}\Gamma_{\eta_1}(\overline{M[\omega]}).$ By (c) and 6.2 we have

$$\Gamma_{\eta_1}(\overline{M[\omega]}) \subseteq U(\mathfrak{g}) \cdot \Gamma_{\eta_1}(\overline{M[0]}) = U(\mathfrak{g}) \cdot Wh_{\eta_1}(\overline{M[0]}).$$

Noting that $Wh_{\eta_1}(\overline{M[0]}) \subseteq \overline{Wh}_{\eta}(M)$, we get $\overline{\Gamma}_{\eta}(M) \subseteq U(\mathfrak{g}) \cdot \overline{Wh}_{\eta}(M)$.

Lemma 6.6. Let $L_{\varphi} \in \mathcal{O}$ be simple and assume that φ^1 is anti-dominant. Then $\overline{\Gamma}_{\eta}(L_{\varphi})$ is simple.

Proof. (a) $\overline{\Gamma}_{\eta}(L_{\varphi}) = U(\mathfrak{g}) \cdot \overline{Wh}_{\eta}(L_{\varphi})$: the right hand side is nonzero by Proposition 6.4, and $\overline{\Gamma}_{\eta}(M_{\varphi}) = U(\mathfrak{g}) \cdot \overline{Wh}_{\eta}(M_{\varphi})$ by Lemma 6.5. The surjection $M_{\varphi} \twoheadrightarrow L_{\varphi}$ together with the exactness of $\overline{\Gamma}_{\eta}$ now proves the assertion.

(b) Let V be a nonzero submodule of $\overline{\Gamma}_{\eta}(L_{\varphi})$. Each element in V is annihilated by a power of Ker η , so it is clear that V contains a nonzero Whittaker vector ν . But according to Proposition 6.4, $\overline{Wh}_{\eta}(L_{\varphi})$ is one-dimensional, so $\overline{Wh}_{\eta}(L_{\varphi}) = \mathbf{C} \cdot \nu$. We conclude from (a) that $\overline{\Gamma}_{\eta}(L_{\varphi}) = U(\mathfrak{g}) \cdot \nu$. Thus $V = \overline{\Gamma}_{\eta}(L_{\varphi})$ and $\overline{\Gamma}_{\eta}(L_{\varphi})$ is simple.

Lemma 6.7. Each simple object in Ω_{η} is isomorphic to $\overline{\Gamma}_{\eta}(L_{\varphi})$ for some φ such that φ^1 is anti-dominant. If φ^1 and ψ^1 are anti-dominant, then $\overline{\Gamma}_{\eta}(L_{\varphi}) \cong \overline{\Gamma}_{\eta}(L_{\psi})$ if and only if $W^1 \varphi = W^1 \psi$.

Proof. (a) By Dixmier's theorem, each simple $U(\mathfrak{g})$ -module admits a central character and $\overline{\Gamma}_{\eta}$ preserves central character. So let us fix a central character $\Theta = \Theta_{\chi}$ and prove the assertions in the lemma with Ω_{η} replaced by $\Omega_{\eta,\Theta}$.

Denote by $n:=n_{\eta,\Theta}$ the number of isomorphism classes of simple modules in $\Omega_{\eta,\Theta}$. By Proposition 6.1 we have $n=\text{Card}\,W\chi/W^1$. Noting that each W^1 -orbit in $W\chi$ contains an element $w\chi$ such that $(w\chi)^1$ is anti-dominant, we conclude that

$$n=\text{Card}\{w\chi;\,w\in W,(w\chi)^1\text{ is anti-dominant }\}/W^1.$$

Recalling that $\overline{\Gamma}_{\eta}(L_{\varphi})$ is simple when φ^1 is anti-dominant (Lemma 6.6), we see—counting elements—that in order to prove the lemma it suffices to show that $\overline{\Gamma}_{\eta}(L_{\varphi}) \cong \overline{\Gamma}_{\eta}(L_{\psi})$ implies $W^1 \varphi = W^1 \psi$.

(b) Put $\tilde{\mathfrak{h}}=\{H\in\mathfrak{h};\ \alpha(H)=0,\ \forall\ \alpha\in B^1\}$. Let μ_{φ} be the canonical generator of L_{φ} . From the proof of Proposition 6.4.1 we have $\overline{Wh}_{\eta}(L_{\varphi})\subset\overline{U(\mathfrak{g}^1)\cdot\mu_{\varphi}}$. Since $[\tilde{\mathfrak{h}},U(\mathfrak{g}^1)]=0$, we get $(H-(\varphi-\rho)(H))\overline{Wh}_{\eta}(L_{\varphi})=0, \forall H\in\tilde{\mathfrak{h}}$.

- (c) The $U(\mathfrak{g}^1)$ -module $U(\mathfrak{g}^1) \cdot \mu_{\varphi}$ is isomorphic to the Verma module M_{φ^1} . We know that $\overline{Wh}_{\eta}(L_{\varphi}) \subset \overline{U(\mathfrak{g}^1) \cdot \mu_{\varphi}}$. This clearly implies $Ann_{Z(\mathfrak{g}^1)}(M_{\varphi^1}) \subseteq Ann_{Z(\mathfrak{g}^1)}(\overline{Wh}_{\eta}(L_{\varphi}))$. Since $Ann_{Z(\mathfrak{g}^1)}(M_{\varphi^1})$ is a maximal ideal in $Z(\mathfrak{g}^1)$, we conclude that $Ann_{Z(\mathfrak{g}^1)}(M_{\varphi^1}) = Ann_{Z(\mathfrak{g}^1)}(\overline{Wh}_{\eta}(L_{\varphi}))$.
- (d) Assume that $\overline{\Gamma}_{\eta}(L_{\varphi}) \cong \overline{\Gamma}_{\eta}(L_{\psi})$. This isomorphism induces the bijection $\overline{Wh}_{\eta}(L_{\varphi}) \cong \overline{Wh}_{\eta}(L_{\psi})$. Hence
 - (1) $\operatorname{Ann}_{Z(\mathfrak{q}^1)}(M_{\Phi^1}) = \operatorname{Ann}_{Z(\mathfrak{q}^1)}(M_{\psi^1})$ and
 - (2) $\phi |\tilde{\mathfrak{h}} = \psi |\tilde{\mathfrak{h}}$

by (b) and (c) respectively. The Harish-Chandra theorem and (1) give the existence of an element $w \in W^1$ such that $w\phi | \mathfrak{h}^1 = \psi | \mathfrak{h}^1$. Combined with (2), noting that W^1 acts trivially on $\tilde{\mathfrak{h}}$ and that $\mathfrak{h} = \tilde{\mathfrak{h}} \oplus \mathfrak{h}^1$, we conclude $w\phi = \psi$.

Lemma 6.8. Let E be a finite dimensional \mathfrak{g} -module and let P(E) denote its multiset of weights. There exists a U(\mathfrak{g})-module filtration of E \otimes_C M(φ , η) with subquotients isomorphic to M(φ + ν_i , η) for $\nu_i \in P(E)$.

Proof. We have

$$E \otimes_{\mathbf{C}} M(\phi, \eta) \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_{\eta})} (E \otimes_{\mathbf{C}} Y(\phi, \eta)) \tag{6.5}$$

(where the $U(\mathfrak{p}_{\eta})$ -module structure on $E \otimes_C Y(\chi, \eta)$ is given by the projection $\mathfrak{p}_{\eta} \to \mathfrak{g}_{\eta}$). To prove 6.5 we just have to note that for any $L \in U(\mathfrak{g}) - \text{mod}$,

$$\begin{split} \operatorname{Hom}_{U(\mathfrak{g})}(E\otimes_{C}M(\varphi,\eta),\ L) &= \operatorname{Hom}_{U(\mathfrak{g})}(M(\varphi,\eta),\ \operatorname{Hom}_{C}(E,\ L)) \\ &= \operatorname{Hom}_{U(\mathfrak{p}_{\eta})}(Y(\varphi,\eta),\ \operatorname{Hom}_{C}(E,\ L)) \\ &= \operatorname{Hom}_{U(\mathfrak{p}_{\eta})}(E\otimes_{C}Y(\varphi,\eta),\ L) \\ &= \operatorname{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g})\otimes_{U(\mathfrak{p}_{\eta})}E\otimes_{C}Y(\varphi,\eta),\ L). \end{split}$$

Consider the Verma module $M_{\varphi^1}\in \mathcal{O}(\mathfrak{g}^1)$. Choose $w\in W^1$ such that $w\varphi^1$ is anti-dominant. Then $\overline{\Gamma}_{\eta^1}(M_{\varphi^1})=\overline{\Gamma}_{\eta^1}(M_{w\varphi^1})$ by Proposition 6.1. Thus $\overline{\Gamma}_{\eta^1}(M_{\varphi^1})$ is simple (over $U(\mathfrak{g}^1)$) by Lemma 6.6. Let $\xi_1=\xi_\eta|\mathfrak{h}^{1*}$ be the Harish-Chandra homomorphism from $\mathfrak{h}^{1*}\to Max\,Z(\mathfrak{g}^1)$. Then

$$Y(\phi, \eta)|_{\mathfrak{q}^1} = U(\mathfrak{q}^1)/(\xi_1(\phi^1 - \rho^1)) \otimes_{U(\eta^1)} \mathbf{C}_{\eta^1}$$

is simple by Proposition 4.3. Since $\overline{\Gamma}_{\eta^1}(M_{\varphi^1})$ and $Y(\varphi,\eta)|\mathfrak{g}^1$ both have central character $\xi_1(\varphi^1)$, we conclude again from Proposition 4.3 that $\overline{\Gamma}_{\eta^1}(M_{\varphi^1})\cong Y(\varphi,\eta)|\mathfrak{g}^1$. Let M_{φ} be the $U(\mathfrak{g}_{\eta})$ Verma module whose restriction to \mathfrak{g}^1 is M_{φ^1} where the action of $H\in\mathfrak{h}$ on the highest weight space $M_{\varphi^1}^{\varphi^1-\rho}$ is multiplication by the scalar $(\varphi-\rho)(H)$. Considering $\overline{\Gamma}_{\eta^1}$ as a functor on $U(\mathfrak{g}_{\eta})-\text{mod}$, it is now clear that

$$\overline{\Gamma}_{n^1}(M_{\phi}) = Y(\phi, \eta).$$

It follows from [6, Lemma 7.6.14] that $E \otimes M_{\varphi}$ has a filtration F_i of $U(\mathfrak{g}_{\eta})$ modules such that $F_i/F_{i-1} \cong M(\phi + \nu_i)$, $\nu_i \in P(E)$. One checks easily that $\overline{\Gamma}_{n^1}(E \otimes_C M_\phi) - E \otimes_C \overline{\Gamma}_{n^1}(M_\phi)$. Thus $E \otimes_C Y(\phi, \eta)$ has a filtration $V_i := \overline{\Gamma}_{\eta}(F_i)$ of $U(\mathfrak{g}_{\eta})$ -modules such that

$$V_i/V_{i-1} \cong Y(\phi + \nu_i, \eta), \ \nu_i \in P(E).$$

Since $U(\mathfrak{g})$ is a flat (free) $U(\mathfrak{p}_n)$ -module, the lemma now follows from 6.5.

Proposition 6.9. $(1)^2 \overline{\Gamma}_n(M_{\phi}) = M(\phi, \eta).$

(2)
$$\overline{\Gamma}_{\eta}(L_{\varphi}) = L(\varphi, \eta)$$
 if φ^1 is anti-dominant.

(3)
$$\overline{\Gamma}_n(L_{\phi}) = 0$$
 if ϕ^1 is not anti-dominant.

Proof. (1): (a) Assume that φ is anti-dominant. Then $M_{\varphi}=L_{\varphi}$ is simple and also $M(\varphi,\eta)$ is simple by [9]. We conclude from Lemma 6.7 that $M(\phi,\eta)\cong\overline{\Gamma}_{\eta}(L_{\psi})$ for some weight ψ such that ψ^1 is anti-dominant. This isomorphism induces the bijection

$$Wh_{\eta}(M(\phi, \eta)) \cong \overline{Wh}_{\eta}(L_{\psi}).$$
 (6.6)

Let $\mu:=1\otimes 1\in M(\varphi,\eta)=U(\mathfrak{g})\otimes_{U(\mathfrak{p}_n)}Y(\chi,\eta).$ Then $\mu\in Wh_\eta(M(\varphi,\eta))$ and we see that

$$(\mathsf{H} - (\varphi - \rho)(\mathsf{H}))\mu = 0, \ \forall \mathsf{H} \in \tilde{\mathfrak{h}}$$

where $\tilde{\mathfrak{h}} := \{ H \in \mathfrak{h}; \ \alpha(H) = 0, \ \forall \ \alpha \in B^1 \}$, and

$$\operatorname{Ann}_{Z(\mathfrak{g}^1)}(\mu) = \operatorname{Ann}_{Z(\mathfrak{g}^1)}(M_{\phi^1}). \tag{6.8}$$

It was proved in (b) in the proof of Lemma 6.7 that $(H - (\psi - \rho)(H))\overline{Wh}_{\eta}(L_{\psi}) = 0, \forall H \in \tilde{\mathfrak{h}}.$ The bijection 6.6 and 6.7 imply

$$\phi|\tilde{\mathfrak{h}} \cong \psi|\tilde{\mathfrak{h}}. \tag{6.9}$$

In (c) in the proof of Lemma 6.7 we proved $\operatorname{Ann}_{Z(\mathfrak{q}^1)}(M_{\psi^1}) = \operatorname{Ann}_{Z(\mathfrak{q}^1)}(\overline{\operatorname{Wh}}_{\eta}(L_{\psi}))$. Thus 6.6 and 6.8 imply

$$Ann_{Z(\mathfrak{q}^1)}(\mathcal{M}_{\phi^1}) = Ann_{Z(\mathfrak{q}^1)}(\mathcal{M}_{\psi^1}). \tag{6.10}$$

The same argument as in (d) in the proof of Lemma 6.7 now shows that 6.9 and 6.10 imply $\psi \in W^1 \phi$. Hence by Lemma 6.7 $\overline{\Gamma}_{\eta}(L_{\psi}) \cong \overline{\Gamma}_{\eta}(L_{\phi})$, and since $\overline{\Gamma}_{\eta}(L_{\phi}) = \overline{\Gamma}_{\eta}(M_{\phi})$, it follows that $\overline{\Gamma}_{\eta}(M_{\phi}) \cong M(\phi, \eta)$.

²Soergel has already proved (1) in an unpublished manuscript. My proof of (1a) is new, but the idea to use translation functors in (1b) is taken from Soergel.

(b) Let $\phi \in \mathfrak{h}^*$ be arbitrary. By an induction starting with (a) we may assume that $\overline{\Gamma}_{\eta}(M_{\psi}) \cong M(\psi, \eta)$ for each $\psi < \phi$. If ϕ is anti-dominant, we are done by (a); so let us assume there is a reflection $s := s_{\alpha}$, $\alpha \in R^+$, such that $s\phi < \phi$. Let E be a finite dimensional irreducible \mathfrak{g} -module with highest weight $\phi - s\phi$. Denote by P(E) the multiset of weights of E. It is known ([6], Lemma 7.6.14) that there exists a filtration

$$E \otimes_{\mathbf{C}} M_{s\phi} = M_n \supset M_{n-1} \supset \cdots \supset M_0 = 0$$

such that $M_1 \cong M_{\phi}$, and $M_i/M_{i-1} \cong M_{s\phi+\nu_i}$ for $\nu_i \in P(E) \setminus \{\phi - s\phi\}, i \geq 2$.

 $Put\,M':=(E\otimes_{\textbf{C}}M_{s\varphi})/M_1 \text{ and } M_i':=M_i/M_1. \text{ Then } \overline{\Gamma}_{\eta}(M_i')/\overline{\Gamma}_{\eta}(M_{i-1}')\cong \overline{\Gamma}_{\eta}(M_i'/M_{i-1}')\cong \overline{\Gamma}_{\eta}(M_s\varphi+\nu_i)\cong M(s\varphi+\nu_i,\eta), \text{ where the last isomorphism is given by induction hypothesis, since } s\varphi+\nu_i<\varphi. \text{ This shows that }$

$$(\overline{\Gamma}_{\eta}(M')) = \sum_{\nu_{i} \in P(E) \setminus \{\phi - s\phi\}} (M(s\phi + \nu_{i}))$$
(6.11)

in the Grothendieck group $K(\Omega_{\eta})$. On the other hand, note that $\overline{\Gamma}_{\eta}(E \otimes_{\mathbf{C}} M_{s\varphi}) = E \otimes_{\mathbf{C}} \overline{\Gamma}_{\eta}(M_{s\varphi})$. By induction hypothesis the latter module is isomorphic to $E \otimes_{\mathbf{C}} M(s\varphi, \eta)$. Lemma 6.8 now gives

$$(\overline{\Gamma}_{\eta}(\mathsf{E} \otimes_{\mathsf{C}} \mathsf{M}_{s\varphi})) = \sum_{\nu_{i} \in \mathsf{P}(\mathsf{E})} (\mathsf{M}(s\varphi + \nu_{i})) \text{ in } \mathsf{K}(\Omega_{\eta}). \tag{6.12}$$

We have $(\overline{\Gamma}_{\eta}(M_{\varphi})) = (\overline{\Gamma}_{\eta}(E \otimes_{\mathbb{C}} M_{s\varphi})) - (\overline{\Gamma}_{\eta}(M'))$ in $K(\Omega_{\eta})$. Hence 6.11 and 6.12 imply

$$(M(\phi, \eta)) = (\overline{\Gamma}_{\eta}(M_{\phi})) \text{ in } K(\Omega_{\eta}). \tag{6.13}$$

We define a map $\pi\colon M(\varphi,\eta)\to \overline{\Gamma}_\eta(M_\varphi)$ as follows. Let $1\otimes 1$ be the canonical generator of $M(\varphi,\eta)$. Let ν be any nonzero element of $\overline{Wh}_{\eta_1}(M_\varphi[0])\subset \overline{Wh}_\eta(M_\varphi)$ —the space $M_\varphi[0]$ was defined in the proof of Lemma 6.5. We see that $\pi(1\otimes 1):=\nu$ gives us a well-defined homomorphism. The proof of Lemma 6.5 shows that $\overline{\Gamma}_\eta(M_\varphi)=U(\mathfrak{g})\cdot\overline{Wh}_{\eta_1}(M_\varphi[0])$. Moreover, since $M_\varphi[0]$ is a $U(\mathfrak{g}^1)$ Verma module, we have dim $\overline{Wh}_{\eta_1}(M_\varphi[0])=1$, by Proposition 4.5; thus $\overline{\Gamma}_\eta(M_\varphi)=U(\mathfrak{g})\cdot\nu$, and we conclude that π is surjective. 6.13 now shows that π is an isomorphism.

(2): By Lemma 6.6 we know that $\overline{\Gamma}_{\eta}(L_{\varphi})$ is simple; by exactness, $\overline{\Gamma}_{\eta}(L_{\varphi})$ is a quotient of $\overline{\Gamma}_{\eta}(M_{\varphi}) \cong M(\varphi, \eta)$; hence $\overline{\Gamma}_{\eta}(L_{\varphi})$ is isomorphic to the unique simple quotient $L(\varphi, \eta)$ of $M(\varphi, \eta)$.

(3): We know from Lemma 6.4 that $\overline{Wh}_{\eta}(L_{\varphi})=0$ in this case. This implies $\overline{\Gamma}_{\eta}(L_{\varphi})=0$.

Proof of Theorem 6.2. Since $\overline{\Gamma}_{\eta}$ is exact, it induces a homomorphism $K(0) \to K(\Omega_{\eta})$ between Grothendieck groups. By Proposition 6.9 we have the following equalities in $K(\Omega_n)$.

$$\begin{split} (M(\chi,\eta)) &= (\overline{\Gamma}_{\eta}(M_{\chi})) = \sum_{\lambda \in \mathfrak{h}^*} [M_{\chi} \colon \ L_{\lambda}] \cdot ((\overline{\Gamma}_{\eta}(L_{\lambda})) \\ &= \sum_{\lambda \in \mathfrak{h}^*, \lambda^1 \, \text{anti-dominant}} [M_{\chi} \colon \ L_{\lambda}] \cdot (L(\lambda,\eta)). \end{split}$$

Since $(L(\lambda, \eta)) = (L(\psi, \eta))$ if and only if $\lambda \in W^1 \psi$, we get

$$[M(\chi,\eta) \colon \ L(\mu,\eta)] = \sum_{w \in W^1, (w\mu)^1 \text{anti-dominant}} [M_\chi \colon \ L_{w\mu}].$$

Note that $[M_{\chi}:L_{w\mu}]\neq 0$ implies that w belongs to the integral Weyl group W_{χ} of χ . Clearly, the $W^1 \cap W_{\chi}$ -orbit of μ contains precisely one element $w\mu$ such that $(w\mu)^1$ is anti-dominant. Theorem 6.2 now follows easily.

Acknowledgments

I wish to thank Joseph Bernstein for introducing me to these questions and for his valuable advice. I thank Rikard Bögyad, Rolf Källström, and Boris Shapiro for fruitful discussions and for reading the manuscript. Parts of the present paper were written during my visit to the University of Freiburg from September to November 1996. I was received there with much hospitality and kindness; in particular, my thanks go to Wolfgang Soergel for his support, enthusiasm, and for generously sharing his ideas.

References

- [1] H. Bass, Algebraic K-theory, W.A. Benjamin, Inc., New York, 1968.
- [2] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527.
- [3] J. Bernstein, "Trace in Categories" in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92, Birkhäuser Boston, Boston, 1990, 417-423.
- [4] J. Bernstein, and S. I. Gelfand, Tensor products of finite and infinite-dimensional representations of semi-simple Lie algebras, Compositio Math. 41 (1980), 245-285.
- [5] J. Bernstein, I. M. Gelfand, and S. I. Gelfand, A certain category of g-modules, Functional Anal. Appl. 10 (1976), 87-92.
- [6] J. Dixmier, Enveloping Algebras, North-Holland Publishing Co., Amsterdam, 1977.
- [7] R. Irving. Projective modules in the category (): self-duality, Trans. Amer. Math. Soc. 291 (1985), 701-732.
- [8] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.
- [9] E. McDowell, On modules induced from Whittaker-modules, J. Algebra 96 (1985), 161-177.

172 Erik Backelin

- [10] D. Miličić and W. Soergel, Twisted Harish-Chandra sheaves and Whittaker modules, preprint.
- [11] ——, The composition series of modules induced from Whittaker modules, to appear in Comment. Math. Helv.
- [12] W. Soergel, Kategory O, perverse Garben und Moduln über den Koinvarianten Algebra zur Weylgruppe, Amer. Math. Soc. 3 (1990), 421–445.
- [13] N. R. Wallach, "Lie algebra cohomology and holomorphic continuation of generalized jacquet integrals" in *Representations of Lie Groups*, Adv. Stud. in Pure Math. 14 (1988), 123–151.

Department of Mathematics, Stockholm University, S-106 91 Stockholm, Sweden; erikb@matematik.su.se