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Representation of the Category O

in Whittaker Categories

Erik Backelin

1 Introduction

Let g = n��h�n+ be a complex semisimple Lie algebra and let ⌘: U(n+) ! C be an algebra

homomorphism. Kostant [8] studied the invariants Wh⌘(M) := {m 2 M; Ker⌘ · m = 0} in a

g-module M. We call these invariants Whittaker vectors.

If a g-module M is the direct sum of its weight spaces with respect to h (and ⌘|n+ 6=
0), then M contains no nonzero Whittaker vectors. If M is an object of the category O of

Bernstein-Gelfand-Gelfand, one should therefore consider the set Wh⌘(M) of Whittaker

vectors in the completion (definition 3.1) M of M. This gives the functor Wh⌘ from O to the

category of Z(g)-modules. Kostant’s results implies that Wh⌘ is exact when ⌘ is regular,

i.e., nonvanishing on each simple root vector.

Although Kostant did not work with the category O, he did prove that dim Wh⌘(M�)

= 1 for any simple Verma module M� when ⌘ is regular. This is generalized to arbitrary

Verma modules in Proposition 4.5. As a consequence, we prove in Corollary 4.6 a result

about primitive vectors.

Let W� be the integral Weyl group of a dominant weight �, and let w0 be its longest

element. O� denotes the subcategory of O whose objects have all their composition factors

isomorphic to Lw�, the simple module of highest weight w� � ⇢, w 2 W�. Let Pw� be the

projective cover of Lw� and consider the functor

V: M Homg(Pw0�, M)

from O� to Endg(Pw0�)-mod. Soergel proved the important result that the multiplication

homomorphism Z(g) ! Endg(Pw0�) is surjective [12]. Therefore, V(M) may just as well be
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considered as a Z(g)-module. He also proved that V restricted to projective objects in O�

is fully faithful (see Theorem 5.1).

The study of V as well as the other Homg(Pw�, · ) is motivated by the following.

Put P := �w2W�
Pw�. Then for abstract reasons, M  Homg(P, M) gives an equivalence

between the categories O� and the category of finitely generated right Endg(P)-modules

[1]. In [2] this connection is studied and in particular it is proved that Endg(P) is a Koszul

algebra.

Endg(Pw0�) is a graded algebra (see Section 5). The best known way to see this

grading is that it comes from a grading on Z(g) via the surjection Z(g)⇣ Endg(Pw0�). One

would, however, like to see the grading on Endg(Pw0�) more directly. Joseph Bernstein

therefore suggested that one should try to find another realization of the functor V where

the grading becomes more obvious.

The first main result of this paper, suggested by Bernstein, is the proof for the

assertions that V is determined, by its exactness and the fact that V(Mw�) is a one-

dimensional vector space for each Verma module Mw�, w 2 W�, and that V is isomorphic

to Wh⌘ | O� when ⌘ is regular. (See Theorem 5.2 and Corollary 5.4.) Unfortunately, the

original attempt to see the grading on Endg(Pw0�) failed, since we do not have any natural

grading on Wh⌘(Pw0�).

In Section 6 we consider an arbitrary ⌘. We prove some results about Wh⌘ and

consider yet another functor

�⌘: M {v 2 M; 9k: (Ker⌘)k · v = 0}

from O to U(g)-mod. This functor is exact and it maps the category O into the category

⌦⌘ whose objects are finitely generated U(g)-modules, which are locally annihilated by

some power of Ker⌘ and locally finite over Z(g).

It is known that ⌦⌘ has certain “standard”-modules (and simple modules) pa-

rameterized by the cosets in the Weyl group of a certain subgroup (McDowell [9]) (see

also Miličić-Soergel [10], [11]). Soergel (unpublished) has proved that the Verma mod-

ules are mapped onto the set of standard modules in ⌦⌘ by the functor �⌘; we prove

in Proposition 6.9 that �⌘ maps the simple objects in O onto the set of simple objects

in ⌦⌘.

This is used to establish our second main result, Theorem 6.2, stating that the

multiplicities of simple modules in standard modules in⌦⌘ follows from multiplicities of

corresponding modules in O, which can be calculated by the Kazhdan-Lusztig algorithm.

2 Preliminaries

In the sequel, we fix a semisimple complex Lie algebra g and a Cartan subalgebra h.
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We shall use the following notation (cf. [5], [6]). R denotes the set of roots, B is a

basis of R, and R+ is the set of positive roots. This gives the triangular decomposition

g = n� �h�n+. Let Q denote the root lattice, Q++ the semigroup generated by the simple

roots, and P the integral weights, P++ := {� 2 h⇤; �(H↵) 2 N for ↵ 2 B}. ⇢ denotes half the

sum of the positive roots.

For each ↵ 2 R+, choose X↵ 2 g↵ and X�↵ 2 g�↵ such that ↵([X↵, X�↵]) = 2, and put

H↵ = [X↵, X�↵]. Let W denote the Weyl group. Let s↵ be the reflection in W corresponding

to the root ↵. Hence, s↵(�) = �� �(H↵)↵ for � 2 h⇤. Let S := {s↵; ↵ 2 B} be the set of simple

reflections.

Elements in h⇤ are called weights. A weight � is called integral if �(H↵) 2 Z,

dominant if �(H↵) /2 {�1,�2, . . .}, and anti-dominant if �(H↵) /2 {1, 2, . . .} for each ↵ 2 R+.

For any g-module M, put M� = {m 2 M; Hm = �(H)m, 8H 2 h}. M� is called the weight

space of � in M and elements in M� weight vectors. A primitive vector is a weight vector

annihilated by n+.

For any Lie algebra a, let U(a) denote its enveloping algebra and Z(a) be the center

of U(a). U(a)-mod denotes the category of left U(a)-modules and Z(a)-mod the category

of Z(a)-modules. If M,N 2 U(a) � mod, then M ⌦
C

N denotes the U(a)-module where

x · m ⌦ n := (xm) ⌦ n + m ⌦ (xn) for x 2 a,m 2 M, and n 2 N.

The Bernstein-Gelfand-Gelfand category O, [5], is the set of M 2 U(g)-mod, such

that

(1) M is finitely generated over U(g);

(2) M = ��2h⇤M�;

(3) M is locally finite over U(n+).

For � 2 h⇤, denote by M� the Verma module with highest weight � � ⇢, L� its simple

quotient, and P� the projective cover of L�. These are objects in O.

Put⇥� := {z 2 Z(g); z·M� = 0}. Then⇥� is a maximal ideal in Z(g) and each maximal

ideal is of the form ⇥�, for some � 2 h⇤, and ⇥� = ⇥� if and only if � 2 W�. Let O⇥� be

the subcategory of O, whose objects are annihilated by some power of ⇥�; equivalently,

M 2 O⇥� if its composition factors belong to {Lw�}w2W . Then O splits into the orthogonal

direct sum

O = ��2h⇤/WO⇥� .

Orthogonal here means that ExtO(M,N) = 0 for M 2 O⇥� , N 2 O⇥� , i � 0, when � 6= � in

h⇤/W.

Given a maximal ideal ⇥ = ⇥� in Z(g), let �1, ...,�s be the dominant weights in W�.

Let W�i
:= {w 2 W; w�i � �i 2 P} be the integral Weyl group corresponding to �i. Define

Downloaded from https://academic.oup.com/imrn/article-abstract/1997/4/153/852386/Representation-of-the-category-O-in-Whittaker
by University of Utah user
on 11 October 2017



156 Erik Backelin

O�i
⇢ O⇥� as the subcategory of all modules whose composition factors are isomorphic

to Lw�, w 2 W�i
. Then O⇥� decomposes into the orthogonal direct sum O⇥� = �O�i

.

We denote by K(O) the Grothendieck group of O. The Verma (resp. simple) modules

form a basis of the free abelian group K(O). If M 2 O, � 2 h⇤, then [M : M�] (resp. [M : L�])

denotes the coefficient of M� (resp. L�) in the expression of M in the Verma (resp. simple)

module basis of K(O).

In this paper a category ⌦ which generalizes O is studied. ⌦ is the subcategory

of U(g)-mod, whose objects M satisfy the following:

(1) M is finitely generated over U(g);

(2) M is locally finite over Z(g);

(3) M is locally finite over U(n+).

Each object in ⌦ has finite length ([9], [11]), and a geometric proof is found in [10]. In

Section 6.2 we define certain standard modules in ⌦.

Let ⌘: n+ ! C be a Lie algebra homomorphism (C is considered as a commutative

Lie algebra). It is called a character on n+. It is clear that ⌘([n+, n+]) = 0. Denote also by

⌘ the induced algebra homomorphism U(n+) ! C. ⌘ is said to be regular if ⌘(X↵) 6= 0 for

all ↵ 2 B. If ⌘ vanishes on n+, we write ⌘ = 0 for short. Denote by ⌦⌘ the subcategory of

⌦ whose objects are locally annihilated by some power of Ker⌘. We refer to objects in ⌦

as Whittaker modules.1

Then the category ⌦ splits into an orthogonal direct sum over characters on n+

⌦ = �⌘⌦⌘.

We also have the orthogonal direct sum⌦⌘ = �⇥2maxZ(g)⌦⌘,⇥, where⌦⌘,⇥ denotes

the set of objects with generalized central character ⇥, i.e., objects that are annihilated

by some power of ⇥.

It is proved in Kostant [8] that for ⌘ regular, Wh⌘ gives an equivalence between

⌦⌘ and the category of Artinian Z(g)-modules. This shows that ⌦⌘ for regular ⌘ gives the

least complicated blocks in ⌦. In the other extreme, ⌦0 is the smallest subcategory of

U(g)-mod containing the category O which is closed under extensions. Clearly, properties

of ⌦⌘ for general ⌘ should follow from these two cases. For instance, Miličić-Soergel [11]

proved that in most cases (at least for integral central character ⇥),⌦⌘,⇥ is equivalent to

⌦0,⇠ for certain singular central character ⇠.

1Our terminology here differs from that of Kostant [8] who used the term Whittaker module only in the case of
a regular ⌘, and he used the word nondegenerate instead of regular.
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Representation of the Category O 157

3 The Whittaker functor

Definition 3.1. To a module M = ��2h⇤M� in O we associate the g-module M :=
Q

�2h⇤ M�,

defining an exact functor from O to U(g)-mod.

There exists a duality functor on O which gives us a useful description of M.

For M 2 U(g)-mod, the full dual M0 := Hom
C

(M, C) has the g-module structure

defined by x�(m) = �(xtm) for x 2 g,� 2 M0,m 2 M. Here t is the anti-automorphism of

g, defined by t|h = idh, Xt
↵ = X�↵, ↵ 2 R. Then m ! �:  !  (m) defines a canonical

homomorphism M ! M00.

In M0 we have the submodule M⇤ := {m 2 M0; dim U(n+)m < 1}. If M 2 O, then

M⇤ 2 O and the canonical homomorphism M ! M⇤⇤ is an isomorphism, extending to an

isomorphism of g-modules

M ! M⇤0
. (3.1)

Let ⌘ be a character on n+. For M 2 U(g)-mod we define

�⌘(M) := {m 2 M; 9k: (Ker⌘)k · m = 0} 2 U(g) � mod;

and for M 2 O we put

�⌘(M) := {m 2 M; 9k: (Ker⌘)k · m = 0} 2 U(g) � mod .

Here Ker⌘ denotes the kernel of ⌘ in U(n+).

Lemma 3.2. �⌘ defines an exact functor from O to ⌦⌘.

Proof. Let C be the subcategory of U(g)-mod whose objects are finitely generated over

U(n+). Let � be the functor on U(g)-mod, defined by �(M) := Hom
C

(M, C) with the U(g)-

module structure defined by (x�)(m) := �(�xm) for m 2 M, � 2 �(M) and x 2 g. Kostant

[8, Lemma 4.5] proved that �⌘ � � defines an exact functor from C to ⌦⌘. Kostant’s proof is

based on the Artin-Rees lemma for nilpotent Lie algebras.

Define O� as the category O with the roles of n+ and n� interchanged. Then O� ⇢
C. There is an equivalence of categories �fin from O to O�, defined by �fin(M) := {� 2
�(M); 9k: (n+)k · � = 0}. Then � � �fin is isomorphic to the completion functor; hence �⌘ ⇠=
�⌘ � � � �fin and we conclude that �⌘: O ⌦⌘ is exact.

Remark 3.3. The functor �⌘: O ⌦⌘ is not surjective. If ⌘ = 0, then �⌘ is the inclusion of

O into⌦0. If ⌘ is regular, then⌦⌘ is equivalent to the category of Artinian Z(g)-modules by

Proposition 4.3. But if M 2 O has generalized central character ⇥�, then M is annihilated

by J := \w2W{z 2 Z(g); zPw� = 0}, and thus also J · �⌘(M) = 0. Therefore, no object in O
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is mapped by �⌘ to the object in ⌦⌘ corresponding to the finite-dimensional Z(g)-module

Z(g)/J2.

However, if we define �⌘: ⌦0  ⌦⌘ by �⌘(M) := �⌘(M⇤0), then this functor is

probably surjective.

Each M 2 U(g)-mod has the Z(g)-submodule Wh⌘(M) := {m 2 M; Ker⌘ · m = 0}.
An element in this set is called a Whittaker vector. It is easy to verify that M Wh⌘(M)

defines a left exact functor on U(g)-mod. The composition of Wh⌘ with the completion

functor on O gives a left exact functor Wh⌘.

Definition 3.4. The Whittaker functor Wh⌘: O ! Z(g)-mod is defined as

M Wh⌘(M) := {m 2 M; Ker⌘ · m = 0}.

Thus Wh⌘ = Wh⌘ ��⌘. Notice that if ⌘ = 0 and M 2 O, then

Wh⌘(M) := {m 2 M; n+ · m = 0} = {m 2 M; n+ · m = 0},

i.e., the set of primitive vectors in M.

Let ⌘̃ be the character on n� defined by ⌘̃(X�↵) = ⌘(X↵), ↵ 2 B. Using the identifi-

cation of M⇤0 with M in (3.1) we get

Wh⌘(M) = {� 2 M⇤0; Ker⌘ · � = 0} = {� 2 M⇤0; �| Ker ⌘̃ · M⇤ = 0}. (3.2)

This shows that dim Wh⌘(M) = codimM⇤ (Ker ⌘̃ · M⇤). Since M⇤ is finitely generated over

U(n�), this dimension is finite. (Similarly, �⌘(M) = {� 2 M⇤0; 9k: �|(Ker ⌘̃)k · M⇤ = 0}.)

Up to isomorphism of functors Wh⌘ is determined by those simple root vectors

on which ⌘ vanishes.

Assume ⌘ and ⌘0 are two characters on n+ which vanish on the same simple root

vectors. We define an isomorphism of functors Wh⌘  Wh⌘0 as follows: Let f: Q ! C

⇤ be

a group homomorphism such that ⌘0(X↵) = f(↵)⌘(X↵) for each ↵ 2 B. Choose a set  ⇢ h⇤ of

representatives of the cosets h⇤/Q. Let M 2 O and define for each m 2 Wh⌘(M) an element

m0 2 Wh⌘0 (M) by

m0( +�) := f(�)m( +�), for  2  and � 2 Q.

Here m( +�) denotes the component of m in M( +�). This defines a (functorial) isomorphism

Wh⌘(M) ! Wh⌘0 (M).

The converse is also true, i.e., if Wh⌘ ⇠= Wh⌘0 , then ⌘ and ⌘0 vanish on the same

weight spaces of n+. This can be deduced, e.g., from Proposition 6.4 below. Hence there

are 2rank g isomorphism classes of Whittaker functors.

Downloaded from https://academic.oup.com/imrn/article-abstract/1997/4/153/852386/Representation-of-the-category-O-in-Whittaker
by University of Utah user
on 11 October 2017



Representation of the Category O 159

4 Properties of the Whittaker functor in the regular case

Lemma 4.1 below is due to Kostant [8, Theorem 4.3]. Let us mention that a stronger

version of it—where ⌦⌘ is replaced by the category of all objects in U(g)-mod which are

locally annihilated by some power of Ker⌘—can be deduced from a vanishing theorem

of Wallach [13, Theorem 2.2].

Lemma 4.1 (⌘ regular). The functor Wh⌘ restricted to ⌦⌘ is exact.

Combining this with Lemma 3.2, we get the following.

Theorem 4.2 (⌘ regular). Wh⌘ is exact.

The following proposition is proved in [8, Theorem 4.3], and in [10]. Lemma 4.1 is

the main ingredient in the proof.

Proposition 4.3 (⌘ regular). The functor Wh⌘ defines an equivalence between ⌦⌘ and

the category of Artinian Z(g)-modules. The inverse functor is given by V  U(g)⌦U(n+)⌦
C

Z(g)

V, where the U(n+) action on the Z(g)-module V is given by ⌘. In particular, each object in

⌦⌘ is generated by its Whittaker vectors.

Remark 4.4. The functor Wh⌘ is not exact when ⌘ is not regular. For instance, let g =

sl(2, C) and let ⌘ = 0; we have the surjection P�⇢ ! M�⇢, but the induced homomorphism

C

2 ⇠= Wh⌘(P�⇢) ! Wh⌘(M�⇢) ⇠= C is the zero map.

The next theorem was proved in [8] for simple Verma modules.

Proposition 4.5 (⌘ regular). Let � 2 h⇤. Then dim Wh⌘(M�) = 1.

Proof. (a) Let M 2 O and denote by (M) its image in the Grothendieck group K(O). Since

L⇤ ⇠= L, when L is simple, we see that (M⇤) = (M). Since the Whittaker functor is exact,

this shows that dim Wh⌘(M) = dim Wh⌘(M⇤). In particular, dim Wh⌘(M�) = dim Wh⌘(M⇤
�).

(b) By 3.2 we have Wh⌘(M⇤
�) = {� 2 M0

�; �| Ker ⌘̃ · M� = 0}. Hence,

dim Wh⌘(M⇤
�) = codimM�

(Ker ⌘̃ · M�) = codimU(n�)(Ker ⌘̃ · U(n�)) = 1.

The second equality follows from the fact that M� is a free U(n�)-module of rank 1; the

last equality holds since U(n�)/ Ker ⌘̃ ⇠= C.

Proposition 4.5 casts some light on the structure of primitive vectors in Verma

modules.

Let R+ = {↵1, . . . ,↵l, . . . ,↵n}, where the first l roots are simple. By the Poincaré-

Birkhoff-Witt theorem, U(n�) has the vector space basis

D := {Xt1
�↵1

· · ·Xtn
�↵n

; t1, . . . , tn 2 N}.
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Let M� ⇢ M� be two Verma modules and µ�, µ� be their canonical generators, respectively.

Then µ� = Pµ� for a uniquely determined P 2 U(n�). There is a unique l-tuple of natural

numbers, (t0
1, . . . , t

0
l ), such that

Pl
i=1 t0

i↵i = � � �. Denote by �t0
1,...,t0

l
the coefficient of

X
t0
1

�↵1
· · ·X

t0
l

�↵l
in P with respect to the basis D.

Corollary 4.6. With the notations above, �t0
1,...,t0

l
6= 0.

Proof. Let ⌘ be a regular character on n+. Note that ⌘̃(P) = �t0
1,...,t0

l
· ⌘(X↵1 )t

0
1 · · ·⌘(X↵l

)t
0
l , so

it suffices to prove ⌘̃(P) 6= 0.

Put V = M�/M� and identify V⇤ with V 0. We have Wh⌘(V⇤) = {� 2 V 0; �| Ker ⌘̃ ·V =
0}. Since Wh⌘(V⇤) = 0 (Theorem 4.2 and Proposition 4.5), we conclude that

Ker ⌘̃ · V = V.

In particular, µ�, the image of µ� in V, belongs to Ker ⌘̃ · V. So there is a S 2 U(n�)

such that Sµ� = µ� and ⌘̃(S) = 0. It is clear that we can write S = 1 � S0, where ⌘̃(S0) = 1

and S0µ� = 0. Hence, S0 = S
00 · P and we conclude that ⌘̃(P) 6= 0.

5 Characterization of Soergel’s functor

We shall work in the category O� for a dominant weight �. Let!0 2 W be such that!0� is

anti-dominant. If Mw� 2 O� is a Verma module, then Mw� � Lw0� = Mw0�. The projective

cover Pw0� of Lw0� belongs to O�.

Soergel [12] considered the algebra C = Endg(Pw0�) and the exact functor V =
Homg(Pw0�, ·): O�  C-mod. Here C-mod denotes the category of finitely generated right

C-modules. Thus C = V(Pw0�). Let M 2 O. By Proposition 1 in [5], we have

dim V(M) = [M, Lw0�]. (5.1)

It follows from Verma’s theorem that [Mw�, Lw0�] = 1 for w 2 W�. This fact and the above

formula imply dim V(Mw�) = 1.

Let us collect some results about the algebra C which are indispensable in the

discussion below.

The multiplication map Z(g) ! C is surjective (and so C is commutative). Let

J = AnnZ(g)(Pw0�) := {z 2 Z(g); zPw0� = 0} be the kernel of this map. Then Z(g)/J ⇠= C can

be identified with the cohomology algebra of a partial flag manifold. This gives C the

structure of a graded algebra on which Poincaré duality holds. Put C+ = �i�1Ci = ⇥� ·C.

The Poincaré duality implies that the socle of C, {c 2 C; C+ · c = 0}, is one-dimensional;
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therefore C is Gorenstein. These results were proved in Soergel [12]; see also Bernstein

[3].

Since the algebra C is a finite-dimensional vector space, its Krull dimension is

zero. But for Gorenstein algebras, the Krull dimension and injective dimension coincide.

We conclude that C is injective as a module over itself. This gives a duality

F F⇤ = HomC(F, C) (5.2)

in the category C-mod; so F ⇠= F⇤⇤ canonically.

The following result is due to Soergel.

Theorem 5.1 ([12] Struktursatz 9). Assume M,P 2 O�, P projective, then

Homg(M, P) �! HomZ(g)(V(M), V(P))

is bijective.

Since O has enough projectives [5], this result in a sense gives us a complete

description of the category O.

The next theorem shows that V is determined by formula (5.1) and its exactness.

Theorem 5.2. Let T : O�  Z(g)-mod be an (additive) functor. Assume that the following

holds.

(1) dim T (Mw�) = 1, for each w 2 W�;

(2) T is exact;

(3) If a is an ideal in Z(g), M 2 O�, then T (aM) = aT (M) and

T ({m 2 M; am = 0}) = {v 2 T (M); av = 0}.

Then T is isomorphic to V.

Remark 5.3. Note that V satisfies the hypothesis of Theorem 5.2. Also, the assumptions

(1) and (2) of Theorem 5.2 imply

(10) dim T (M) = [M : Lw0�].

Corollary 5.4 (⌘ regular). Wh⌘ is isomorphic to V.

Proof of Corollary 5.4. This follows from Theorem 4.2 and Proposition 4.5, since Wh⌘
clearly satisfies (3).

Corollary 5.5. Let T satisfy the hypothesis of Theorem 5.2. For M,P 2 O�, P projective,

the map defined by T

Homg(M, P) �! HomZ(g)(TM, TP)

is bijective.
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Proof of Corollary 5.5. This follows from Theorems 5.2 and 5.1.

Proof of Theorem 5.2. (a) Let M 2 O�. Recall that we put J = AnnZ(g)(Pw0�). We shall prove

J · T (M) = 0.

Since, clearly, J · V(M) = 0, it suffices to prove that AnnZ(g)(V(M)) ✓ AnnZ(g)(T (M)).

If M contains a submodule isomorphic to Lw�, w 6= w0, then T (M) ⇠= T (M/Lw�) and

V(M) ⇠= V(M/Lw�). Therefore we may assume

for each w 6= w0, there exists no injection Lw�,!M. (*)

Now, put M0 =
P

f2V(M) f(Pw0�); obviously, the inclusion V(M0) ! V(M) is onto, so

we get V(M/M0) = 0. Hence, by (10), [M/M0 : Lw0�] = 0. Now, by the construction of M0,

zM0 = 0 if z 2 AnnZ(g)(V(M)). So, if zM = z(M/M0) ⇢ M is nonzero, it contains a simple

submodule not isomorphic to Lw0�. This contradicts (⇤). It follows that z 2 AnnZ(g)(M);

hence AnnZ(g)(V(M)) ✓ AnnZ(g)(M).

Clearly, AnnZ(g)(M) ✓ AnnZ(g)(T (M)) and we conclude that AnnZ(g)(V(M)) ✓
AnnZ(g)(T (M)). Hence, T (M) is a C ⇠= Z(g)/J-module.

(b) C ⇠= T (Pw0�) as C- (or Z(g)-) modules.

We first prove that T (Pw0�) is cyclic over Z(g). The support of the Z(g)-module

T (Pw0�) is the single maximal ideal ⇥�. By Nakayama’s lemma, T (Pw0�) is cyclic if and only

if dim T (Pw0�)/⇥�T (Pw0�) = 1. We have

dim T (Pw0�)/⇥�T (Pw0�) = dim T (Pw0�/⇥�Pw0�) = dim V(Pw0�/⇥�Pw0�)

= dim V(Pw0�)/⇥�V(Pw0�) = dim C/⇥�C = 1,

where the first and third equalities follow from (3), the second from (10), and the last

equality follows because C is cyclic over Z(g).

Choosing a generator of T (Pw0�), we get a surjective Z(g)-linear map Z(g) ! T (Pw0�).

By (a), the kernel of this map contains J. Hence we get the surjection

C ! T (Pw0�),

which moreover is an isomorphism because dim T (Pw0�) = dim C, by (10).

(c) Consider the diagram of morphisms of functors

HomC(T ( · ), T (Pw0�))
↵

����! HomC(T ( · ), V(Pw0�)) = T ( · )⇤

⇡T

x

?

?

Homg( · , Pw0�)
⇡V����! HomC(V( · ), V(Pw0�)) = V( · )⇤
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where ⇡T and ⇡V are the morphisms defined by T and V respectively, and ↵ is defined

by the isomorphism V(Pw0�) ⇠= T (Pw0�) in (b). We shall prove that all these morphisms are

isomorphisms. Then it follows that V( · )⇤ ⇠= T ( · )⇤ and so V ⇠= T .

(d) It is clear that ↵ is an isomorphism.

(e) ⇡V is an isomorphism. (Soergel [12], part of the proof of Struktursatz 9.)

(f) ⇡T is an isomorphism. (The proof we give here is identical with Soergel’s proof

for (e), with V replaced by T .)

Let M 2 O�. We must prove that⇡T (M) is an isomorphism. By definition,⇡T (M)(�) =
T (�), for � 2 Homg(M, Pw0�). Assume � 6= 0. Then Im� is a nonzero submodule of Pw0�.

Since Pw0� admits a Verma flag, [Im� : Lw0�] 6= 0. Hence, by (10), T (Im�) 6= 0. The exactness

of T implies Im T (�) = T (Im�) and we conclude that T (�) 6= 0. This proves ⇡T (M) is injective.

To see that⇡T (M) is also surjective, we only have to show that both terms to the left

in the diagram in (c) have the same dimension. It suffices to do this when M is simple,

because Homg( · , Pw0�) and HomC(T ( · ), T (Pw0�)) are exact functors. The first functor is

exact because Pw0� is an injective object in O, [7]; the second because T (Pw0�) ⇠= C is an

injective C-module and T is exact.

When M = Lw�, w 6= w0, T (M) = 0, and so the upper term is zero; hence the lower

term is zero by the injectivity just established.

When M = Lw0�, the lower term is isomorphic to

Homg(Lw0�, {v 2 Pw0�;⇥�v = 0}),

because ⇥�Lw0� = 0. However, {v 2 Pw0�;⇥�v = 0} = M� ([12], Lemma 7) and

dim Homg(Lw0�, M�) = 1 by Verma’s theorem; the lower term is one-dimensional. From (3)

it follows that the upper term is isomorphic to

HomC(T (Lw0�), {v 2 T (Pw0�);⇥�v = 0}) ⇠= HomC(T (Lw0�), T ({v 2 Pw0�;⇥�v = 0}))
⇠= HomC(T (Lw0�), T (M�)) ⇠= HomC(C, C),

and this space is also one-dimensional. (Here C = C/C+ is the trivial C-module.)

6 Multiplicities of standard Whittaker modules

Let ⌘ be a character on n+. Put B1 := {↵ 2 B; ⌘(X↵) 6= 0} and B2 := {↵ 2 B; ⌘(X↵) = 0}. Let gi,

i = 1, 2, be the Lie algebra generated by X↵, X�↵, ↵ 2 Bi. It is clear that gi is semisimple,

and it has the triangular decomposition

gi = ni
+ � hi � ni

�,
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where ni
+ = n+ \gi, hi = h\gi, and ni

� = n� \gi. The Weyl group Wi = W(gi, hi) is identified

with the subgroup of W generated by the reflections s↵,↵ 2 Bi.

The category⌦⌘ contains certain standard modules M(�,⌘), � 2 h⇤, constructed as

follows ([9], [11]): Denote by p⌘ the parabolic subalgebra n1
��n+�h and put g⌘ := n1

��n1
+�h.

Thus g⌘ is reductive. Denote by ⇠]⌘: Z(g⌘) ! S(h) the Harish-Chandra homomorphism of

U(g⌘) normalized by ⇠]⌘(z) � z 2 U(g⌘)n1
+. It induces on the maximal ideals a map ⇠⌘: h⇤ !

MaxZ(g⌘). Let C⌘1 be the one-dimensional representation of n1
+ defined by ⌘1 and put

Y(�,⌘) := (U(g⌘)/⇠⌘(�� ⇢)U(g⌘)) ⌦U(n1
+) C⌘1 .

Then Y(�,⌘) 2 U(g⌘) � mod, but the first projection p⌘ = g⌘ � (n2
+ + [n1

+, n2
+]) ! g⌘ defines an

U(p⌘)-module structure on Y(�,⌘). Now put

M(�,⌘) := U(g) ⌦U(p⌘) Y(�,⌘).

Note that we have M(�, 0) = M�. M(�,⌘) is irreducible when ⌘ is regular [10].

Proposition 6.1 ([9] and [11]). (1) M(�,⌘) ⇠= M(µ,⌘) if and only if W1� = W1µ.

(2) M(�,⌘) has a unique simple quotient L(�,⌘). L(�,⌘) ⇠= L(µ,⌘) if and only if

W1� = W1µ.

(3) Each simple object in ⌦⌘ is isomorphic to L(�,⌘) for some �.

Denote by [M(�,⌘) : L(µ,⌘)] the multiplicity of L(µ,⌘) in M(�,⌘).

Theorem 6.2. Let M(�,⌘) and L(µ,⌘) be given. If µ 2 W� and there exists w 2 W1 such

that (wµ)1 is anti-dominant and � > wµ, then

[M(�,⌘) : L(µ,⌘)] = [M(�) : L(wµ)].

Otherwise [M(�,⌘) : L(µ,⌘)] = 0.

This multiplicity problem was formulated and partially solved in [11]. Since our

solution is given in terms of some multiplicities in the category O, the multiplicity

[M(�,⌘) : L(µ,⌘)] can be calculated using the Kazhdan-Lusztig algorithm. The proof of

Theorem 6.2 is postponed until the end of this section.

Before we start to analyze the functor �⌘, we establish some properties of Wh⌘.

Let us introduce some more notation. For � 2 h⇤, put �i := �|hi 2 hi⇤. Put ⌘i := ⌘|ni
+.

Thus, ⌘1 is regular and ⌘2 = 0. Let

Wh⌘i (M) := {m 2 M; Ker⌘i · m = 0},

Wh⌘i (M) := {m 2 M; Ker⌘i · m = 0}

for M 2 U(gi)-mod and M 2 O(gi) respectively. The functors �⌘i and �⌘i are analogously

defined. As usual, ⌘̃ denotes the character on n� defined by ⌘̃(X�↵) = ⌘(X↵); We similarly

define ⌘̃i on ni
�.
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Lemma 6.3. Let L 2 O be simple. Then dim Wh⌘(L)  1.

Proof. We have Wh⌘(L) = {� 2 L⇤0; �| Ker ⌘̃·L⇤ = 0} = {� 2 L0; �| Ker ⌘̃·L = 0}, since simple

modules are self-dual. This gives dim Wh⌘(L) = codimL(Ker ⌘̃ · L). Since L is isomorphic to

a quotient of U(n�) and Ker ⌘̃ ⇢ U(n�) is an ideal of codimension one, we get dim Wh⌘(L) 2
{0, 1}.

Proposition 6.4. (1) �1 anti-dominant implies dim Wh⌘(L�) = 1.

(2) �1 not anti-dominant implies Wh⌘(L�) = 0.

Proof. (1): Let µ be the canonical generator of the U(g) Verma module M�. Then U(g1) · µ
is isomorphic to the U(g1) Verma module M�1 , which by assumption is simple. Let

0 6= v =
Y

v 2 Wh⌘1 (M�1 )

(such a v exists by Proposition 4.5). Let�0 be a maximal element in the set { 2 h1⇤; n1
+·v 6=

0}, with respect to the ordering > on h1⇤. Then choose ↵ 2 B1 such that X↵ · v�
0 6= 0, and

let � = �0 + ↵. Then v� = X↵ · v�0
is a primitive vector. Since each primitive vector in M�1

belongs to M
�1�⇢1

�1 , we conclude that � = �1 � ⇢1; hence v�
1�⇢1 6= 0.

Since M�1 = U(n1
�) · µ and [X↵, U(n1

�)] = 0, for each ↵ 2 B2, we see that X↵ · v = 0

for such ↵, and so v belongs to Wh⌘(Mx). It follows that v��⇢ 6= 0, hence the image of v in

Wh⌘(L�) is nonzero. This proves dim Wh⌘(L�) = 1.

(2): We have Wh⌘(L�) = {� 2 L0
�; �| Ker ⌘̃ · L� = 0}. Therefore it suffices to show

that Ker ⌘̃ · L� = L�. By assumption, the U(g1) Verma module M�1 (defined in the proof of

(1)) is not simple. Hence we can find a proper Verma submodule M 1 of M�1 . Let P 2 U(n1
�)

be such that Pµ generates M 1 over U(n1
�). Then Corollary 4.6 implies ⌘̃1(P) 6= 0.

Let µ be the image of µ in L�. It is clear that Pµ is a primitive vector in M�, not

proportional to µ, and we conclude that Pµ = 0. Hence, µ = (1�P/⌘̃1(P))µ = (1�P/⌘̃(P))µ 2
Ker ⌘̃ · L�. Hence, Ker ⌘̃ · L� = L�.

Recall that �⌘: M  {m 2 M; 9k : (Ker⌘)k · m = 0} defined an exact functor from

O to ⌦⌘. The following lemma is crucial.

Lemma 6.5. �⌘(M�) = U(g) · Wh⌘(M�) for each Verma module M�.

Proof. (a) Let Qi
++ be the semigroup generated by Bi, i = 1, 2. For ! 2 Q2

++, put

M[!] :=
X

�2Q1
++

M��⇢���!.

Put R := U(n2
� � [n2

�, n1
�]). The Lie algebra h acts on R by means of the adjoint

representation, and so R decomposes into a direct sum
P

�2h⇤ R� of h weight spaces. Let
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h̃ := {H 2 h; ↵(H) = 0, 8↵ 2 B1}. Hence R decomposes into a direct sum
P

�2h̃⇤ R� of h̃

weight spaces. The reader can verify that for each � 2 h̃⇤, R� is finite dimensional.

The Poincaré-Birkhoff-Witt theorem together with the fact that M is cyclic over

U(n�) shows that for each ! 2 Q2
++,

R(!|h̃) · M[0] = M[!]. (6.1)

Since M[0] is cyclic over U(g1), 6.1 shows that M[!] is finitely generated over U(g1). It is

clear that M[!] is locally finite over n1
+ and h1 semisimple. Thus M[!] 2 O(g1).

(b) From Lemma 3.2 we get �⌘1 (M[!]) 2 ⌦⌘1 . Since ⌘1 is regular, Proposition 4.3

shows that

�⌘1 (M[!]) = U(g1) · Wh⌘1 (M[!]). (6.2)

The fact that R(!|h̃) is finite-dimensional and 6.1 shows

R(!|h̃) · M[0] = M[!]. (6.3)

Also, the Poincaré-Birkhoff-Witt theorem together with the fact that M is U(n�)-free

implies that the multiplication map

R(!|h̃) ⌦
C

M[0] ! R(!|h̃) · M[0] (6.4)

is an isomorphism.

(c) We prove �⌘1 (M[!]) ✓ R(!|h̃) · �⌘1 (M[0]). Let v 2 �⌘1 (M[!]). By 6.3 we can write

v =
Pk

i=1 Pivi, for some vi 2 M[0], and the Pi’s are linearly independent elements of R(!|h̃).

We must prove that each vi is in �⌘1 (M[0]), i.e., each vi is killed by some power of X↵�⌘(X↵)

for each ↵ 2 B1.

Fix ↵ 2 B1 and note that R(!|h̃) is adX↵-stable and that adX↵ is a nilpotent operator

on R(!|h̃). Thus we can choose i0 2 {1, . . . , k} such that

V := span{adt
X↵

(Pi); i = 1, . . . , k, t � 1} ⇢ R(!|h̃)

does not contain Pi0 . We have (X↵ � ⌘(X↵))nv = 0 for some n. But

(X↵ � ⌘(X↵))nv 2 Pi0 (X↵ � ⌘(X↵))nvi0 + V · M[0].

Equation 6.4 now implies (X↵ � ⌘(X↵))nvi0 = 0.

It follows that Pi0vi0 is killed by some power of X↵ � ⌘(X↵) and we conclude that
Pk

i=1,i6=i0
Pivi is annihilated by some power of X↵ � ⌘(X↵). An induction over k now shows

that each vi is killed by some power of X↵ � ⌘(X↵).
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(d) We have M =
Q

!2Q2
++

M[!], so �⌘(M) = �⌘

⇣Q
!2Q2

++
M[!]

⌘

. It is not hard to

check that in fact

�⌘(M) = �⌘

0

@

M

!2Q2
++

M[!]

1

A = �⌘1

0

@

M

!2Q2
++

M[!]

1

A .

Each M[!] is Ker⌘1-stable, so �⌘(M) =
P

!2Q2
++
�⌘1 (M[!]). By (c) and 6.2 we have

�⌘1 (M[!]) ✓ U(g) · �⌘1 (M[0]) = U(g) · Wh⌘1 (M[0]).

Noting that Wh⌘1 (M[0]) ✓ Wh⌘(M), we get �⌘(M) ✓ U(g) · Wh⌘(M).

Lemma 6.6. Let L� 2 O be simple and assume that �1 is anti-dominant. Then �⌘(L�) is

simple.

Proof. (a) �⌘(L�) = U(g) · Wh⌘(L�): the right hand side is nonzero by Proposition 6.4,

and �⌘(M�) = U(g) · Wh⌘(M�) by Lemma 6.5. The surjection M� ⇣ L� together with the

exactness of �⌘ now proves the assertion.

(b) Let V be a nonzero submodule of �⌘(L�). Each element in V is annihilated by a

power of Ker⌘, so it is clear that V contains a nonzero Whittaker vector v. But according

to Proposition 6.4, Wh⌘(L�) is one-dimensional, so Wh⌘(L�) = C · v. We conclude from (a)

that �⌘(L�) = U(g) · v. Thus V = �⌘(L�) and �⌘(L�) is simple.

Lemma 6.7. Each simple object in ⌦⌘ is isomorphic to �⌘(L�) for some � such that �1

is anti-dominant. If �1 and  1 are anti-dominant, then �⌘(L�) ⇠= �⌘(L ) if and only if

W1� = W1 .

Proof. (a) By Dixmier’s theorem, each simple U(g)-module admits a central character

and �⌘ preserves central character. So let us fix a central character ⇥ = ⇥� and prove the

assertions in the lemma with ⌦⌘ replaced by ⌦⌘,⇥.

Denote by n := n⌘,⇥ the number of isomorphism classes of simple modules in

⌦⌘,⇥. By Proposition 6.1 we have n = Card W�/W1. Noting that each W1-orbit in W�

contains an element w� such that (w�)1 is anti-dominant, we conclude that

n = Card{w�; w 2 W, (w�)1 is anti-dominant }/W1.

Recalling that �⌘(L�) is simple when �1 is anti-dominant (Lemma 6.6), we see—counting

elements—that in order to prove the lemma it suffices to show that �⌘(L�) ⇠= �⌘(L ) implies

W1� = W1 .

(b) Put h̃ = {H 2 h; ↵(H) = 0, 8↵ 2 B1}. Let µ� be the canonical generator of L�.

From the proof of Proposition 6.4.1 we have Wh⌘(L�) ⇢ U(g1) · µ�. Since [h̃, U(g1)] = 0, we

get (H � (�� ⇢)(H))Wh⌘(L�) = 0,8H 2 h̃.
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(c) The U(g1)-module U(g1) · µ� is isomorphic to the Verma module M�1 . We know

that Wh⌘(L�) ⇢ U(g1) · µ�. This clearly implies AnnZ(g1)(M�1 ) ✓ AnnZ(g1)(Wh⌘(L�)). Since

AnnZ(g1)(M�1 ) is a maximal ideal in Z(g1), we conclude that AnnZ(g1)(M�1 ) = AnnZ(g1)(Wh⌘(L�)).

(d) Assume that �⌘(L�) ⇠= �⌘(L ). This isomorphism induces the bijection Wh⌘(L�) ⇠=
Wh⌘(L ). Hence

(1) AnnZ(g1)(M�1 ) = AnnZ(g1)(M 1 ) and

(2) �|h̃ =  |h̃
by (b) and (c) respectively. The Harish-Chandra theorem and (1) give the existence of an

element w 2 W1 such that w�|h1 =  |h1. Combined with (2), noting that W1 acts trivially

on h̃ and that h = h̃ � h1, we conclude w� =  .

Lemma 6.8. Let E be a finite dimensional g-module and let P(E) denote its multiset of

weights. There exists a U(g)-module filtration of E ⌦
C

M(�,⌘) with subquotients isomor-

phic to M(�+ ⌫i,⌘) for ⌫i 2 P(E).

Proof. We have

E ⌦
C

M(�,⌘) ⇠= U(g) ⌦U(p⌘) (E ⌦
C

Y(�,⌘)) (6.5)

(where the U(p⌘)-module structure on E ⌦
C

Y(�,⌘) is given by the projection p⌘ ! g⌘). To

prove 6.5 we just have to note that for any L 2 U(g) � mod,

HomU(g)(E ⌦
C

M(�,⌘), L) = HomU(g)(M(�,⌘), Hom
C

(E, L))

= HomU(p⌘)(Y(�,⌘), Hom
C

(E, L))

= HomU(p⌘)(E ⌦
C

Y(�,⌘), L)

= HomU(g)(U(g) ⌦U(p⌘) E ⌦
C

Y(�,⌘), L).

Consider the Verma module M�1 2 O(g1). Choose w 2 W1 such that w�1 is anti-dominant.

Then �⌘1 (M�1 ) = �⌘1 (Mw�1 ) by Proposition 6.1. Thus �⌘1 (M�1 ) is simple (over U(g1)) by

Lemma 6.6. Let ⇠1 = ⇠⌘|h1⇤ be the Harish-Chandra homomorphism from h1⇤ ! Max Z(g1).

Then

Y(�,⌘)|g1 = U(g1)/(⇠1(�1 � ⇢1)) ⌦U(n1) C⌘1

is simple by Proposition 4.3. Since �⌘1 (M�1 ) and Y(�,⌘)|g1 both have central character

⇠1(�1), we conclude again from Proposition 4.3 that �⌘1 (M�1 ) ⇠= Y(�,⌘)|g1. Let M� be the

U(g⌘) Verma module whose restriction to g1 is M�1 where the action of H 2 h on the

highest weight space M
�1�⇢
�1 is multiplication by the scalar (�� ⇢)(H). Considering �⌘1 as

a functor on U(g⌘) � mod, it is now clear that

�⌘1 (M�) = Y(�,⌘).
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It follows from [6, Lemma 7.6.14] that E ⌦ M� has a filtration Fi of U(g⌘) modules such

that Fi/Fi�1 ⇠= M(� + ⌫i), ⌫i 2 P(E). One checks easily that �⌘1 (E ⌦C M�) � E ⌦C �⌘1 (M�).

Thus E ⌦C Y(�,⌘) has a filtration Vi := �⌘(Fi) of U(g⌘)-modules such that

Vi/Vi�1 ⇠= Y(�+ ⌫i,⌘), ⌫i 2 P(E).

Since U(g) is a flat (free) U(p⌘)-module, the lemma now follows from 6.5.

Proposition 6.9. (1)2 �⌘(M�) = M(�,⌘).

(2) �⌘(L�) = L(�,⌘) if �1 is anti-dominant.

(3) �⌘(L�) = 0 if �1 is not anti-dominant.

Proof. (1): (a) Assume that � is anti-dominant. Then M� = L� is simple and also M(�,⌘)

is simple by [9]. We conclude from Lemma 6.7 that M(�,⌘) ⇠= �⌘(L ) for some weight  

such that  1 is anti-dominant. This isomorphism induces the bijection

Wh⌘(M(�,⌘)) ⇠= Wh⌘(L ). (6.6)

Let µ := 1⌦1 2 M(�,⌘) = U(g)⌦U(p⌘) Y(�,⌘). Then µ 2 Wh⌘(M(�,⌘)) and we see that

(H � (�� ⇢)(H))µ = 0, 8H 2 h̃ (6.7)

where h̃ := {H 2 h; ↵(H) = 0, 8↵ 2 B1}, and

AnnZ(g1)(µ) = AnnZ(g1)(M�1 ). (6.8)

It was proved in (b) in the proof of Lemma 6.7 that (H � ( � ⇢)(H))Wh⌘(L ) = 0,8H 2 h̃.

The bijection 6.6 and 6.7 imply

�|h̃ ⇠=  |h̃. (6.9)

In (c) in the proof of Lemma 6.7 we proved AnnZ(g1)(M 1 ) = AnnZ(g1)(Wh⌘(L )). Thus 6.6 and

6.8 imply

AnnZ(g1)(M�1 ) = AnnZ(g1)(M 1 ). (6.10)

The same argument as in (d) in the proof of Lemma 6.7 now shows that 6.9 and

6.10 imply  2 W1�. Hence by Lemma 6.7 �⌘(L ) ⇠= �⌘(L�), and since �⌘(L�) = �⌘(M�), it

follows that �⌘(M�) ⇠= M(�,⌘).

2Soergel has already proved (1) in an unpublished manuscript. My proof of (1a) is new, but the idea to use
translation functors in (1b) is taken from Soergel.
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(b) Let � 2 h⇤ be arbitrary. By an induction starting with (a) we may assume

that �⌘(M ) ⇠= M( , ⌘) for each  < �. If � is anti-dominant, we are done by (a); so let us

assume there is a reflection s := s↵, ↵ 2 R+, such that s� < �. Let E be a finite dimensional

irreducible g-module with highest weight �� s�. Denote by P(E) the multiset of weights

of E. It is known ([6], Lemma 7.6.14) that there exists a filtration

E ⌦
C

Ms� = Mn � Mn�1 � · · · � M0 = 0

such that M1 ⇠= M�, and Mi/Mi�1 ⇠= Ms�+⌫i
for ⌫i 2 P(E) \ {�� s�}, i � 2.

Put M0 := (E⌦
C

Ms�)/M1 and M0
i := Mi/M1. Then �⌘(M0

i)/�⌘(M
0
i�1) ⇠= �⌘(M0

i/M0
i�1) ⇠=

�⌘(Ms�+⌫i
) ⇠= M(s�+ ⌫i,⌘), where the last isomorphism is given by induction hypothesis,

since s�+ ⌫i < �. This shows that

(�⌘(M0)) =
X

⌫i2P(E)\{��s�}
(M(s�+ ⌫i)) (6.11)

in the Grothendieck group K(⌦⌘). On the other hand, note that �⌘(E⌦
C

Ms�) = E⌦
C

�⌘(Ms�).

By induction hypothesis the latter module is isomorphic to E⌦
C

M(s�,⌘). Lemma 6.8 now

gives

(�⌘(E ⌦
C

Ms�)) =
X

⌫i2P(E)

(M(s�+ ⌫i)) in K(⌦⌘). (6.12)

We have (�⌘(M�)) = (�⌘(E ⌦
C

Ms�)) � (�⌘(M0)) in K(⌦⌘). Hence 6.11 and 6.12 imply

(M(�,⌘)) = (�⌘(M�)) in K(⌦⌘). (6.13)

We define a map ⇡: M(�,⌘) ! �⌘(M�) as follows. Let 1⌦1 be the canonical gener-

ator of M(�,⌘). Let v be any nonzero element of Wh⌘1 (M�[0]) ⇢ Wh⌘(M�)—the space M�[0]

was defined in the proof of Lemma 6.5. We see that ⇡(1⌦1) := v gives us a well-defined ho-

momorphism. The proof of Lemma 6.5 shows that �⌘(M�) = U(g) · Wh⌘1 (M�[0]). Moreover,

since M�[0] is a U(g1) Verma module, we have dim Wh⌘1 (M�[0]) = 1, by Proposition 4.5;

thus �⌘(M�) = U(g) · v, and we conclude that ⇡ is surjective. 6.13 now shows that ⇡ is an

isomorphism.

(2): By Lemma 6.6 we know that �⌘(L�) is simple; by exactness, �⌘(L�) is a quotient

of �⌘(M�) ⇠= M(�,⌘); hence �⌘(L�) is isomorphic to the unique simple quotient L(�,⌘) of

M(�,⌘).

(3): We know from Lemma 6.4 that Wh⌘(L�) = 0 in this case. This implies �⌘(L�) = 0.
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Proof of Theorem 6.2. Since �⌘ is exact, it induces a homomorphism K(O) ! K(⌦⌘) be-

tween Grothendieck groups. By Proposition 6.9 we have the following equalities in K(⌦⌘).

(M(�,⌘)) = (�⌘(M�)) =
X

�2h⇤
[M�: L�] · ((�⌘(L�))

=
X

�2h⇤,�1anti�dominant

[M�: L�] · (L(�,⌘)).

Since (L(�,⌘)) = (L( ,⌘)) if and only if � 2 W1 , we get

[M(�,⌘): L(µ,⌘)] =
X

w2W1,(wµ)1anti�dominant

[M�: Lwµ].

Note that [M� : Lwµ] 6= 0 implies that w belongs to the integral Weyl group W� of �.

Clearly, the W1 \ W�-orbit of µ contains precisely one element wµ such that (wµ)1 is

anti-dominant. Theorem 6.2 now follows easily.
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