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Representation of the Category O
in Whittaker Categories

Erik Backelin

1 Introduction

Letg=n_®hdn, be acomplex semisimple Lie algebra and letn: U(n,) — C be an algebra
homomorphism. Kostant [8] studied the invariants Wh,(M) := {m € M; Kern-m =0} in a
g-module M. We call these invariants Whittaker vectors.

If a g-module M is the direct sum of its weight spaces with respect to § (and n|n;. #
0), then M contains no nonzero Whittaker vectors. If M is an object of the category O of
Bernstein-Gelfand-Gelfand, one should therefore consider the set Wh, (M) of Whittaker
vectors in the completion (definition 3.1) M of M. This gives the functor Wh,, from O to the
category of Z(g)-modules. Kostant's results implies that mn is exact when 1 is regular,
i.e., nonvanishing on each simple root vector.

Although Kostant did not work with the category O, he did prove that dim Wh,,(M,)
= 1 for any simple Verma module M, when 1 is regular. This is generalized to arbitrary
Verma modules in Proposition 4.5. As a consequence, we prove in Corollary 4.6 a result
about primitive vectors.

Let W) be the integral Weyl group of a dominant weight A, and let wy be its longest
element. O, denotes the subcategory of O whose objects have all their composition factors
isomorphic to L, the simple module of highest weight wA — p, w € W,. Let Py, be the

projective cover of L, and consider the functor
V: M ~» Homg(Pyor, M)
from O, to Endgy(P,,))-mod. Soergel proved the important result that the multiplication

homomorphism Z(g) — Endg4(P.,) is surjective [12]. Therefore, V(M) may just as well be
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154 Erik Backelin

considered as a Z(g)-module. He also proved that V restricted to projective objects in O,
is fully faithful (see Theorem 5.1).

The study of V as well as the other Homg(P,, - ) is motivated by the following.
Put P := ®,ecw, Pua. Then for abstract reasons, M ~+ Hom,(P, M) gives an equivalence
between the categories O, and the category of finitely generated right Endy(P)-modules
[1]. In [2] this connection is studied and in particular it is proved that Endy(P) is a Koszul
algebra.

End4(P,,,) is a graded algebra (see Section 5). The best known way to see this
grading is that it comes from a grading on Z(g) via the surjection Z(g) - Endy(P,,). One
would, however, like to see the grading on End,(P.,)) more directly. Joseph Bernstein
therefore suggested that one should try to find another realization of the functor V where
the grading becomes more obvious.

The first main result of this paper, suggested by Bernstein, is the proof for the
assertions that V is determined, by its exactness and the fact that V(M,,) is a one-
dimensional vector space for each Verma module M,,», w € W), and that V is isomorphic
to Wh,, | O, when 7 is regular. (See Theorem 5.2 and Corollary 5.4.) Unfortunately, the
original attempt to see the grading on Endg(P,,») failed, since we do not have any natural
grading on WH(PWO)\).

In Section 6 we consider an arbitrary 1. We prove some results about Wh, and

consider yet another functor
Ty M~ {ve M; 3k: (Kern)*-v =0}

from O to U(g)-mod. This functor is exact and it maps the category O into the category
O, whose objects are finitely generated U(g)-modules, which are locally annihilated by
some power of Kern and locally finite over Z(g).

It is known that Q, has certain “standard”-modules (and simple modules) pa-
rameterized by the cosets in the Weyl group of a certain subgroup (McDowell [9]) (see
also Milici¢-Soergel [10], [11]). Soergel (unpublished) has proved that the Verma mod-
ules are mapped onto the set of standard modules in Q, by the functor Fn; we prove
in Proposition 6.9 that I'; maps the simple objects in O onto the set of simple objects
in Q,,.

This is used to establish our second main result, Theorem 6.2, stating that the
multiplicities of simple modules in standard modules in Q,, follows from multiplicities of

corresponding modules in O, which can be calculated by the Kazhdan-Lusztig algorithm.

2 Preliminaries

In the sequel, we fix a semisimple complex Lie algebra g and a Cartan subalgebra b.
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Representation of the Category O 155

We shall use the following notation (cf. [5], [6]). R denotes the set of roots, B is a
basis of R, and R, is the set of positive roots. This gives the triangular decomposition
g=n_®hedn,.Let Q denote the root lattice, Q. the semigroup generated by the simple
roots, and P the integral weights, P, := {x € h*; x(Hs) € N for « € B}. p denotes half the
sum of the positive roots.

For each o € R, choose X, € g* and X_, € g~* such that «([Xy, X_4]) = 2, and put
Hy = [Xa, X_ul. Let W denote the Weyl group. Let s, be the reflection in W corresponding
to the root . Hence, s4(A) = A — A(Hy)ox for A € h*. Let S := {s4; @ € B} be the set of simple
reflections.

Elements in h* are called weights. A weight x is called integral if x(H4) € Z,
dominant if x(Hy) ¢ {—1,—2,...}, and anti-dominant if x(H,) ¢ {1,2,...} for each « € R,.
For any g-module M, put MX = {m € M;Hm = x(H)m, VH € h}. MX is called the weight
space of x in M and elements in MX weight vectors. A primitive vector is a weight vector
annihilated by n,.

For any Lie algebra a, let U(a) denote its enveloping algebra and Z(a) be the center
of U(a). U(a)-mod denotes the category of left U(a)-modules and Z(a)-mod the category
of Z(a)-modules. If M,N € U(a) — mod, then M ®c N denotes the U(a)-module where
x-m@n:=xme@n+me (xn) forx e a, me M, andn € N.

The Bernstein-Gelfand-Gelfand category O, [5], is the set of M € U(g)-mod, such
that

(1) M is finitely generated over U(g);

(2) M = ®yeprMX

(3) M is locally finite over U(n,).

For x € bh*, denote by M, the Verma module with highest weight x — p, L, its simple
quotient, and P, the projective cover of L. These are objects in O.

Put ©, := {z € Z(g);z-M, = 0}. Then ©, is amaximal ideal in Z(g) and each maximal
ideal is of the form ©,, for some x € h*, and O, = @y, if and only if ¢ € Wx. Let Og, be
the subcategory of O, whose objects are annihilated by some power of ©,; equivalently,
M € Og, if its composition factors belong to {L,,a}wew. Then O splits into the orthogonal

direct sum
O = @XE,,*/WO@X.

Orthogonal here means that Exto(M,N) = 0 for M € Og,, N € Oe,, 120, when x # ¢ in
bh*/W.

Given a maximal ideal © = ©, in Z(g), let X1, ..., Xs be the dominant weights in W¥x.
Let W,, := {w € W; wx; — xi € P} be the integral Weyl group corresponding to x;. Define
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156 Erik Backelin

Oy, C Op, as the subcategory of all modules whose composition factors are isomorphic
to Ly, w € Wy,. Then Op, decomposes into the orthogonal direct sum Og, = ®0y;.

We denote by K(O) the Grothendieck group of O. The Verma (resp. simple) modules
form a basis of the free abelian group K(0). If M € O, x € h*, then [M : M, ] (resp. [M.: L,])
denotes the coefficient of M, (resp. L,) in the expression of M in the Verma (resp. simple)
module basis of K(O).

In this paper a category Q which generalizes O is studied. Q is the subcategory
of U(g)-mod, whose objects M satisfy the following:

(1) M is finitely generated over U(g);
(2) M is locally finite over Z(g);
(3) M is locally finite over U(n,).

Each object in Q has finite length ([9], [11]), and a geometric proof is found in [10]. In
Section 6.2 we define certain standard modules in Q.

Letn: n, — Cbe aLie algebra homomorphism (C is considered as a commutative
Lie algebra). It is called a character on n,. It is clear that n([n,, n,]) = 0. Denote also by
1 the induced algebra homomorphism U(n,) — C. n is said to be regular if n(X,) # 0 for
all « € B. If n vanishes on ny, we write n = 0 for short. Denote by Q, the subcategory of
Q whose objects are locally annihilated by some power of Kern. We refer to objects in Q
as Whittaker modules.!

Then the category Q splits into an orthogonal direct sum over characters on n
Q=3,0,.

We also have the orthogonal direct sum Q,, = @eemaxz(g(2n,0, Where O, ¢ denotes
the set of objects with generalized central character ©, i.e., objects that are annihilated
by some power of ©.

It is proved in Kostant [8] that for n regular, Wh,, gives an equivalence between
Q, and the category of Artinian Z(g)-modules. This shows that Q, for regular n gives the
least complicated blocks in Q. In the other extreme, Qg is the smallest subcategory of
U(g)-mod containing the category O which is closed under extensions. Clearly, properties
of Q,, for general n should follow from these two cases. For instance, Mili¢i¢-Soergel [11]
proved that in most cases (at least for integral central character ©), Q, ¢ is equivalent to

Qg for certain singular central character .

10ur terminology here differs from that of Kostant [8] who used the term Whittaker module only in the case of
a regular n, and he used the word nondegenerate instead of regular.
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Representation of the Category O 157

3 The Whittaker functor

Definition 3.1. Toamodule M = ®,c,MXin O we associate the g-module M := [ Len MX,

defining an exact functor from O to U(g)-mod.

There exists a duality functor on O which gives us a useful description of M.

For M e U(g)-mod, the full dual M’ := Hom¢(M, C) has the g-module structure
defined by x¢(m) = ¢(x'm) for x € g,¢ € M, m € M. Here ! is the anti-automorphism of
g, defined by |h = idy, X!, = X_4, « € R. Then m — ¢: P — P(m) defines a canonical
homomorphism M — M”.

In M’ we have the submodule M* := {m € M’;dim U(n,)m < oo}. If M € O, then
M* € O and the canonical homomorphism M — M** is an isomorphism, extending to an

isomorphism of g-modules
M - M*. (3.1)

Let n be a character on n.. For M € U(g)-mod we define
(M) :={m e M; 3k: (Kern)* - m = 0} € U(g) — mod;

and for M € O we put

(M) := {m € M; 3k: (Kern)*-m =0} € U(g) — mod.
Here Kern denotes the kernel of n in U(n,).

Lemma 3.2. T, defines an exact functor from O to Q. O

Proof. Let C be the subcategory of U(g)-mod whose objects are finitely generated over
U(n,). Let & be the functor on U(g)-mod, defined by 6(M) := Hom¢(M, C) with the U(g)-
module structure defined by (xd)(m) := ¢(—xm) for m € M, ¢ € 5(M) and x € g. Kostant
[8, Lemma 4.5] proved that I}, o 6 defines an exact functor from C to Q,,. Kostant's proof is
based on the Artin-Rees lemma for nilpotent Lie algebras.

Define O~ as the category O with the roles of n, and n_ interchanged. Then O~

C. There is an equivalence of categories &, from O to O, defined by &4,(M) = {P

- m N

5(M); 3k: (n.)*- ¢ = 0}. Then & o &, is isomorphic to the completion functor; hence Fn

I, 0 & o &in and we conclude that I'y: O ~ Q, is exact.

Remark 3.3. The functorI'y;: O ~» Q, is not surjective. If n = 0, then T, is the inclusion of
O into Q. If nis regular, then Q, is equivalent to the category of Artinian Z(g)-modules by
Proposition 4.3. But if M € O has generalized central character ©,, then M is annihilated
by | := Nwew{z € Z(g); zP,» = 0}, and thus also ] - Fn(M) = 0. Therefore, no object in O
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158 Erik Backelin

is mapped by I, to the object in Q, corresponding to the finite-dimensional Z(g)-module
Z(g)/J?.
However, if we define I': Qo ~ Q, by (M) := T,(M*), then this functor is

probably surjective.

Each M € U(g)-mod has the Z(g)-submodule Wh,(M) := {m € M;Kern - m = 0}.
An element in this set is called a Whittaker vector. It is easy to verify that M ~» Wh,,(M)
defines a left exact functor on U(g)-mod. The composition of Wh, with the completion

functor on O gives a left exact functor Wh,,.

Definition 3.4. The Whittaker functor Wh,: O — Z(g)-mod is defined as
M ~ Wh,(M) := {m € M;Kern - m = 0}.
Thus Wh,, = Wh, oT,. Notice that if 1 = 0 and M € 0, then
Wh,(M) := {m e M; n, -m =0} = {me M;n;, - m =0},

i.e., the set of primitive vectors in M.
Let 7} be the character on n_ defined by 1(X_,) = n(X4), « € B. Using the identifi-
cation of M* with M in (3.1) we get

Wh, (M) = {¢ € M*; Kern - ¢ = 0} = {d € M*; b|Ker# - M* = 0}. (3.2)

This shows that dim Wh,,(M) = codim:(Kerj - M*). Since M* is finitely generated over
U(n_), this dimension is finite. (Similarly, Fn(M) = {d € M¥; Tk: ¢|(Kerj)*- M* = 0}.)

Up to isomorphism of functors WH is determined by those simple root vectors
on which n vanishes.

Assume 1 and 1’ are two characters on n, which vanish on the same simple root
vectors. We define an isomorphism of functors Wh, ~ Wh,, as follows: Let f: Q — C* be
a group homomorphism such that n'(X,) = f(x)n(X,) for each « € B. Choose a set ¥ C h* of
representatives of the cosets h*/Q. Let M € O and define for each m € WH(M) an element
m’ € Why (M) by

MY =m0 for PpeW¥ and xe Q.

Here m™¥*X denotes the component of min M¥*X_ This defines a (functorial) isomorphism
Wh,, (M) — Wh, (M).

The converse is also true, i.e., if mn = mn/, then 1 and n’ vanish on the same
weight spaces of n,. This can be deduced, e.g., from Proposition 6.4 below. Hence there

are 2"7%9 jsomorphism classes of Whittaker functors.
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Representation of the Category O 159

4 Properties of the Whittaker functor in the regular case

Lemma 4.1 below is due to Kostant [8, Theorem 4.3]. Let us mention that a stronger
version of it—where Q, is replaced by the category of all objects in U(g)-mod which are
locally annihilated by some power of Kern—can be deduced from a vanishing theorem
of Wallach [13, Theorem 2.2].

Lemma 4.1 (nregular). The functor Wh,, restricted to Q, is exact. O
Combining this with Lemma 3.2, we get the following.
Theorem 4.2 (n regular). Wh,, is exact. o

The following proposition is proved in [8, Theorem 4.3], and in [10]. Lemma 4.1 is

the main ingredient in the proof.

Proposition 4.3 (n regular). The functor Wh,, defines an equivalence between Q, and
the category of Artinian Z(g)-modules. The inverse functor is given by V ~ U(g) ®un,)ecz(9
V, where the U(n,) action on the Z(g)-module V is given by n. In particular, each object in

Q, is generated by its Whittaker vectors. O

Remark 4.4. The functor mn is not exact when n is not regular. For instance, let g =
51(2, C) and let n = 0; we have the surjection P_, - M_,, but the induced homomorphism
C? = Wh,(P_,) - Wh,(M_,) = C is the zero map.

The next theorem was proved in [8] for simple Verma modules.
Proposition 4.5 (n regular). Let A € b*. Then dim Wh,(M,) = 1. O

Proof. (a) Let M € O and denote by (M) its image in the Grothendieck group K(O). Since

L* = L, when L is simple, we see that (M*) = (M). Since the Whittaker functor is exact,

this shows that dim Wh,,(M) = dim Wh,,(M*). In particular, dim Wh,(M,) = dim Wh,,(M}).
(b) By 3.2 we have Wh,, (M%) = {¢ € M}; ¢|Kerfi - M, = 0}. Hence,

dim Wh,,(M3) = codim, (Ker - M,) = codimy, )(Kerf - U(n_)) = 1.

The second equality follows from the fact that M, is a free U(n_)-module of rank 1; the
last equality holds since U(n_)/ Kert] = C. ]

Proposition 4.5 casts some light on the structure of primitive vectors in Verma
modules.
Let Ry = {«1,...,%1,..., %}, where the first 1 roots are simple. By the Poincaré-

Birkhoff-Witt theorem, U(n_) has the vector space basis

D:={X", .- X™ :t;,... t, € N}

—X]1 —Q&n?
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160 Erik Backelin

Let M,, C M, be two Verma modules and p,, i, be their canonical generators, respectively.

Then p) = Pu, for a uniquely determined P € U(n_). There is a unique l-tuple of natural

.....

,,,,,

~~~~~~

it suffices to prove 1(P) # 0.
Put V= M, /M, and identify V* with V'. We have Wn (V*) ={b eV d|Kern-V =
0}. Since mn (V*) = 0 (Theorem 4.2 and Proposition 4.5), we conclude that

Kern-V=V.

In particular, 1, the image of p, in V, belongs to Ker - V. So thereis a S € U(n_)
such that S, = 1, and 7j(S) = 0. It is clear that we can write S = 1 — §', where 1i(§') = 1
and S'it, = 0. Hence, S’ = S" . P and we conclude that 7j(P) # 0. [ |

5 Characterization of Soergel’s functor

We shall work in the category O, for a dominant weight A. Let wo € W be such that woA is
anti-dominant. If M, € O, is a Verma module, then M,,, D Ly,n = Myyn. The projective

cover P, of L, belongs to 0.

Soergel [12] considered the algebra C = Endy(P.,) and the exact functor V =
Homyg(Py, -): Ox ~» C-mod. Here C-mod denotes the category of finitely generated right
C-modules. Thus C = V(P,). Let M € O. By Proposition 1 in [5], we have

dim V(M) = [M, Lyl (5.1)

It follows from Verma's theorem that [My», Ly, ] = 1 for w € Wi This fact and the above
formula imply dim V(M,,,) = 1.

Let us collect some results about the algebra C which are indispensable in the
discussion below.

The multiplication map Z(g) — C is surjective (and so C is commutative). Let
] = Annyg)(Pwy) = {z € Z(g); zPw, = 0} be the kernel of this map. Then Z(g)/] = C can
be identified with the cohomology algebra of a partial flag manifold. This gives C the
structure of a graded algebra on which Poincaré duality holds. Put C; = i>1C; = ©, - C.

The Poincaré duality implies that the socle of C, {c € C; C, - ¢ = 0}, is one-dimensional;

Downloaded from https://academic.oup.com/imrn/article-abstract/1997/4/153/852386/Representation-of-the-category-0O-in-Whittaker

by University of Utah user
on 11 October 2017



Representation of the Category O 161

therefore C is Gorenstein. These results were proved in Soergel [12]; see also Bernstein
[3].

Since the algebra C is a finite-dimensional vector space, its Krull dimension is
zero. But for Gorenstein algebras, the Krull dimension and injective dimension coincide.

We conclude that C is injective as a module over itself. This gives a duality
F ~» F* = Homc(F, C) (5.2)
in the category C-mod; so F = F** canonically.
The following result is due to Soergel.
Theorem 5.1 ([12] Struktursatz 9). Assume M, P € O,, P projective, then
Homgy(M, P) — Homy g (V(M), V(P))
is bijective. O

Since O has enough projectives [5], this result in a sense gives us a complete
description of the category O.

The next theorem shows that V is determined by formula (5.1) and its exactness.

Theorem 5.2. Let T: O) ~» Z(g)-mod be an (additive) functor. Assume that the following
holds.

(1) dim T(M,,») = 1, for each w € W,;

(2) T is exact;

(3) If a is an ideal in Z(g), M € O,, then T(aM) = aT(M) and

T{m e M; am =0}) = {v e TIM); av = 0}.
Then T is isomorphic to V. O

Remark 5.3. Note that V satisfies the hypothesis of Theorem 5.2. Also, the assumptions
(1) and (2) of Theorem 5.2 imply

(1) dimT(M) = [M : Lyl
Corollary 5.4 (n regular). Wn is isomorphic to V. O

Proof of Corollary 5.4. This follows from Theorem 4.2 and Proposition 4.5, since Wh,
clearly satisfies (3). ]

Corollary 5.5. Let T satisfy the hypothesis of Theorem 5.2. For M, P € O,, P projective,
the map defined by T

Homy(M, P) — Homy,)(TM, TP)

is bijective. |
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Proof of Corollary 5.5. This follows from Theorems 5.2 and 5.1. ]

Proof of Theorem 5.2. (a) Let M € O,. Recall that we put ] = Annyg(P..,)). We shall prove
J-T(M) = 0.
Since, clearly, | - V(M) = 0, it suffices to prove that Anny)(V(M)) € Anngg(T(M)).
If M contains a submodule isomorphic to L,,5, w # wqg, then T(M) = T(M/L,,») and
V(M) = V(M/L,»). Therefore we may assume

for each w # wy, there exists no injection L,,,<— M. (*)

Now, put M" = } .y f(Pwgnr); obviously, the inclusion V(M) — V(M) is onto, so
we get V(M/M') = 0. Hence, by (1), [M/M’ : L,,\] = 0. Now, by the construction of M/,
zM’ = 0 if z € AnnyEk(V(M)). So, if zM = z(M/M’) C M is nonzero, it contains a simple
submodule not isomorphic to L. This contradicts (x). It follows that z € Anngz,)(M);
hence Annyz(,)(V(M)) € Anngzg(M).

Clearly, Annzy(M) < Anngg(T(M)) and we conclude that Anngyg)(V(M)) C
Anny(,)(T(M)). Hence, T(M) is a C = Z(g)/J-module.

(b) C = T(Pyw,n) as C- (or Z(g)-) modules.

We first prove that T(P,,,,) is cyclic over Z(g). The support of the Z(g)-module
T(P,2) is the single maximal ideal ©,. By Nakayama's lemma, T(P.,,) is cyclic if and only
if dim T(Pyy2) /@A T(Pwya) = 1. We have

dim T(PWO)\)/("D)\T(PWO)\) = dim T(PWO)\/@)\PWO)\) = dim V(PWO)\/@)\PWO)\)

= dim V(PWO)\)/@)\V(PWO)\) = dim C/@}\C = 1,

where the first and third equalities follow from (3), the second from (1’), and the last
equality follows because C is cyclic over Z(g).
Choosing a generator of T(P,,,)), we get a surjective Z(g)-linear map Z(g) — T(Ps).

By (a), the kernel of this map contains ]J. Hence we get the surjection
C — T(Pwgn),

which moreover is an isomorphism because dim T(P,,,,) = dim C, by (1').

(c) Consider the diagram of morphisms of functors
Home(T(+), T(Pyp)) —— Home(T(-), V(Pug) = T(-)*

.

Homg(-, Pyp))  —— Homc(V(-), V(Pyo) = V(-)*
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Representation of the Category O 163

where 7tr and 7ty are the morphisms defined by T and V respectively, and « is defined
by the isomorphism V(P,,;») = T(P,,,,) in (b). We shall prove that all these morphisms are
isomorphisms. Then it follows that V(- )* = T(-)* and so V=T.

(d) It is clear that « is an isomorphism.

(e) ty is an isomorphism. (Soergel [12], part of the proof of Struktursatz 9.)

(f) o1 is an isomorphism. (The proof we give here is identical with Soergel’s proof
for (e), with V replaced by T.)

Let M € O). We must prove that 7t1(M) is an isomorphism. By definition, 7t (M)(¢$) =
T(d), for ¢ € Homy(M, Py). Assume ¢ # 0. Then Im ¢ is a nonzero submodule of P,,.
Since P, admits a Verma flag, [Im ¢ : L] # 0. Hence, by (1), T(Im ¢) # 0. The exactness
of Timplies Im T(¢$) = T(Im ¢) and we conclude that T(¢p) # 0. This proves 7i7(M) is injective.

To see that 7tr (M) is also surjective, we only have to show that both terms to the left
in the diagram in (c) have the same dimension. It suffices to do this when M is simple,
because Homy(-, Py, and Home(T(-), T(Pw,)) are exact functors. The first functor is
exact because P, is an injective object in O, [7]; the second because T(P,,,3) = C is an
injective C-module and T is exact.

When M = L, w # wg, T(M) = 0, and so the upper term is zero; hence the lower
term is zero by the injectivity just established.

When M = L, the lower term is isomorphic to
Homg(LWO)\, {V (S PWO)\;G)\V = 0}),

because @,L,, = 0. However, {v € Pyu;;@wv = 0} = M, ([12], Lemma 7) and
dim Homg(L,,,», Ma) = 1 by Verma'’s theorem; the lower term is one-dimensional. From (3)

it follows that the upper term is isomorphic to

HOIIlc(T(]_WO)\), {V € T(PWO)\);@}\\) = 0}) = HOIIlc(T(LWO}\), T({\) S PWO}\;@)\\) = 0}))
= Homc(T(Lyyn), T(My)) = Homc(C, C),

and this space is also one-dimensional. (Here C = C/C, is the trivial C-module.) ]

6 Multiplicities of standard Whittaker modules

Let 1 be a character on n,.. Put B! := {& € B; n(X,) # 0} and B? := {« € B; n(X,) = 0}. Let g',
i=1,2, be the Lie algebra generated by X4, X_4, « € B'. It is clear that g' is semisimple,

and it has the triangular decomposition

g=n_ohon,
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where n!, =n;.Ng', h' = hNg' and n' =n_nNg'. The Weyl group W; = W(g', h') is identified
with the subgroup of W generated by the reflections s4, & € B;.

The category (), contains certain standard modules M(x, 1), x € b*, constructed as
follows ([9], [11]): Denote by p, the parabolic subalgebran! &n, @b and put g, := n! &n} ®b.
Thus g, is reductive. Denote by Eﬁ: Z(gn) — S(h) the Harish-Chandra homomorphism of
U(gn) normalized by Eﬂ(z) —z € U(gy)n}. It induces on the maximal ideals a map &,: h* —

MaxZ(gy). Let C,, be the one-dimensional representation of n} defined by n; and put
Yix,m) = (Ulgy)/&n(x — p)Ulgn)) ®yat) Cny-
Then Y(x,n) € U(g,) — mod, but the first projection p, = g, @ (nZ + [n},n%]) — g, defines an
U(p,)-module structure on Y(x, ). Now put
Mlx, ) := U(g) Qugp, Yx,1).
Note that we have M(x, 0) = M,.. M(x, ) is irreducible when 1 is regular [10].
Proposition 6.1 ([9] and [11]). (1) M(x,n) = M(y,n) if and only if W'y = Wlp.
(2) M(x,n) has a unique simple quotient L(x,n). Lix,n) = L(u,n) if and only if
Wiy = Wi,
(3) Each simple object in (), is isomorphic to L(x,n) for some x. O

Denote by [M(x,n) : L(w,n)] the multiplicity of L(uw,n) in M(x,n).

Theorem 6.2. Let M(x,n) and L(u,n) be given. If u € Wx and there exists w € W! such

that (wp)! is anti-dominant and x > wy, then
[M(x,n) : L(p,m] = [M(x) : Liwp)].
Otherwise [M(x,n) : L(yw,n)] = 0. O

This multiplicity problem was formulated and partially solved in [11]. Since our
solution is given in terms of some multiplicities in the category O, the multiplicity
[M(x,m) : L(t,n)] can be calculated using the Kazhdan-Lusztig algorithm. The proof of
Theorem 6.2 is postponed until the end of this section.

Before we start to analyze the functor I, we establish some properties of Wn.

Let us introduce some more notation. Forx € h*, putx* :=x|h* € h*". Putn’® :=nn.
Thus, ! is regular and n? = 0. Let

Wh,i(M) := {m € M; Kern' - m = 0},
mi(M) :={m € M; Kern' - m = 0}
for M e U(g")-mod and M e O(g') respectively. The functors I and Fni are analogously

defined. As usual, 7] denotes the character on n_ defined by f(X_,) = n(Xy); We similarly

define fj* on nt.
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Lemma 6.3. LetL € O be simple. Then dim Wh,(L) < 1. O

Proof. We have mn(l_) ={¢p € I¥; ¢|Kerfj-L* = 0} = {¢p € I'; ¢p| Kerfi-L = 0}, since simple
modules are self-dual. This gives dim Mn(u = codimy (Kerf - [). Since L is isomorphic to
a quotient of U(n_) and Kerfj C U(n_) is an ideal of codimension one, we get dim mn(l_) €
{0, 1}. ]

Proposition 6.4. (1) x! anti-dominant implies dim Wh(L,) = 1.
(2) x! not anti-dominant implies Wh,(L,) = 0. O

Proof. (1): Let p be the canonical generator of the U(g) Verma module M,. Then U(g') - n

is isomorphic to the U(g!) Verma module M, 1, which by assumption is simple. Let
0#v= Hvll’ € ml(Mxl)

(such av exists by Proposition 4.5). Let ¢’ be a maximal element in the set {{p € h1*; nl WY £
0}, with respect to the ordering > on h*. Then choose « € B! such that X, v £ 0, and
let ¢ = ¢’ + . Then v® = X,, - v*' is a primitive vector. Since each primitive vector in M,
belongs to M)’S_pl, we conclude that ¢ = x! — p!; hence vX' =" £ 0.

Since M,1 = U(nl) - p and [X,, Un!)] = 0, for each « € B?, we see that X, -v =10
for such «, and so v belongs to WH(MX). It follows that v¥=P # 0, hence the image of v in
Wh, (L,) is nonzero. This proves dim Wh,(L,) = 1.

(2): We have mn(l_x) = { e I'y; ¢| Kertj - Ly = 0}. Therefore it suffices to show
that Kerfj - L, = L,. By assumption, the U(g') Verma module M,: (defined in the proof of
(1)) is not simple. Hence we can find a proper Verma submodule M,,1 of M,1. Let P € U(n!)
be such that Pu generates M,,1 over U(n!). Then Corollary 4.6 implies 7i}(P) # 0.

Let 1t be the image of pu in L. It is clear that Pu is a primitive vector in M,, not
proportional to p, and we conclude that Pit = 0. Hence, t = (1 —P/A'(P)u = (1-P/A(P)E €
Kert - L,. Hence, Kerf] - L, = L. u

Recall that T;: M~ {m € M; 3k : (Kern)* - m = 0} defined an exact functor from

O to Q,. The following lemma is crucial.

Lemma 6.5. T,(Mg) = U(g) - Wh,,(M,) for each Verma module M,,. O
Proof. (a)Let Q' be the semigroup generated by B, i = 1,2. For w € Q% , put

Mlw] := Z Mé—Pmo—w,

0eQ

Put R := Um?% @ [n?, nl]). The Lie algebra h acts on R by means of the adjoint

representation, and so R decomposes into a direct sum erb* RX of h weight spaces. Let
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h:={H € h; «(H) = 0, Va € B!}. Hence R decomposes into a direct sum erﬁ* RX of h
weight spaces. The reader can verify that for each x € h*, RX is finite dimensional.
The Poincaré-Birkhoff-Witt theorem together with the fact that M is cyclic over

U(n_) shows that for each w € Q%
R . M[0] = Mlw]. (6.1)

Since M[0] is cyclic over U(g!), 6.1 shows that M[w] is finitely generated over U(g}). It is
clear that M[w] is locally finite over n} and h' semisimple. Thus Mlw] € O(g").

(b) From Lemma 3.2 we get I, (M[w]) € Q,,. Since 1, is regular, Proposition 4.3
shows that

I, (Mlw]) = U(g?) - Why,, (M[w]). (6.2)
The fact that R@/M is finite-dimensional and 6.1 shows
RV M[0] = Mlwl. 6.3)

Also, the Poincaré-Birkhoff-Witt theorem together with the fact that M is U(n_)-free

implies that the multiplication map
Rlwlh) ®c MI0] — Rl M0 (6.4)

is an isomorphism.

(c) We prove T, (M[w]) € RV . T, (M[O]). Let v € T, (M[w]). By 6.3 we can write
v = Z’i‘zl Pivi, for some v; € M[0], and the P;'s are linearly independent elements of Rlwlh)
We must prove that each v; isin I3, (MI0]), i.e., each v; is killed by some power of X, —11(X4)
for each o € B!,

Fix « € B! and note that RV is ady,-stable and that adx, is a nilpotent operator

on R“W Thus we can choose i € {1,...,k} such that
V:=span{ady (P);i=1,...,kt>1} C Rl

does not contain P;,. We have (X4 — n(X4))"v = 0 for some n. But
(Xa = NX™ € Py (Xo — N(Xa))™viy + V - MIOL.

Equation 6.4 now implies (Xy — 1(X&)™vi, = 0.

It follows that P;,vi, is killed by some power of X, —1(X,) and we conclude that
Z’f:m 4o Pivi s annihilated by some power of X, — 1(X,). An induction over k now shows
that each v; is killed by some power of X, — n(Xy).

Downloaded from https://academic.oup.com/imrn/article-abstract/1997/4/153/852386/Representation-of-the-category-0O-in-Whittaker

by University of Utah user
on 11 October 2017



Representation of the Category O 167

(d) We have M = [Tweqz, Mlw], so Ty(M) =T, (Hw€Q2++ M[w]). It is not hard to
check that in fact

LM =r| @ Mawl|=n,| P Miw]

weQ? | weQ?,
Each M[w] is Kern,-stable, so I';(M) = 2 weqz, T (Mlw]). By (c) and 6.2 we have
I, (Mlw]) € Wlg) - T, (MIO]) = U(g) - Why, (M[O]).

Noting that Wh,, (M[0]) € Wh, (M), we get T,(M) C U(g) - Wh,(M). u

Lemma 6.6. Let Ly € O be simple and assume that ¢! is anti-dominant. Then T'y(Ly) is

simple. O

Proof. (a) T (Ly) = U(g) - Why(Lg): the right hand side is nonzero by Proposition 6.4,
and T,,(My) = U(g) - Wh, (M) by Lemma 6.5. The surjection My — L, together with the
exactness of [, now proves the assertion.

(b) Let V be a nonzero submodule of T,(Ly). Each element in V is annihilated by a
power of Kerm, so it is clear that V contains a nonzero Whittaker vector v. But according
to Proposition 6.4, Wh,(L,) is one-dimensional, so Wh, (L) = C - v. We conclude from (a)
that 'y (Ly) = U(g) - v. Thus V = Ty, (Ly) and 'y (Ly) is simple. [ |

Lemma 6.7. Each simple object in Q, is isomorphic to T'(Ly) for some ¢ such that ¢!

is anti-dominant. If ¢! and ' are anti-dominant, then T (Ly) = T, (L) if and only if
Wl =Wh. a

Proof. (a) By Dixmier’s theorem, each simple U(g)-module admits a central character
and T, preserves central character. So let us fix a central character ® = @, and prove the
assertions in the lemma with Q, replaced by Q,¢.

Denote by n := n,e the number of isomorphism classes of simple modules in
Q. 6. By Proposition 6.1 we have n = Card Wx/W!. Noting that each W'-orbit in Wx

contains an element wy such that (wx)! is anti-dominant, we conclude that
n = Card{wy; w € W, (wx)! is anti-dominant }/W!.

Recalling that Fn (Ly) is simple when ¢! is anti-dominant (Lemma 6.6), we see—counting
elements—that in order to prove the lemma it suffices to show that T, (L) = T (L) implies
Wl = Wh.

(b) Put h = {H € b; «(H) = 0, V& € B!}. Let 1 be the canonical generator of Lg.
From the proof of Proposition 6.4.1 we have Wh,(Ly) C Ul(g?) - 1. Since [h, U(g")] = 0, we
get (H — (¢ — p)(H)Wh,(Ly) = 0,VH € b.
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(c) The U(g!)-module U(g') - p14 is isomorphic to the Verma module Mgy1. We know
that Wh,(Ly) C U(g!) - pug. This clearly implies Anng1(My1) € Annz(gl)(mn(Ld,)). Since
Anng;1)(My1) is amaximal ideal in Z(g'), we conclude that Ann ;1) (M1) = Annz(gl)(ﬂn(Lq))).

(d) Assume that T, (L) = T',(L,). This isomorphism induces the bijection Wh, (L) =
Wh;,(Ly). Hence

(1) Annyg1)(My1) = Anny 1) (M) and

(2) blh =R
by (b) and (c) respectively. The Harish-Chandra theorem and (1) give the existence of an
element w € W' such that wd|h? =P |h'. Combined with (2), noting that W acts trivially
on h and that h = h @ h*, we conclude wp = 1. [ |

Lemma 6.8. Let E be a finite dimensional g-module and let P(E) denote its multiset of
weights. There exists a U(g)-module filtration of E ®¢c M(¢$,n) with subquotients isomor-
phic to M(¢ + vi,n) for v; € P(E). O

Proof. We have
E ®c M(d,m) = Ulg) ®u(p, (E ®c Y(d,m) (6.5)

(where the U(p,)-module structure on E ®¢ Y(x,n) is given by the projection p, — g,). To

prove 6.5 we just have to note that for any L € U(g) — mod,

Homyg)(E ®c M(d,n), L) = Homyg(MI(dp,n), Home(E, L))
= Homu(pn)(Y(cb,n), Homc(E, L))
= Homuyy,)(E ®c Y($,n), L)
= Homy g (U(g) ®up, E ®c Y(d,m), D).

Consider the Verma module M1 € O(g'). Choose w € W' such that w¢! is anti-dominant.
Then T1(Mg1) = T,1(M,,41) by Proposition 6.1. Thus T,1(M1) is simple (over U(g')) by
Lemma 6.6. Let &; = &,|h'* be the Harish-Chandra homomorphism from h'* — Max Z(g?).
Then

Y, mlg" = UWgh/(E1 (" — p") ®ypy) Cpt

is simple by Proposition 4.3. Since Fnl(Mcbl) and Y(¢d,n)|g! both have central character
£1(¢'), we conclude again from Proposition 4.3 that ;1 (My1) = Y(¢,n)|g'. Let My, be the
U(g,) Verma module whose restriction to g' is M1 where the action of H € h on the
highest weight space Mii_p is multiplication by the scalar (¢ — p)(H). Considering Fnl as

a functor on U(g,) — mod, it is now clear that

T (M) = Y(,m).
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It follows from [6, Lemma 7.6.14] that E ® My, has a filtration F; of U(g,) modules such
that F;/Fi_; = MI(d + vi), vi € P(E). One checks easily that Fnl(E ®c My) — E®c Fnl(Mq)).
Thus E ®c Y(¢p,n) has a filtration V; := Fn (Fi) of U(gy)-modules such that

Vi/Vie1 2 Y(d +vi,m), vi € P(E).
Since Ul(g) is a flat (free) U(p,)-module, the lemma now follows from 6.5. n

Proposition 6.9. (1) T',(Mg) = M(d, ).
(2) Ty(Ly) = L(d,m) if ¢! is anti-dominant.
(3) Ty(Ly) = 0 if ¢! is not anti-dominant. O

Proof. (1): (a) Assume that ¢ is anti-dominant. Then My, = L, is simple and also M(¢,n)
is simple by [9]. We conclude from Lemma 6.7 that M(¢b,n) = FH(L¢) for some weight

such that ! is anti-dominant. This isomorphism induces the bijection
Wh,, (M(,m)) = Why(Ly). (6.6)
Let p:=1®1 € M(dp,n) = Ulg) ®up,) Y(x,n). Then p € Wh,(M(¢p,n)) and we see that
(H—(p—p(H)p=0,VH e h (6.7)
where § := {H € b; «(H) = 0, V& € B!}, and
Anngyg (W) = Anny g (M), (6.8)

It was proved in (b) in the proof of Lemma 6.7 that (H — (p — p)(H))mn(Lq,) =0,VH € b.
The bijection 6.6 and 6.7 imply

$lh =Ib. (6.9)

12

In () in the proof of Lemma 6.7 we proved Anny (M) = Anny g (Why (Ly)). Thus 6.6 and
6.8 imply

Anng 1) (My1) = Anng gy (Mys). (6.10)

The same argument as in (d) in the proof of Lemma 6.7 now shows that 6.9 and
6.10 imply € W'¢. Hence by Lemma 6.7 I'y(Ly) = Ty(Ly), and since T, (Ly) = T(My), it
follows that T',,(My) = M(d,n).

2Soergel has already proved (1) in an unpublished manuscript. My proof of (1a) is new, but the idea to use
translation functors in (1b) is taken from Soergel.
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(b) Let ¢ € bh* be arbitrary. By an induction starting with (a) we may assume
that Fn(Mw) = M@, n) for each Y < ¢. If ¢ is anti-dominant, we are done by (a); so let us
assume there is a reflection s := s, @ € R", such that s¢ < ¢. Let E be a finite dimensional
irreducible g-module with highest weight ¢ — s¢. Denote by P(E) the multiset of weights
of E. It is known ([6], Lemma 7.6.14) that there exists a filtration

E@CMsd):MnDMn—lD"'DMO:O

such that M; = My, and M;/M;_; = Mg, forvi € P(E)\ {p — s}, i > 2.

Put M’ := (E®cM;p)/M; and M} := M;/M,. Then T, (M))/T(M_,) = T (M{/M/_,) =
T (Msgiv) = M(sd +vi,m), where the last isomorphism is given by induction hypothesis,
since s + vi < ¢. This shows that

MY = > (Mlsd+vi) (6.11)
ViePEN\{¢p—sd}

in the Grothendieck group K(Q,). On the other hand, note that ', (E®c My¢) = E®c T, (Mgy).
By induction hypothesis the latter module is isomorphic to E ®c M(s¢,n). Lemma 6.8 now

gives

(FA(E®c Mso) = Y (Mlsd +v1)) in K(Qy). (6.12)
vi€P(E)

We have (I,(My)) = (T (E ®¢ Msq)) — (T(M)) in K(Qy). Hence 6.11 and 6.12 imply
(M(d,m) = (T, (My)) in K(Qy). (6.13)

We define a map 7: M(¢p,n) — T,(My) as follows. Let 1 ® 1 be the canonical gener-
ator of M(¢,m). Let v be any nonzero element of Wh,,, (M[0]) ¢ Wh,,(M,)—the space M[0]
was defined in the proof of Lemma 6.5. We see that m(1®1) := v gives us a well-defined ho-
momorphism. The proof of Lemma 6.5 shows that I, (M) = U(g) - Wh,,, (M,[0]). Moreover,
since M[0] is a U(g!) Verma module, we have dim Wh,,(M[0]) = 1, by Proposition 4.5;
thus ', (M) = Ul(g) - v, and we conclude that 7 is surjective. 6.13 now shows that 7 is an
isomorphism.

(2): By Lemma 6.6 we know that I'(L,) is simple; by exactness, T (Ly) is a quotient
of Fn(Mq,) = M(¢,n); hence T, (L) is isomorphic to the unique simple quotient L(¢,n) of
M(¢p,n).

(3): We know from Lemma 6.4 that Wh, (L) = 0in this case. This implies T';(L,) = 0.

|
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Proof of Theorem 6.2. Since T, is exact, it induces a homomorphism K(9) — K(Q,) be-

tween Grothendieck groups. By Proposition 6.9 we have the following equalities in K(Q,).

M, ) = (M) = ) My Ll (o (L)
Aeh*
= > [My: Ll (LA, 7).

Aebh* Alanti—dominant
Since (L(A,n)) = (L@p,n)) if and only if A € W, we get

M(x,n): Li,m)l = > M, Lyl

weW! (ww!anti—dominant

Note that [My : L,.] # 0 implies that w belongs to the integral Weyl group W, of x.
Clearly, the W! N W, -orbit of p contains precisely one element wy such that (wu)! is

anti-dominant. Theorem 6.2 now follows easily. ]
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