
GENUINE REPRESENTATIONSOF THE METAPLECTIC GROUPJeffrey Adams and Dan Barbaschx0. IntroductionConsider the dual pairs (O(p; q); Sp(2n;R)) with p + q = 2n + 1. Let fSp(2n;R) bethe metaplectic group, and ~O(p; q) the det 12 cover of O(p; q) (we will be more precise inx1). For  a non{trivial additive character of R; the oscillator representation !( ) yieldsa bijection �( ; p; q) between subsets of the irreducible representations of fSp(2n;R) andthose of ~O(p; q) [5]. The representations of fSp(2n;R) which arise are all genuine, i.e. donot factor to the linear group Sp(2n;R). The main result of this paper is an explicitdescription of this correspondence (Theorem 5.1).Fix the discriminant � = (�1)q of the orthogonal space. An immediate corollary ofTheorem 5.1 is a bijection, depending on  , between the setfSp(2n;R)bgenuineof (equivalence classes of) genuine irreducible admissible representations of fSp(2n;R) andthe union [p+q=2n+1(�1)q=� SO(p; q)bof the irreducible admissible representations of the groups SO(p; q) (cf. Corollary 6.2 fordetails). This result con�rms, in the real case, part of a conjecture of Kudla [8], which inturn is a generalization of a result of Waldspurger [22] in the case n = 1.The bijection is one of similarity, rather than of duality, in that it takes small rep-resentations to small representations. For example it takes the trivial representationsof SO(n + 1; n) and SO(n; n + 1) to the even halves of the oscillator representations offSp(2n;R).The metaplectic group is an example of a non{linear group, to which the machinery ofthe L{group does not apply. On the other hand it is of great importance in the theory ofautomorphic representations, so it is of interest to understand it in these terms. With thisin mind notions such as L{packet, stability, etc. may be de�ned for fSp(2n;R) by carryingover the corresponding notions from SO(p; q). Even in the easiest examples it is clear thatTypeset by AMS-TEX1



2 JEFFREY ADAMS AND DAN BARBASCHcare must be taken in making such extensions. For example the representations in an L{packet de�ned in this manner may fail to have the same central character, a phenomenonwhich is forbidden for linear groups (and also for the larger L{packets and Arthur{packetsof [4]).This bijection is natural in terms of the Langlands classi�cation. The Cartan subgroupsof O(p; q) are isomorphic to those of Sp(2n;R), and very roughly speaking the matchingis given by the same characters. For example discrete series representations having the\same" Harish{Chandra parameter correspond. This naturality is expressed in the com-mutative diagram of Proposition 6.1. The correspondence of K{types on the space of jointharmonics also has nice properties; each K{type for fSp(2n;R) is harmonic for precisely onechoice of p; q with given discriminant. Furthermore lowest K{types in the sense of Voganare always of lowest degree in the sense of Howe [5].These properties are special to the range in which the two groups are roughly the samesize. Similar properties also hold for the dual pairs (O(p; q); Sp(2n;R)) with p; q even andp+q = 2n; 2n+2 [11]. In fact our approach is quite close to that of [11], with the additionalcomplications arising from the presence of non{trivial covering groups.x1. PreliminariesIn this section we describe facts about the double covers, dual pairs and generalitiesabout the metaplectic representation that we will need. The main reference for the doublecovers and the metaplectic representation are [10] and [15]. The setup is for any local �eldF; but we concentrate on the case F = R: We omit the details of many straightforwardcalculations.For any positive integer m we equip W = R2m with the usual symplectic structuregiven by J = � 0 Im�Im 0 �, and standard basis e1; : : : ; em,f1; : : : ; fm. Then Sp(2m;R)is the isometry group of this form, and the metaplectic cover fSp(2m) is de�ned by thenormalized cocycle c( ; ) of [15] or [10]. ThusfSp(2m;R) = Sp(2m;R) � Z=2Z; (g; �)(g0; �0) = (gg0; ��0c(g; g0)):If  is a non{trivial (unitary) additive character of R; let !( ) be the Harish{Chandramodule of the oscillator representation of fSp(2m;R); ([15], section 4), ([10], part I). Thecharacter  may be written  a(x) = eiax; up to isomorphism !( a) only depends on theimage of a in R�=R�2 .Let V be a real 2n+ 1{dimensional vector space equipped with a non{degenerate sym-metric bilinear form ( ; ) of signature (p; q), and basis v1; : : : ; vp; v01; : : : v0q for which thematrix of ( ; ) is diag(Ip;�Iq). We let O(p; q) denote the isometry group of ( ; ). NowV 
W has a symplectic structure with standard basis v1 
 e1; : : : ; v0q 
 fn: The natural



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 3map � : O(p; q)� Sp(2m;R) ! Sp(2m(2n+ 1);R) makes (O(p; q); Sp(2n;R)) into a dualpair. We write p0 = [p2 ] and q0 = [ q2 ] for the ranks of O(p) and O(q):The main result concerns the case m = n, but many secondary results hold with littleor no restriction.LetgGL(m) be the two{fold cover of GL(m) de�ned by the cocylec(g; h) = (det(g); det(h))Rwhere (x; y)R is the Hilbert symbol [16] for R. It is convenient to let eO(p; q) be the two{foldcover of O(p; q) de�ned by c(g; h) = (det(g); det(h))nR (p+ q = 2n+ 1). This is split overSO(p; q) and splits over O(p; q) if and only if n is even. For later use we let ~O(p; q)[k] bethe cover de�ned by cocycle c(g; h)k.Now � lifts to a map ~� : eO(p; q) � fSp(2n;R) ! fSp(2n(2n + 1);R). In particular forg 2 O(p; q),(1.1)(a) ~�(g; �) = (�(g); �)and for g 2 Sp(2n;R)(1.1)(b) ~�(g; �) = (�(g); �2n+1�(g))for a certain map � : Sp(2n;R) ! �1.The image of fSp(2n;R) in fSp(2n(2n+ 1);R) is the inverse image of Sp(2n;R), and theimage of the center of fSp(2n;R) is the center of fSp(2n(2n+1);R). Our choice of coveringeO(p; q) implies that the analogous statements hold for O(p; q). It also has the advantagethat n odd and n even may be treated uniformly.Given  , let(1.2)(a) �( )(x; �) := 
(x; 12 )�;where(1.2)(b) 
(a;  ) := 
(a )
( )is the Weil index [15]. We have 
( a) = e 2i�8 sgna and(1.2)(c) �( a)(x; �) = sgn(a)e 2i�8 (sgnx�1)�:This is a character of the ( ; )R double cover of R� ; and so we can compose �( ) with thedeterminant to get a character ofgGL(m):We denote the ensuing genuine character by thesame symbol, �( )(g; �) := �( )(det(g); �):



4 JEFFREY ADAMS AND DAN BARBASCHThis satis�es(1.2)(d) �( )(x; �) = sgn(x)�( )(x; �); �( )(x; �)2 = sgn(x):If V is an orthogonal space of dimension m and discriminant �; we let (cf. [7], 2.5)(1.2)(e) �( ; V )(g; �) = 
(det(g); 12 )�m(�; det(g))R�m:In general, if eG is a double cover of G and � is a representation of eG; we say � is of typek if �(�) = �k for � in the kernel of the covering. With this convention �( ; V )(g; �) is acharacter ofgGL(V ) of type m = dim V:If the signature of V is p; q with p+ q odd, then(1.2)(f) �( ; V ) = �( )�p+q:This is the formula we will use most of the time. By (d) this may be thought of assgn(det)�p+q2 .We �x a genuine character(1.2)(g) �( )(g; �) = � � n even�( )(det(g); �)�1 n oddof eO(p; q). The map � ! �
 � de�nes a bijection between the irreducible representationsof O(p; q) and the irreducible genuine representations of eO(p; q).If  is �xed we drop it from the notation and write ! = !( ), � = �( ), �V = �( ; V )and � = �( ).Pulling !( ) back to eO(p; q) � fSp(2n;R) via ~� we obtain the representation corre-spondence for this dual pair [5]. This is a correspondence between certain irreducibleHarish{Chandra modules.By (1.1) the representations of eO(p; q) and fSp(2n;R) in the image of the correspondenceare genuine, i.e. of type 1. If �; �0 are genuine irreducible representations of fSp(2n;R) andeO(p; q) respectively which correspond, we write(1.3) �0 = �( ; p; q)(�); � = �( )(�0):If  is �xed we write �p;q = �( ; p; q) and � = �( ).For an irreducible (admissible) representation � of a group G; we denote by �� itscontragredient. In particular, for � as in (1.2)(g), we have(1.4)(a) ��(g; �) = � 
 sgn(detg)n:



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 5Combined with the results on page 91 of [12], we �nd the following expressions for ��: Incase G = fSp; let � = Ad�; where � = diag(Im;�Im) (this is an outer automorphism ofG). Then(1.4)(b) �� = ( � 
 sgnn for G = eO(V );� � �; for G = fSp(W ):From (1.2)(d) and the fact that !( ) ' !( )� we see(1.4)(c) �( ; p; q)(�) = �( ; p; q)(��)
 sgnn:Let V 0 denote the same space as V with form Q0 = �Q, of signature (q; p): Let � be thetautological identi�cation of O(V ) and O(V 0): Note that O(V 0) �= O(q; p); and so we canidentify representations of O(p; q) and O(q; p) by choosing such an isomorphism; howeverthe �{correspondences are di�erent. The next lemma gives the relationship between �p;qand �q;p:Lemma 1.5. For any irreducible representation � of fSp(2n;R),�( ; p; q)(�) = �( ; q; p)(��):Proof. The map Id
� is an isomorphism between V 
W and V 0
W which interchangesQ � h ; i and �Q � h ; i: Let 	 be the ensuing isomorphism Sp(V 
W ) ! Sp(V 0 
W ).The diagram O(V )� Sp(W ) �����! Sp(V 
W )�
�??y ??y	O(V 0)
 Sp(W ) �0����! Sp(V 0 
W )is commutative and !( ; V 
W ) = !( ; V 0
W )�	. The lemma follows from the formulafor ��: �Note that (1.4)(c) and the Lemma give(1.6) �( ; p; q)(�) = �( ; q; p)(�)
 sgnn:SupposeW1 andW2 are symplectic spaces. ThenW1�W2 inherits a natural symplecticstructure and there is a canonical map fSp(W1)
 fSp(W2) �! fSp(W1 �W2): We will usethis map in the special case fSp(2m;R) � fSp(2m;R) ! fSp(4m;R): Similarly there is acanonical map eO(p; q)� ~O(p0; q0)! eO(p+ p0; q + q0).



6 JEFFREY ADAMS AND DAN BARBASCHLemma 1.7. Let !n;p;q be the oscillator representation of fSp(2n(p + q);R) restricted tothe dual pair (fSp(2n); eO(p; q)).(1) !n;p;q
!n;p;q ' !2n;p;q
sgnn as representations of fSp(2n;R)�fSp(2n;R)� eO(p; q)with eO(p; q) acting diagonally on the left hand side.(2) !n;p;q
!n;p0;q0 ' !n;p+p0;q+q0 as representations of fSp(2n;R)� eO(p; q)� eO(p0; q0),with fSp(2n;R) acting diagonally on the left hand side.Proof. There are obvious isomorphisms between the polynomial Fock spaces !n;p;q in thestatements. We need to check the equivariance. Assertion (1) for fSp(2n;R) � fSp(2n;R)and assertion (2) for eO(p; q)� eO(q; p) follow from the explicit descriptions of the actionsin [15] on the smooth models.If (X;Y ) is a complete polarization of W then gGL(X) acts on S(X) in the oscillatorrepresentation by !( )(g; �)(�)(x) = jdet(g)j�12�( )(g; �)�1�(g�1x):Since the action of eO(p; q) is via a homomorphism to ~GL(X 
 V ); it acts in !n;p;q bytranslation tensored with �. Assertion (1) for eO(p; q) follows immediately, the twist if n isodd coming from �( )2 = sgn. The proof of assertion (2) is similar. �The �rst part of the next Lemma is due to Rallis [14] and Przebinda [13]. The secondis the result obtained by applying the same technique in the other direction. It says thatthe duality correspondence is a bijection when all O(p; q) with �xed discriminant (andp + q = 2n + 1) are considered at once. Thus we are reduced to proving occurence, andcomputing the correspondence explicitly.Lemma 1.8.(1) Suppose � is a representation of eO(p; q), and �( )(�) 6= 0. Then �( )(�
sgn) = 0.(2) Let � be a genuine representation of fSp(2m;R), and suppose �( ; p; q)(�) 6= 0.Then �( )p0;q0(�) = 0 for all (p0; q0) 6= (p; q) with q0 � q mod (2).Proof. Suppose both � and �
sgn are quotients of !n;p;q restricted to eO(p; q). By Lemma1.7(1) this implies � 
 � 
 sgn is a quotient of !( )2n;p;q 
 sgnn. Since �� ' � 
 sgnn,and the trivial representation is a quotient of � 
 ��, this implies that sgn is a quotientof !2n;p;q. However this is impossible since (cf. Proposition 2.1) the sgn K{type of O(p; q)does not occur in the space of joint harmonics when paired with Sp(4n;R). This proves(1).Now suppose � is a quotient of both !n;p;q and !n;p0;q0 restricted to fSp(2m;R). ByLemmas 1.5(1) and 1.7(2) this implies that � 
 �� is a quotient of !n;p+q0;q+p0 . As in theproof of (1) this implies that the trivial representation is a quotient of !n;p+q0;q+p0 . Thiscan also be ruled out by K-types. By [6], cf. ([11],I.4), the trivial K{type for fSp(2m;R)occurs in this space only if O(p+ q0; q + p0) is quasi{split, i.e. p+ q0 � q � p0 = 0;�1;�2.



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 7This together with p+ q = q + p gives q = q0 � 0; 1, and since the discriminants are equalq = q0. Therefore p = p0; q = q0, proving (2). �Groups will be denoted G;K; T : : : , their Lie algebras by g0; k0; t0 : : : , and their com-plexi�ed Lie algebras by g; k; t : : : . For G reductive, a Cartan involution will be denoted �with �xed points K; k0 and k respectively in G; g0 and g, and g = k� p as usual. For h aCartan subalgebra of g (always �{stable) we will denote a system of roots by � = �(h; g)with positive system �+, and � = �(�+) = 12P� �. This notation will be extended invarious standard ways, for example �c denotes one{half the sum of the positive compactimaginary roots, and �(u) one{half the sum of the roots of a (nilpotent) subalgebra u.Unless otherwise stated G will denote Sp(2n;R), ~G will denote fSp(2m;R): These groupshave maximal compact subgroups K and ~K as chosen in x2. Similarly, G0 will denoteO(p; q) with corresponding ~G0; K 0 and ~K 0.We now describe the semisimple orbits and Cartan subgroups for Sp(2n;R). We beginby choosing representatives for the conjugacy classes of Cartan subgroups as in [2].For non-negative integers m; r; s with 2m + r + s = n we de�ne a Cartan subgroupHm;r;sSp of Sp(2n;R) with Lie algebra hm;r;sSp0 . Write W = R2n = W1 � W2 � W3 whereW1 is spanned by fei; fij1 � i � 2mg, W2 by fei; fij2m + 1 � i < 2m + rg and W3 byfei; fjj2m+r+1 � i � ng. We identify Sp(Wi) and sp(Wi) with their images in Sp(2n;R)and sp(2n;R). For zi = xi + iyi 2 C , 1 � i � m let(1.9)(a) hm;0;0Sp (z1; : : : ; zm) = 0B@ X YX �Y�Y �XY �X 1CA 2 sp(W1)where X = diag(x1; : : : ; xm) and Y = diag(y1; : : : ; ym). For �i 2 R (1 � i � r) we let(1.9)(b) h0;r;0Sp (�1; : : : ; �r) = � X�X � 2 sp(W2)with X = diag(�1; : : : ; �r), and for xi 2 R (1 � i � s) let(1.9)(c) h0;0;sSp (x1; : : : ; xs) = diag(x1; : : : ; xs;�x1; : : : ;�xs) 2 sp(W3):Taking the sum of these elements gives us an element(1.9)(d) hm;r;sSp (z1; : : : ; zm; �1; : : : ; �r; x1; : : : ; xs) 2 sp(2n;R)and this de�nes the Cartan subalgebra hm;r;sSp0 of sp(2n;R), with complexi�cation hm;r;sSp .The compact Cartan subalgebra is t0 = h0;n;00 . Let(1.9)(e) Hm;r;sSp ' (C �)m � (S1)r � (R�)s



8 JEFFREY ADAMS AND DAN BARBASCHbe the Cartan subgroup of Sp(2n;R) with Lie algebra hm;r;sSp0 . These are representatives forthe conjugacy classes of Cartan subgroups of Sp(2n;R). The compact Cartan subgroup isT = H0;n;0Sp . Write the elements of Hm;r;sSp accordingly as(1.9)(f) Hm;r;sSp (z1; : : : ; zm; u1; : : : ; ur; x1; : : : ; x2)(zi 2 C � ; ui 2 S1; xi 2 R�).The Weyl group of hm;r;sSp0 in sp(2n;R) is generated by all permuations of fzig, zi !zi;�zi, all permutations of f�ig, and all permuations and sign changes of fxig. Thisdescribes the semisimple orbits. Note that two semisimple elements hm;r;sSp (z1; : : : ) andhm;r;sSp (z01; : : : ) are in the same orbit if and only if they have the same eigenvalues, and�1; : : : ; �r and �01; : : : ; �0r are the same up to permutation.We write H = TA with h = t�a, T = H\K and A = exp(a0) as usual. The centralizerof A is(1.10)(a) M �= GL(1;R)s �GL(2;R)m � Sp(2r;R):Let(1.10)(b) M =gGL(1;R)s �gGL(2;R)m � fSp(2r;R)with double covers of GL and Sp as at the beginning of this section. There is a naturalsurjection M � ~M .Let ~H (respectively H) be the inverse image of H in ~M (resp. M). Then ~H;H areCartan subgroups of ~M;M . Furthermore(1.10)(c) H ' (fR�)s � (fS1)r � (C � � Z=2Z)mwhere fR� is the two{fold cover of R� de�ned by the Hilbert symbol, and fS1 is the connectedtwo{fold cover of S1 given by z ! z2, jzj = 1.We now turn to a description of the Cartan subgroups and semisimple orbits for O(p; q).We follow [1].Suppose 2m + s � min(p; q). Write V = V1 � V2 � V3 where V1 = span fvi; v0j j 1 �i; j � 2mg, V2 = span fvi; v0j j 2m + 1 � i; j � 2m + sg and V3 = span fvi; v0j j 2m + s <i � p; 2m + s < j � qg. Then SO(Vi) is embedded naturally in SO(V ) and we identifySO(Vi) and so(Vi) with their images in SO(V ) and so(V ). For wj = xj + iyj 2 C let(1.11)(a) hm;0;0(w1; : : : ; wm) = 0B@ Y X�Y XX �YX Y 1CA 2 so(V1)



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 9where X = diag(x1; : : : ; xm); Y = diag(y1; : : : ; ym). For cj 2 R; let(1.11)(b) h0;0;s(c1; : : : ; cs) = � XX � 2 so(V2)where X = diag(c1; : : : ; cs). Finally let r1 = [p�2m�s2 ], r2 = [ q�2m�s2 ], and for �i; �j 2 Rlet(1.11)(c) h0;r1+r2;0(�1; : : : ; �r1 ; �1; : : : ; �r2) = diag(�̂1; : : : ; �̂r1 ; �̂1; : : : ; �̂r2) 2 so(V3)with �̂ = � 0 ��� 0�.Taking the sum of these elements gives us an element(1.11)(d) X = hm;r;sp;q (w1; : : : ; wm; �1; : : : ; �r1 ; �1; : : : ; �r2 ; c1; : : : ; cs) 2 so(p; q)and this de�nes a Cartan subalgebra hm;r;sp;q0 , with complexi�cation hm;r;sp;q . Let(1.11)(e) Hm;r;sp;q ' (C �)m � (S1)r � (R�)sbe the Cartan subgroup of SO(p; q) with Lie algebra hm;r;sp;q0 . This gives a set of represen-tatives of the conjugacy classes of Cartan subgroups of SO(p; q). The compact Cartansubgroup T is H0;n;0p;q . According to the decomposition (1.11)(e), we write elements ofHm;r;sp;q as(1.11)(f) Hm;r;sp;q (z1; : : : ; zm; u1; : : : ; ur1 ; v1; : : : ; vr2 ; x1; : : : ; xs)with zi 2 C � ; ui; vi 2 S1; xi 2 R� .The Weyl group of hm;r;sp;q0 in o(p; q) is similar to the case of Sp. The only change is thaton u1; : : : ; ur1 ; v1; : : : ; vr2 it is of type Br1 � Br2 acting by permutation and sign changeson fuig and fvig separately.The corresponding Cartan subgroup of O(p; q) is isomorphic to Hm;r;sp;q � Z where Z isthe center of O(p; q).The centralizer of A is(1.12)(a) M 0 �= GL(1;R)s �GL(2;R)m �O(p0; q0)with p0 = p� s� 2m; q0 = q � s� 2m. The inverse image of M 0 in ~O(p; q) is(1.12)(b) fM 0 �= GL(1;R)s �GL(2;R)m � eO(p0; q0)[n]:It follows from the preceding discussion that there is a bijection (depending on theadditive character  ) between the regular semisimple adjoint orbits of Sp(2n;R) and the



10 JEFFREY ADAMS AND DAN BARBASCHunion of the regular semisimple adjoint orbits of SO(p; q) with � = (�1)q �xed. This isexplained in more detail in [1], where it is described geometrically in terms of the orbitcorrespondence; here we resort to a simple explicit description.Fix  =  a with a > 0. Let(1.13)(a) X = hm;r;sSp (z1; : : : ; zm; u1; : : : ; ur1 ; v1; : : : ; vr2 ; x1; : : : ; xs)be a regular semisimple element, with u1 > � � � > ur1 > 0 > v1 > � � � > vr2 . Letp = 2m+ r1 + s; q = 2m+ r2 + s+ 1 or p = 2m+ r1 + s+ 1; q = 2m+ r2 + s, dependingon �. Then the orbit of X 2 sp(2n;R) corresponds to the orbit of X 0 2 so(p; q), where(1.13)(b) X 0 = hm;r;sp;q (z1; : : : ; zm; u1; : : : ; ur1 ;�vr2 ; : : : ;�v1; x1; : : : ; xs):If  =  a with a < 0; then the same result holds, with u1; : : : ; ur1 ; �vr2 ; : : : ;�v1replaced by v1; : : : ; vr2 ; �ur1 ; : : : ;�u1.By the preceding description of the semisimple orbits the following result is immediate.Let sp(2n;R)ss be the regular semisimple orbits of sp(2n;R), and so(p; q)ss similarly.Lemma 1.14. Fix  . There is a bijection betweensp(2n;R)ssand [p+q=2n+1(�1)q=� o(p; q)ssWe refer to this as the orbit correspondence.We write X 0 = O( )(X) if the orbits of X and X 0 correspond as in Lemma 1.14.Dualizing, we obtain a correspondence � $ �0 = O( )(�) of regular semisimple elementsof the duals. Finally if X 0 = O( )(X), let h; h0 be the Cartan subalgebras centralizingX;X 0 respectively. The correspondence gives rise naturally to a correspondence of systemsof positive roots, which we write �+ $ �0+ = O( )(�+). As usual we drop  from thenotation if it is �xed.It is evident that every Cartan subgroup of SO(p; q) is isomorphic to a Cartan subgroupof Sp(2n;R). This correspondence preserves conjugacy classes, and is a bijection on con-jugacy classes if SO(p; q) is quasisplit. We use the correspondence of semisimple orbits tochoose these isomorphisms as follows.Fix � = �1 and  . Let (h0;�+) be a pair consisting of a Cartan subalgebra of sp(2n;R)and a system of positive roots. Let � : h0 ! h00 � so(p; q) be an isomorphism. By abuseof notation we write �(�+) for the natural system of positive roots of h00. More precisely,�x X 2 h so that � = f� j�(X) > 0g. Then �(�+) = f�0 j�0(�(X)) > 0g.



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 11Proposition 1.15. Given (h0;�+), there exist p; q, and a pair (h00;�0+) such that �+0 =O(�+) and h00 is isomorphic to h0. This determines p; q uniquely (subject to (�1)q = �).Furthermore the isomorphism � : h0 ! h00 may be chosen so that �(�+) = �0+. Thisdetermines � up to conjugation by Sp(2n;R) and O(p; q).Furthermore � lifts to an isomorphism � : H ! H 0 \ SO(p; q). Write H = TA;M =CentG(A) as usual, and similarly for H 0. Then � extends to an isomorphism of the GLfactors of M and M 0 (cf. (1.10)(a) and (1.12)(a)).x2. Maximal Compact Subgroups and Joint HarmonicsWe �rst consider G = Sp(2n;R), eG = fSp(2n;R). Recall W and J as in x1. ThenG := fg 2 GL(W ) j tgJg = Jg:We choose the maximal compact subgroup K of G to beK := fg 2 G j gJ = Jg g:Since J2 = �Id; it de�nes a complex structure on W: Let WC ' C n denote the re-sulting complex space. Then WC admits a positive de�nite symmetric Hermitian form(v; w) =< Jv;w > +i < v; w > : This gives an isomorphism of K with the isometrygroup U(W C ; ( ; )): We de�ne the determinant character of K to be the pullback of thedeterminant character of this unitary group by the explicit isomorphism chosen.The inverse image eK of K in eG is connected, and its representations may be studiedby passing to the Lie algebra. To be explicit, eK is isomorphic to the det 12 cover of K,i.e. to K = f(g; z)jg 2 U(n); z 2 C � ; det(g) = z2g: The character � : (g; z) ! z of Ksatis�es �2(g) = det(g) and is denoted det1=2. We choose an isomorphism, unique up toconjugation, of eK with K so the character of eK acting on the the unique ~K-�xed line in!( ) goes to det 12 . (This line is spanned by the Gaussian in the Schroedinger model, orthe constants in the Fock model.) We �x the Cartan subgroup T of K as in (1.9), withthe usual positive system �(t; k). Then beKgenuine is parametrized by certain dominantweights � 2 it�0; in the usual coordinates � = (a1; : : : ; an) with a1 � a2 � � � � � an andai 2 Z+ 12 . The distinguished character det1=2 corresponds to the weight (12 ; : : : ; 12). Thisparametrization depends on  .Now consider G0 = O(p; q); eG0 = eO(p; q), with maximal compact subgroups K 0 = O(p)�O(q), and eK 0. We �x the Cartan subgroup T of K 0 as in (1.11), with the usual positivesystem. We identify an irreducible representations of O(p) with its \highest weight" � =(�0; �). Here �0 = (a1; : : : ; ap0) 2 it�0 is the usual highest weight of a �nite dimensionalrepresentation of SO(p). We are following [23], where � = 1 (resp. � = �1) corresponds tothe length of the �rst column less than (resp. greater than) or equal to p0. If p is odd, then�Id acts by (�1)P ai+P bi� in this representation. If p is even and ap0 6= 0 then � = �1give the same representation; in all other cases they are distinct. Furthermore (0;�1) is the



12 JEFFREY ADAMS AND DAN BARBASCHone{dimensional representation sgn(g) = sgn(det(g)) = det(g), and (a1; : : : ; ap0 ; �)
 sgn =(a1; : : : ; ap0 ;��).A similar discussion holds for O(q), and the irreducible �nite dimensional representa-tions of K 0 are parametrized by (a1; : : : ; ap0 ; �)
 (b1; : : : ; bq0 ; �). The irreducible genuinerepresentations of eK 0 are also parametrized in the same way, by tensoring with the gen-uine character � of ~K 0 as in (1.2)(g). (Here � is the character of ~O(p; q) given by (1.2)(g),restricted to ~K 0.)The action of eK � eK 0 on the space of joint harmonics gives a bijection between certainirreducible representations of eK and eK 0 [5]. If a eK{type � corresponds to a eK 0{type �0;we write �0 = H( ; p; q)(�) and � = H( )(�0). As usual we drop  from the notation if ithas been �xed.The next result follows from [6], as in ([11], I.4) and ([3], Proposition 1.4).Proposition 2.1.(1) The correspondence on the space of joint harmonics is as follows.�0 = (a1; : : : ; ap0 ; 1)
 (b1; : : : ; bq0 ; 1)!H( )(�0) = (a1; : : : ; ap0 ;�bq0 ; : : : ;�b1) + (p� q2 ; : : : ; p� q2 )�0 = (a1; : : : ; ak; 0; : : : ; 0;�1)
 (b1; : : : ; b`; 0; : : : ; 0; 1)!H( )(�0) = (a1; : : : ; ak; p�2kz }| {1; : : : ; 1; 0; : : : ; 0;�b`; : : : ;�b1) + (p� q2 ; : : : ; p� q2 )with p� k + ` � n,�0 = (a1; : : : ; ak; 0; : : : ; 0; 1)
 (b1; : : : ; b`; 0; : : : ; 0;�1)!H( )(�0) = (a1; : : : ; ak; 0; : : : ; 0; q�2`z }| {�1; : : : ;�1;�b`; : : : ;�b1) + (p� q2 ; : : : ; p� q2 )with q + k � ` � n.(2) The p; q{degree of � = (a1; : : : ; an) is Pni=1 jai � p�q2 j: The degree of�0 = (a1; : : : ; ak; 0; : : : ; 0; �)
 (b1; : : : ; b`; 0; : : : ; 0; �)is equal to Pi ai + 1��2 (p� 2k) +P bi + 1��2 (q � 2`).Note that the dependence on  is via the dependence of the parametrization of ~K 0-typeson  .The images of H( ; p; q) and H( ) are described by the next Proposition.



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 13Proposition 2.2.(1) Let � be any (genuine) eK{type for fSp(2n). Consider the groups O(p; q) with �xeddiscriminant. Then there is a unique choice of p and q such that � is p; q{harmonic.(2) Let �0 = (a1; : : : ; ak; 0; :::; 0; �)
 (b1; : : : ; b`; 0; : : : ; 0; �) be a (genuine) eK 0{type foreO(p; q). Then �0 is in the space of joint harmonics if and only if k+ 1��2 (p�2k)+`+ 1��2 (q � 2`) � n. This holds for precisely one of �0 and �0 
 sgn.Proof. Part (2) is an immediate consequence of Proposition 2.1, and we omit the details.For part (1), we claim that we may write � uniquely in the form(2.3)(a) (a1; : : : ; ar; �0; b1; : : : ; bs)where(2.3)(b) �0 = (r � s; : : : ; r � s) + ( xz }| {12 ; : : : ; 12 ; yz }| {�12 ; : : : ;�12)with ar � r � s + 12 ; r � s � 12 � b1, and at least one of these inequalities is strict. Thealgorithm in chapter 6 of [18] (see x6 for more detailed calculations) attaches to � anelement �G(�) 2 t�c : It is of the form(2.4) �G(�) = (�1; : : : ; �r; tz }| {0; : : : ; 0; �1; : : : ; �s)with �1 � � � � � �r > 0 > �1 � � � � � �s: Thus r; s if they exist, are uniquely determined.The same holds for x; y from the particular form of �: Running the algorithm in reverseon the �'s as in (2.4), we see that every � must be of the form (2.3)(a) with some choiceof (x; y) (essentially chapter 6 in [18]).Given this form, � corresponds to �0 in the space of joint harmonics for O(2r + t +1; 2s+ t), with�0 = (a1 � r + s� 12 ; : : : ; ar � r + s� 12 ; 0; : : : ; 0; 1)
(�bs + r � s+ 12 ; : : : ;�b1 + r � s+ 12 ; jz }| {1; : : : ; 1; 0; : : : ; 0; �);where (j; �) = � (y;+1) 0 � y � [ t2 ](x;�1) [ t+12 ] � y � s (, 0 � x � [ t2 ]):Similarly � corresponds to �0 in the space of joint harmonics for O(2r+ t; 2s+ t+1), with�0 = (a1 � r + s+ 12 ; : : : ; ar � r + s+ 12 ; jz }| {1; : : : ; 1; 0; : : : ; 0; �)
(�bs + r � s� 12 ; : : : ;�b1 + r � s� 12 ; 0; : : : ; 0;+1);



14 JEFFREY ADAMS AND DAN BARBASCHwhere (j; �) = � (x;+1) 0 � x � [ t2 ](y;�1) [ t+12 ] � x � s (, 0 � y � [ t2 ]):Note that for t even and x = y = [ t2 ] the two cases agree, since for even orthogonal groups(a1; : : : ; 1;+1) �= (a1; : : : ; 1;�1):It remains to show � is p; q{harmonic for at most one choice of q with (�1)q = �. Given�; to determine (p; q) it is enough to �nd p0: Assume � = 1; the other case is similar.Suppose � is p; q{harmonic corresponding to a �0 as in Proposition 2.1. Then in theexpression � = (�1; : : : ; �n); we must have �p0 = p�q2 if � = 1; or �p0 = p�q2 + 1 if � = �1:This is the same as �p0 + (n+ 1� 2p0) = 32 or 52 : But the sequence ri = �i + (n+ 1� 2i)decreases monotonically by at least 2 each consecutive term, so there is at most one i suchthat ri = 5=2 or 3=2; never both. If all ri > 52 then p0 = n; if all ri < 12 ; then p0 = 0: Thisproves (1). �Remark. This Proposition also follows naturally from the calculations in the proof ofProposition 6.1. Namely if � and �0 correspond, then �G(�) and �G(�0) correspond ina simple fashion, implying in addition that r; s; t given by formula (2.4) for �, and the(r0; s0; t0) coming from formula (6.6) coincide. Thus p = 2r+ t+ 1 or p = 2r+ t accordingto the parity of �:Example 2.4. The example of small weights ([18], De�nition 5.3.24) is important. Theseare weights of the form � = ( xz }| {12 ; : : : ; 12 ; yz }| {�12 ; : : : ;�12):Then � is small, i.e. �0 = � and it corresponds to a �0 in the split group O(n + 1; n) aswell as O(n; n+ 1). Speci�cally � corresponds to �0 for O(n+ 1; n) with�0 = (0; : : : ; 0; 1)
 ( rz }| {1; : : : ; 1; 0; : : : ; 0; �)with (r; �) = � (y; 1) 0 � y � [n2 ](x;�1) [n+12 ] � y � n:On the other hand it goes to �0 for O(n; n+ 1) with�0 = ( rz }| {1; : : : ; 1; 0; : : : ; 0; �)
 (0; : : : ; 0; 1)with (r; �) = � (x; 1) 0 � x � [n2 ](y;�1) [n+12 ] � x � n:



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 15x3. Discrete SeriesA genuine discrete series representation � of fSp(2n) is determined by its Harish{Chandraparameter �. In coordinates we write� = (a1; : : : ; ak; b1; : : : ; b`) 2 it�0; (t as in 1.9)with a1 > � � � > ak > 0 > b1 > � � � > b`; ai; bj 2 Z+ 12 and ai+ bj 6= 0 for all i; j. Then �has lowest K{type �+ �(�+)� 2�c(�+) where �+ is the system for which � is dominant.The genuine limits of discrete series for fSp(2n;R) are obtained by allowing � to besingular with respect to a set of simple noncompact roots. Explicitly these representationsare parametrized by pairs (�+; �) where � is dominant with respect to the roots in �+:In coordinates it is of the form( m1z }| {a1 : : : ; a1; m2z }| {a2 : : : ; a2; : : : ; mrz }| {ar : : : ; ar; nrz }| {�ar : : : ;�ar; : : : ; n2z }| {�a2 : : : ;�a2; n1z }| {�a1 : : : ;�a1)with ai 2 Z+ 12 ; a1 > � � � > ar > 0, and jmi � nij � 1 for all i: The lowest K{type of �has the same form as for discrete series, �+ �(�+)� 2�c(�+):Similarly a discrete series representation of SO(p; q) is given by its Harish{Chandraparameter � = (a1; : : : ; ap0 ; b1; : : : ; bq0) with ai; bj 2 Z + 12 satisfying a1 > � � � > ap0 >0; b1 > � � � > bq0 > 0; ai 6= bj 8i; j. Assume for the moment that p is odd and q is even.The lowest K 0{type � = �+ �(�+)� 2�c(�+) is of the form� = (x1; : : : ; xk; 0; : : : ; 0;�1)
 (y1; : : : ; yq0 ;�1) xk; yj 2 Z > 0:The second �1 has no e�ect since yq0 > 0. The two representations given by the �rst �1have the same restriction to S(O(p) � O(q)) since sgn 
 sgn of O(p) � O(q) is trivial onthis subgroup. Passing to O(p; q) we obtain the following Lemma.Lemma 3.1. The discrete series representations � of O(p; q) are parametrized by� = (�0; �) = (a1; : : : ; ap1 ; b1; : : : ; bq0; �)with a1 > � � � > ap0 > 0; b1 > � � � > bq0 > 0; ai; bj 2 Z+ 12 , and ai� bj 6= 0 for all i; j. Here� is determined by its Harish{Chandra parameter �0 and its lowest K 0{type � which is ofthe form(3.2) � = � (x1; : : : ; xp0 ; 1)
 (y1; : : : ; y`; 0; : : : ; 0; �) (xp0 > 0) p even; q odd(x1; : : : ; xk; 0; : : : ; 0; �)
 (y1; : : : ; yq0 ; +1) (yq0 > 0) p odd; q even:The genuine discrete series of eO(p; q) are obtained by tensoring the discrete series ofO(p; q) with �, so we use the same parameters.We will refer to � = (�0; �) as a Harish{Chandra parameter for O(p; q) or eO(p; q). Thelimits of discrete series are parametrized as for fSp(2n;R), by pairs (�+; �) where �0 is�+{dominant and �0 of the form( m1z }| {a1 : : : ; a1; m2z }| {a2 : : : ; a2; : : : ; mrz }| {ar : : : ; ar; n1z }| {a1 : : : ; a1; n2z }| {a2 : : : ; a2; : : : ; nrz }| {ar : : : ; ar)with ai 2 Z+ 12 , a1 > � � � > ar > 0, and jmi � nij � 1 for all i. Again � is of the form(3.2).



16 JEFFREY ADAMS AND DAN BARBASCHTheorem 3.3. Fix  and � = �1. (1) Let � be a genuine discrete series representationof fSp(2n) with Harish{Chandra parameter �. Choose p; q so that � occurs in the orbitcorrespondence for the dual pair (Sp(2n;R); O(p; q)). Recall (Lemma 1.14) p; q is uniquelydetermined, subject to (�1)q = �.Let �0 = O(�) be a corresponding element of so(p; q)�. Then � occurs in the represen-tation correspondence with eO(p; q), and �p;q(�) is the discrete series representation withHarish Chandra parameter (�0; +1). Furthermore � does not occur in the correspondencefor any other ~O(r; s) (with (�1)s = �).If � is the lowest eK{type of �, then � is of lowest p; q{degree, and H(�) is the lowesteK 0{type of �0.Conversely every discrete series of eO(p; q) with Harish-Chandra parameter (�; +1) cor-responds to a discrete series of fSp(2n), and those of the form (�;�1) do not occur in thecorrespondence.(2) The same results as in (a) holds for limits of discrete series, where if � is given bydata (�+; �) then �p;q(�) is given by (O(�+); (O(�); 1)).Explicitly (cf. 1.13) let  =  a with a > 0, and suppose � = (a1; : : : ; ap0 ; b1; : : : ; bq0)with a1 > � � � > ap0 > 0 > b1 > � � � > bq0 . Then p = 2p0+1; q = 2q0 or p = 2p0; q = 2q0+1and �0 = ((a1; : : : ; ap0;�bq0 ; : : : ;�b1); +1):Theorem 3.3 will be proved in x9.Note: The minimal K{type of a discrete series representation or a limit of discrete seriesis unique, and such a representation is determined by its minimal K{type. This followsfrom [6] or in our case from the results of x6.x4. Standard ModulesWe use the version of the Langlands classi�cation of [21], which is valid for disconnectedand non{linear groups of Harish{Chandra's class. Throughout this section G will denoteO(p; q) (p = 2n+1) or Sp(2n;R), with maximal compact subgroup K and covering groups~G and ~K.We �rst consider G = O(p; q). Let H = TA be a �{stable Cartan subgroup of G. Recallfrom x1 that H is isomorphic to(4.1)(a) (C �)m � (S1)r � (R�)s � Zwith 2m+ s � min(p; q), Z the center of O(p; q). The centralizer M of A is isomorphic to(4.1)(b) GL(1;R)s �GL(2;R)m � O(p0; q0); (p0 = p� s� 2m; q0 = q � s� 2m)and the inverse image fM of M in eO(p; q) is isomorphic to(4.1)(c) GL(1;R)s �GL(2;R)m � ~O(p0; q0)[n]:



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 17For inducing data on fM we take an irreducible representation � = � 
 
 
 � of fM . Here� = �1 
 � � � 
 �s is a product of characters, 
 = 
1 
 � � � 
 
m is a product of relativelimits of discrete series representations and � is a limit of discrete series representationof eO(p0; q0). The restriction of � to A is a multiple of a character �; choose a parabolicsubgroup eP = fMN so that Re < �; � >� 0 for all roots � of a in n.The standard module for eO(p; q) associated to this data is(4.1)(d) X( eP; �) = Ind eO(p;q)fMN (�)(here and elsewhere we extend � to fMN trivially on N). This has the same type as does� . If (fM;�) also satisfy condition (F-2) of [21], which we make explicit in Lemma 4.3,then this module has a unique irreducible quotient, and every irreducible representation isobtained this way. The data (fM;�) are unique up to conjugation by eK and will be calledinducing data for �:We next describe standard modules for genuine representations of fSp(2n;R). Recallfrom x1 that a Cartan subgroup H of Sp(2n;R) is isomorphic to(4.2)(a) (C �)m � (S1)r � (R�)s (r + s+ 2m = n)in which case M is isomorphic to(4.2)(b) GL(1;R)s �GL(2;R)m � Sp(2s;R):Let(4.2)(c) M =gGL(1;R)s �gGL(2;R)m � fSp(2s;R):For inducing data we take � = � 
 
 
 � with � = �1 
 � � � 
 �s a product of genuinecharacters, 
 = 
1
� � �

m a product of genuine relative limits of discrete series represen-tations, and � a genuine limit discrete series representation. Then � factors to a genuinerepresentation � of fM; and every genuine representation � of fM comes from a unique such~�: Choosing N satisfying the positivity condition as above, the standard module associatedto the data (M;�) or (fM;�) is(4.2)(d) X( eP; �) = IndfSp(2n;R)fMN (�):It has the same properties as in the case of eO(p; q). We freely pass back and forth between(M;�) and (fM;�) without further comment.Condition (F-2) of [21] for eO(p; q) and fSp(2n;R) is made explicit as follows. Fix agenuine character � ofgGL(1), and write(4.2)(e) �i(x; �) = jxj�isgn(x)�i �( 1 eO(p; q)�(x; �) fSp(2n;R)



18 JEFFREY ADAMS AND DAN BARBASCHA limit of discrete series representation of GL(2;R) is parametrized by (k; �) with k 2 Nand � 2 C ; the lowest K{type of this representation has highest weight k + 1 for O(2):The genuine limit of discrete series representations ofgGL(2;R) are parametrized the sameway by tensoring with �(det); this is independent of � since for such a representation� 
 sgn ' �.Lemma 4.3. Let G = eO(p; q) or fSp(2n;R) as before. The data (fM;�) satisfy condition(F-2) of [21] if and only if:(1) For each GL(2;R){factor, � = 0 implies k 2 Z,(2) �i = ��j implies �i = �j.In this case, X( eP; �) has a unique irreducible quotient.We will prove this in x7.We also use character data for these groups as described in [21], which refers to [18,20].Unexplained notation is as in [21].A limit character for eG is a pair ( eH; 
). Here eH is a Cartan subgroup of eG, and 
 is atriple(4.4)(a) (	;�; 
)consisting of a positive system 	 for the imaginary roots of h in g, a character � of eH,and an element 
 of h�. These must satisfy two conditions. First of all < �; 
 >� 0 for all� 2 	, and d� = 
 + �(	)� 2�c(	).A limit character is called �nal if in addition it satis�es the following two conditions.First of all if � is a simple root of 	 then(4.4)(b) < �; 
 >= 0 implies � is non{compact:Secondly if � is a real root of h in g then(4.4)(c) < �; 
 >= 0 implies �(m�) 6= ��for m� 2 H and �� = �1 as in [18,8.3.11], i.e. � does not satisfy the parity condition. Wewill make condition (4.4)(c) explicit and relate this data to inducing data in x6.Attached to a �nal limit character 
 is a standard module X(
) which has an irreduciblequotient X(
), and the eK{conjugacy classes of �nal limit characters thereby parametrizethe admissible dual of eG. The central character of X(
) is the restriction of � to the centerof G; in particular X(
) is genuine if and only if � is genuine.x5. Main ResultsWe consider the dual pairs ( eO(p; q);fSp(2n;R)) with p + q = 2n + 1. Throughout thissection we �x � = �1, and a non{trivial additive character  of R. Recall (1.2) � = �( )is a genuine character of gGL(m;R) for any m. Also recall for V an orthogonal space ofsignature (p; q), the genuine character �V = �( ; V ) ofgGL(m;R) satis�es �V = �( )�p+q.We write �p;q = �( ; p; q) for the �-correspondence as in (1.3).



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 19Theorem 5.1. Let � be a genuine irreducible representation of fSp(2n), with inducingdata (cf. x4) M =gGL(1;R)s �gGL(2;R)m � fSp(2r;R) � = �
 � 
 �:By Theorem 3.3, there exist p0; q0 satisfying p0 + q0 = 2c + 1 and (�1)s = �(�1)m; suchthat � is in the domain of �p0;q0. Let � = �p0;q0(�):Let p = a+ 2b+ p0; q = a+ 2b+ q0. Then p+ q = 2n+ 1; (�1)q = �, �p;q(�) 6= 0 and �is in the domain of �p;q: The inducing data for �p;q(�) are given byfM 0 = GL(1;R)s �GL(2;R)m � eO(p0; q0)[n] �0 = ���V 
 ���V 
 �0In these formulas, ���V means ��1�V 
 � � � 
 ��k�V ; similarly for �, and �0 is given by�0 = 8><>: � a even,�� a odd, n even,���1 a odd, n odd:Note. To de�ne �0 in Theorem 5.1 we have identi�ed the GL(1) and GL(2) factors of Mand M 0 as in x1.We summarize some useful properties of this correspondence which follow immediatelyfrom Theorem 5.1 and its proof.Corollary 5.2.(1) Let � be a lowest eK{type of �. Then � is of lowest p; q{degree in �.(2) p; q are the unique choice with (�1)q = � and Hp;q(�) 6= 0.(3) Let � be a minimal eK{type of �, and write the element �G(�) of t associated to �by the Vogan algorithm (cf. x6) as�G(�) = (�1; : : : ; �r; tz }| {0; : : : ; 0; �1; : : : ; �s)with �1 � � � � � �r > 0 > �1 � � � � � �s. Then p; q = 2r + t + 1; 2s + t or2r + t; 2s+ t+ 1.(4) �0 = Hp;q(�) is a lowest eK 0{type of �0. In particular �0 has multiplicity one in �0and the standard module of �0.(5) Hp;q de�nes a bijection between the lowest eK{types of � and the lowest eK 0{typesof �0.(6) A representation � of fSp(2n;R) occurs in the correspondence for the dual pair(Sp(2n;R); O(p; q)) if and only if some (equivalently every) minimal eK{type � isp; q{harmonic.(7) A representation �0 of eO(p; q) occurs in the correspondence if and only if some(equivalently every) minimal eK 0-type is harmonic.



20 JEFFREY ADAMS AND DAN BARBASCHA comment is also in order due to our choice of coverings of orthogonal groups (x1).The group eO(p0; q0) in fM 0 is eO(p0; q0)[n], while � is de�ned on eO(p0; q0)[c]. Since n� c � amod (2), there is an identi�cation in the de�nition of �0 if a is odd. Strictly speaking itshould read �0 = (��)� (n even) or �0 = (��)��1 (n odd) where � is the genuine character1
 sgn of the trivial cover O(r; s)� Z=2Z of O(r; s) (cf. 1.2).Let SO(p; q)b be the admissible dual of SO(p; q), i.e. the set of equivalence classes ofirreducible admissible Harish{Chandra modules for SO(p; q), and let fSp(2n;R)bgenuine bethe genuine admissible dual of fSp(2n;R).Corollary 5.3. Fix � and  . Then the representation correspondence gives a bijectionfSp(2n;R)bgenuine 1�1 ! [p+q=2n+1(�1)q=� SO(p; q)b:More precisely, if � is a genuine irreducible representation of fSp(2n); let �00 = �( ; p; q)(�)be the �{lift of � to eO(p; q) for the unique choice of p; q for which this is non{zero. Then�00 
 ��1 factors to O(p; q), and let �0 be the restriction to SO(p; q). Then � ! �0 givesone direction of the bijection.Conversely if �0 is an irreducible representation of SO(p; q), extend �0 to an irreduciblerepresentation of O(p; q) (there are two such choices), and tensor with �. Precisely onesuch choice of representation �00 is in the domain of �( ); let � = �( )(�00).x6. Some CalculationsIn this section we do some calculations involving K{types. The main results are Propo-sitions 6.1, 6.18, 6.21 and 6.29. Throughout this section we �x  =  a with a > 0 (cf.x1).Let � be a K{type for a group G. Proposition 5.3.3 of [18] produces an element � 2 t�where t is a fundamental Cartan subalgebra of g. We refer to this map as the Voganalgorithm, and denote it �! V(�) = �.Proposition 6.1. Let � be a eK{type for fSp(2n), and suppose � is p; q{harmonic. Thenthe following diagram is commutative:Sp(2n) O(p; q)� H����! �0V??y ??yV� O����! �0A small but useful observation is that for the purposes of computation it is betterto compute the inverse of V, i.e. the multi{valued map � ! �. With this in mind wesummarize some standard theory [18], [6].



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 21Let G be a reductive group with a compact Cartan subgroup Tc. We use tc as a �xedcomplex Cartan subalgebra of g (an \abstract" Cartan subalgebra in the sense of [19]).Let �1; : : : ; �k be a set of strongly orthogonal non{compact roots of tc in g. Associated tothis set is a G{conjugacy class of Cartan subgroups of G. We choose H in this conjugacyclass, and writing H = TA as usual we may and do assume t � tc, and t� � t�c .The Cartan involution of g carried back to tc via a Cayley transform gives an involution� of tc. Let 
 = (�; �) 2 it�c;0 � t�c satisfying �(�) = � and �(�) = ��. Then the Cayleytransform identi�es � (resp. �) with an element of it�0 (resp. a�), and 
 with an elementof h�.Let � be an irreducible representation of G with character data (H; 
) = (	;�; 
)(cf. x4). Write 
 = (�; �) with � 2 t�c , and let q = q(�) = l � u be the �{stable parabolicsubalgebra of g de�ned by � ([18],De�nition 5.2.1). The normalizer L of q in G is quasi{split. The minimal K{types of � are of the form(6.2) � = �+ �(u \ p)� �(u \ k) + �Lfor some �ne L \K{type �L.Proof of Proposition 6.1. Let eG = fSp(2n;R); eG0 = eO(p; q), etc. , with maximal compactsubgroups and compact Cartan subgroups chosen as in x2. Given �, let � = X(
) be anirreducible representation with lowest eK{type �. Then 
 = (�; �) with � = V(�) 2 t�c . Bythe above discussion � = �+ �(u \ p)� �(u \ k) + �L. To avoid covering groups we workon the Lie algebras whenever possible.After conjugating by W (tc; g) we may write(6.3) � = ( x1z }| {�1; : : : ; �1; : : : ; xrz }| {�r; : : : ; �r; m0z }| {0; : : : ; 0; yrz }| {��r; : : : ;��r; : : : ; y1z }| {��1; : : : ;��1)with �1 > � � � > �r > 0;xi; yi � 0:The �ne k\ l0{types �L for l0 'Qri=1 u(xi; yi)� sp(2m0;R) are described as follows. Ifxi 6= yi then �L is trivial on this factor. If xi = yi, then �L is trivial, or has highest weight(6.4)(a) �( xiz }| {12 ; : : : ; 12 ; yiz }| {12 ; : : : ; 12);on this factor. Finally on sp(2m0;R); �L has highest weight of the form(6.4)(b) (1; : : : ; 1; 0; : : : ; 0) or (0; : : : ; 0;�1; : : : ;�1)or(6.4)(c) ( uz }| {12 ; : : : ; 12 ; vz }| {�12 ; : : : ;�12):



22 JEFFREY ADAMS AND DAN BARBASCHIn the case of a genuine representation � of fSp(2n;R); �L will have form (6.4)(c) on thisfactor.A straightforward computation now gives:(6.5)(a) � = ( x1z }| {�1; : : : ; �1; : : : ; xrz }| {�r; : : : ; �r; m1z }| {~x� ~y + 12 ; : : : ; ~x� ~y + 12 ;m2z }| {~x� ~y � 12 ; : : : ; ~x� ~y � 12 ; yrz }| {�r; : : : ; �r; : : : ; y1z }| {�1; : : : ; �1):Here ~xk = kXi=1 xi; ~yk = kXi=1 yi;�i = �i + (~xi�1 � ~yi�1) + 12(xi � yi) + 12 + �i2 (�i = 0;�1);(6.5)(b) �i = ��i + (~xi�1 � ~yi�1) + 12(xi � yi)� 12 + �i2 ;�i = � �1 xi = yi and �i 2 Z+ 120 otherwise,and m1 and m2 are any non{negative integers with m1+m2 = m0. We set ~x = ~xr; ~y = ~yr.We now let �0 = O(�), and do the corresponding calculation on the orthogonal group.It follows from Proposition 2.2 that � is p; q{harmonic with p = 2x+m0 + 1; q = 2y+m0or p = 2x+m0; q = 2y +m0 + 1. We consider only the �rst case, the second is similar.From 1.13 we have(6.6) �0 = ( x1z }| {�1; : : : ; �1; : : : ; xrz }| {�r; : : : ; �r; m+0z }| {0; : : : ; 0; y1z }| {�1; : : : ; �1; : : : ; yrz }| {�r; : : : ; �r; m�0z }| {0; : : : ; 0)with m+0 = [m0+12 ] and m�0 = [m02 ].As before with q0 = q0(�0) = l0 � u0(6.7) �0 = �0 + �(u0 \ p0)� �(u0 \ k0) + �L0 :We assume �rst that m0 is even, and compute(6.8)(a)�0 = ( x1z }| {�01; : : : ; �01; : : : ; xrz }| {�0r; : : : ; �0r; m1z }| {0; : : : ; 0)
 ( x1z }| {�01; : : : ; �01; : : : ; xrz }| {�0r; : : : ; �0r; m2z }| {0; : : : ; 0) + �L0 :



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 23Here �0i = �i � p� q2 + (~xi�1 � ~yi�1) + 12(xi � yi) + 12�0i = �i + p� q2 + (~yi�1 � ~xi�1) + 12(yi � xi) + 12 :(6.8)(b)Now l00 'Qri=1 u(xi; yi)�o(m0+1;m0), and on the unitary group factors �ne k0\ l00{typesare as in (6.4)(a). On O(m0 + 1;m0); the �ne L0 \K 0 type �L0 is of the form(6.9) (0; : : : ; 0; �)
 ( sz }| {1; : : : ; 1; 0; : : : ; 0; �):A similar statement holds for eO(m0 + 1;m0), upon tensoring with �.It follows from Proposition 2.1 that if � is any eK{type for fSp(2n;R) of the form (6.2),then �0 = H(�) is of the form (6.7). In (6.7) we take �L0 to be the same as �L on theunitary group factors, and on O(m0 + 1;m0) it is given by (6.9) with(�; s; �) = � (+1;m2;+1) 0 � 2m2 � m0(+1;m1;�1) m0 < 2m2 � 2m0:The other case (p = 2x+m0) is similar. This completes the proof of Proposition 6.1. �Proposition 6.10.(a) Let � = X(
) be an irreducible genuine representation of fSp(2n;R). Write 
 = (�; �)and � as in (6.3), and let q = q(�) = l� u: Then the lowest K{types of X(
) are ofthe form � = �+ �(u \ p)� �(u \ k) + �Lsuch that all the possible �L have the same restriction to sp(2m0;R): Thus �L istrivial except on sp and on factors u(xi; yi) of l0 with xi = yi and �i 2 Z+ 12 .(b) The analogous statement holds for eO(p; q):Proof. This follows from the preceding discussion, and the following Lemma.Lemma 6.11. Let � be a genuine principal series representation of fSp(2n;R) or eO(n +1; n): Then � contains a unique �ne K{type.Proof. For fSp(2n;R); let A = (fR�)n as in x1. We consider � as a character of A. Write� = jxj�isgn(x)�i��1on the ith factor (�i 2 C ; �i = 0; 1). Let n1 =Pi �i, and n0 = n� n1. Then by Frobeniusreciprocity ( n0z }| {12 ; : : : ; 12 ; n1z }| {�12 ; : : : ;�12)



24 JEFFREY ADAMS AND DAN BARBASCHis the unique �ne K{type in the corresponding induced representation.The proof for eO(p; q) is similar. We omit the details. This completes the proof ofProposition 6.10. �We now describe character data in more detail, and relate this to inducing data (cf. x4).Let ( eH; 
) be a limit character for G = fSp(2n;R): As in (6.3) write(6.12)(a)� = ( x1z }| {�1; : : : ; �1; : : : ; xrz }| {�r; : : : ; �r; m0z }| {0; : : : ; 0; yrz }| {��r; : : : ;��r; : : : ; y1z }| {��1; : : : ;��1); 2�i 2 Z:and corresponding to this write(6.12)(b) � = (�11; : : : ; �x11 ; : : : ; �1r; : : : ; �xrr ; �1; : : : ; �m0 ; �1r ; : : : ; �yrr ; : : : ; �11 ; : : : ; �y11 ):For any i; (because we may conjugate by the stabilizer of � in K) we may assume �ji = �jifor all j � min(xi; yi): For the parameter to be genuine, we also need xi 6= yi ) �i 2 Z+12,xi > yi ) �xii = 0, and yi > xi ) �yii = 0:For each i let `i = � xi = yi �i 2 Zjfj � min(xi; yi)j�ji 6= 0gj �i 2 Z+ 12 ;x0i = xi � `i(6.13)(a) y0i = yi � `iti = x0i + y0i:Then set(6.13)(b) ` =Xi `i; t =Xi ti:Let H be the covering group of H de�ned in x1, and let M;fM and M be as in x4. Infact H and M are determined by 
: H is isomorphic tog(R�)m0 � (C �)` �]U(1)tand M is isomorphic to gGL(1)m0 �gGL(2)` � fSp(2t;R):(That H is so determined is due to the condition that 
 satis�es condition (4.4)(b); seethe proof of Proposition 6.15.)



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 25Now 
 determines a (relative) discrete series representation � ofM , explicitly describedas follows. For each i there are `i limits of (relative) discrete series representations ofgGL(2), all with lowest K{type (2�i + 1)�, and the center acting by jdetj�ji .On fSp(2t;R) there is a limit of discrete series representation with Harish{Chandraparameter(6.14)(a) ( x01z }| {�1; : : : ; �1; : : : ; x0rz }| {�r; : : : ; �r; y0rz }| {��r; : : : ;��r; : : : ; y01z }| {��1; : : : ;��1):The positive imaginary roots on this factor are the corresponding restriction of 	.The character � of eH satis�es d� = 
+ �(	)� 2�c(	). Thus � is determined by 
 and	 except on the cover of the R� factors. We consider � as a character of H, genuine oneach factor for which the cover is non{trivial (so � factors to a genuine character of eH).For i = 1; : : : ;m0 write � on the corresponding factor of fR� as(6.14)(b) �(x; �) = jxj�isgn(x)�i�(x; �)�1:Proposition 6.15. ( eH; 
) satis�es condition (4.4)(b) if and only if �i = ��j ) �i = �j.Proof. Suppose < �; 
 >= 0. If � is a long root and 
 is data for a genuine representation,then �(m�) = �i, and (4.4)(b) is immediate for these roots. If � is a short root on afactor of C � then a straightforward calculation shows that (4.4)(b) holds if and only if�i 2 Z. This is taken care of by our choice of H: the short real roots for which �(
) = 0and �i 2 Z+ 12 are imaginary. If � is a short real root on the factors of R� then a similarcalculation shows (4.4)(b) is equivalent to the condition stated in the Proposition.The preceding steps may be reversed to express character data in terms of inducingdata. �We turn next to an orthogonal groupO(p; q) = O(2p0+1; 2q0): Let 
 be a limit character,and write(6.16)(a) � = ( x1z }| {�1; : : : ; �1; : : : ; xrz }| {�r; : : : ; �r; m+0z }| {0; : : : ; 0)
 ( y1z }| {�1; : : : ; �1; : : : ; yrz }| {�r; : : : ; �r; m�0z }| {0; : : : ; 0)as in (6.6). Then write the real part of the parameter as(6.16)(b) � = (�11; : : : ; �x11 ; : : : ; �1r; : : : ; �xrr ; �1; : : : ; �m+0 )
(�11 ; : : : ; �y11 ; : : : ; �1r ; : : : ; �yrr ; �m+0 +1; : : : ; �m+0 +m�0 ):The corresponding Cartan subgroup H of SO(p; q) is isomorphic to(R�)m+0 +m�0 � (C �)` � U(1)twhere ` and t are de�ned as in the previous case (cf. (6.12)(c)). Again � is determined by
 except on the copies of R� . Write �(x) = jxj�isgn(x)�i on these terms.



26 JEFFREY ADAMS AND DAN BARBASCHLemma 6.17. 
 satis�es condition (4.4)(b) if and only if �i = ��j ) �i = �j.Proof. If � is a short root then m� = 1 and �� = �1 [18, 8.3.8 and 8.3.11] The �rst factcomes down to the isomorphism SO(2; 1) ' PGL(2;R), and the second from a straight-forward calculation that the integers di of [18,8.3.9] are even. Thus (4.4)(b) is automaticfor these roots. The proof for the other roots is the same as for the symplectic group. Weomit the details. �This result extends in the obvious way to O(p; q) and eO(p; q).Proposition 6.18.Let eG = fSp(2n;R) or eO(p; q) and let(6.18)(a) Ind eGfMN (�)be a standard module for eG (cf. x4). Let � be a minimal eK{type of (6.18)(a), and suppose� is p; q{harmonic. Let �M be the (unique) minimal K̂ \M{type of �. Then degp;q(�) =degp;q(�M ), and �M is contained in the restriction of � to K̂ \M .Proof. We �rst consider eG = fSp(2n;R): Write V(�) = � as in (6.3), � as in (6.5)(a), andother notation as in (6.5)(b). By the proof of Lemma 6.11 we have m1 = Pi �i with �written as in (6.13).Then p = 2~x+m0 +1; q = 2~y+m0 or p = 2~x+m0; q = 2~y+m0 + 1. We consider onlythe �rst case, the second is similar. Let z = p�q2 = ~x� ~y + 12 .By Proposition 2.1, degp;q(�) =Pi xij�i � zj+Pi yij�i � zj+m2.It is not hard to see that �i � z � 0 � �i � z. This implies the degree of � is the sumof the following terms: =Xi `i(2�i + 1)(6.19)(a) +Xi x0i(�i � z)(6.19)(b) �Xi y0i(�i � z)(6.19)(c) +m2(6.19)(d)On the other hand with � described preceding Proposition 6.15 we compute the lowestK̂ \M{type �M of �. We pull this back to the group M . The degree of �M is the sumof the degrees of the factors. With notation as in (6.13), on each of the `i factors of typegGL(2); the degree of �M is 2�i + 1: This contributes(6.20)(a) Xi `i(2�i + 1) (independent of �i)



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 27to the degree of �M :On the fSp(2t;R) factor, � is a limit of discrete series representation with Harish{Chandra parameter � given by (6.14)(a). De�ne ~x0; ~y0; �0i etc. by applying (6.5)(b). Then�M on this factor is (2~x0 + 1; 2~y0){harmonic. With z0 = (2~x0 + 1� 2~y0)=2; we see that thedegree of �M is the sum of Xi x0ij�0i � z0j;(6.20)(b) Xi y0ij�0i � z0j:(6.20)(c)By (6.13)(a) x0i � y0i = xi � yi for all i. Therefore by (6.5), ~x0i � ~y0i = ~xi � ~yi, �0i = �i, and�0i = �i for all i. Also ~x0 � ~y0 = ~x� ~y and so z0 = z. It follows that (6.20)(b) (resp. (c))equals (6.16)(b) (resp. (c)).Finally on eachgGL(1) factor, the degree is �i, which gives a contribution of(6.20)(d) m2to the degree of �M : Comparing (6.16) to (6.20) we conclude that deg(�) = deg(�M ). Thiscalculation also shows that the highest weight of �M is the same as the highest weight of� (independent of the choice of �), proving the last claim of the Proposition in this case.The proof for eO(p; q) is similar. We won't use this fact, and so we leave the details tothe reader. �Proposition 6.21. Let � be a lowest eK{type of an irreducible genuine representation �of fSp(2n;R), and choose p; q so that � is p; q{harmonic. Then � is of lowest p; q{degreein �, and in the standard module of �.Proof. Obviously it is enough to prove the second claim. We use notation as in the proofof Proposition 6.18. In particular write � = X(
), � as in (6.3) and � as in (6.5)(a). Letp; q and z be as in the proof of Proposition 6.18, and write deg = degp;q. For any k{tuplewrite degz(x1; : : : ; xk) =Pi jxi� zj. With ~x; ~y;m0 as in (6.5) (computed for �), write anyeK{type 
 as(6.22) 
 = (
+; 
0; 
�) = (a1; : : : ; a~x; c1; : : : ; cm0; b~y; : : : ; b1):Then deg(
) = degz(
+) + degz(
0) + degz(
�). By (6.5)(a) � satis�es(6.23) �1; : : : ; �~x � z � �~y; : : : ; �1:The standard module X(
) may be realized as a derived functor module from the parabolicsubalgebra q = q(�) of g [18]. By the generalized Blattner formula ([18], Theorem 6.3.12)the highest weight of any eK{type �0 of � may be written(6.24) �0 = �+X� m�� (m� � 0)



28 JEFFREY ADAMS AND DAN BARBASCHwhere the sum runs over the roots of tc in l and u \ p, and � is a lowest eK{type of �.Furthermore if the sum is restricted to roots in l, then the resulting weight is the highestweight of a K̂ \ L{type in the corresponding principal series representation XL(
) of eL.In our coordinates these roots are those in the following table.�i � �j 1 � i; j � ~x(6.25)(a) ��i � �j ~x+m0 < i; j � n(6.25)(b) �(�i + �j) 1 � i � ~x; ~x+m0 < j � n(6.25)(c) �i + �j ; 2�i 1 � i � ~x < j � ~x+m0(6.25)(d) ��i � �j ;�2�j ~x < i � ~x+m0 < j � n(6.25)(e) ��i � �j ;�2�j ~x < i; j � ~x+m0(6.25)(f)These roots also satisfy< �; � >� 0; and if < �; � >> 0 then � is not of the form �i � �j :Lemma 6.26. If 
 is any k{tuple satisfying (6.23), thendeg(
 +Xa;b;cm��) � deg(
)for any m� � 0. Here Pa;b;c denotes a sum over roots of the form (6.25)(a,b,c).Proof. Adding roots of the form �i + �j and ��i � �j of type (6.25)(a{b) changes 
 to a 
0satisfying (6.23) and such that deg(
0) � deg(
); with equality if and only if all m� = 0:So we may as well assume that no such roots occur. Then
 +Xa;b;cm�� = (: : : ; ai + ki + �i; : : : ; : : : ; c1; : : : ; cm0 ; : : : bj + `j + �j ; : : : )where P ki =P lj and P�i =P�j = 0: ThenX jai + �i + ki � zj+X jbj + �j + `j � zj �X(ai � z + �i + ki) +X(z � bj � �j � `j) =X(ai � z) +X(z � bj):The claim follows. �Lemma 6.26 applies to �+Pd;e;f m��; and gives(6.27)(a) deg(�0) � deg(�+ Xd;e;fm��):



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 29The right hand side of (6.27)(a) equalsdegz([�+Xd m��]+) + degz([�+ Xd;e;fm��]0) + degz([�+Xe m��]�)(6.27)(b)
� degz(�+) + degz([�+ Xd;e;fm��]0) +Xd;e m� + degz(��)(6.27)(c)
� degz(�+) + degz([�+Xf m��]0) + degz(��):(6.27)(d)

Here (d) follows from repeated applications of the inequality degz([
+�]0)+1 � degz(
0)for any weight 
 and � in (6.25)(d,e).Separating the sum (6.24) into roots of l and u \ p gives [� + Pf m��]0 = [� +P�2�(tc;l)m��]0, so by the discussion following (6.24) this is a K̂ \ L{type of a prin-cipal series representation of fSp(2m0;R). This has (unique) lowest K̂ \ L{type( m1z }| {12 ; : : : ; 12 ; m2z }| {�12 ; : : : ;�12)(cf. (6.5)(a)).Lemma 6.28. Let � be a minimal principal series representation of fSp(2n;R), containingthe (unique) �ne K{type � = ( m1z }| {12 ; : : : ; 12 ; m2z }| {�12 ; : : : ;�12) (cf. Lemma 6.11). Then � is oflowest n+ 1; n{degree in �.Proof. This follows easily from Frobenius reciprocity. We omit the details. �Proposition 6.21 follows from (6.27)(d) and Lemma 6.28. �We only need part (1) of the next Proposition for the proof of the main results in x5.Proposition 6.29.Let � be a lowest eK 0{type of an irreducible genuine representation � of eO(p; q).(1) If � is a discrete series representation then � is of lowest degree in �.(2) For any �, assume � occurs in the space of joint harmonics. Then � is of lowestdegree in �.



30 JEFFREY ADAMS AND DAN BARBASCHProof. We may safely ignore the covering groups, and for the remainder of this section welet G = O(p; q) = O(2p0 + 1; 2q0); K = O(p)�O(q), etc.Let � be a discrete series representation ofG with Harish{Chandra parameter � = (�0; �)(cf. x3) and lowest K{type �: Let �0 be any K{type of �.Suppose � is of the form(6.30)(a) � = (a1; : : : ; ar; 0; : : : ; 0; �)
 (b1; : : : ; bq0; �)for some 0 � r � p0 (cf. x3). Write any K{type 
 as 
 = (
+; 
0; 
�) with 
+ =(a1; : : : ; ar), 
� = (b1; : : : ; bq0; �) and 
0 = (ar+1; : : : ; ap0 ; �). Then deg(
) = deg0(
+) +deg(
0)+deg(
�) where the second and third terms are for the groups O(p�2r) and O(q)respectively.It follows from the formula � = �0 + �(u \ p)� �(u \ p) that �0 may be written(6.30)(b) �0 = (�1; : : : ; �r; p0 � r � 12 ; : : : ; 32 ; 12 ; �1; : : : ; �q0):By induction by stages ([18], Corollary 6.3.10) it follows that � may be realized as a derivedfunctor module for q = l� u with L ' U(1)q0+r �O(p� 2r), from a one{dimensional rep-resentation �L of L. The O(p�2r) component of �L is the one-dimensional representation(0; : : : ; 0; �) realized on the space C � . By the Blattner formula (6.24) it follows that(6.31) �0 = �+X� m��with � 2 u \ p.The roots of u \ p are (among those) of the form�(ei � ej); ei + ej ; ej 1 � i � r; p0 + 1 � j � n(6.32)(a) ��i + �j ; r + 1 � i � p0; p0 + 1 � j � n(6.32)(b)As in (6.27)(a{c) it is immediate thatdeg(�0) � deg(�+Xb m��)(6.33)(a)
� deg(�+) + deg([�+Xb m��]0) + deg(��) +Xb m�deg(��)(6.33)(b)where the subscripts denote the roots of (6.32)(a,b). Noting that [�+Pbm��]0 = �00; itis enough to show(6.34) deg(�00) +Xb m� � deg(�0):



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 31This requires a re�nement of the Blattner formula. We only consider the factor O(p� 2r)of L. Let �; � 0 be the O(p � 2r) factor of H0(u \ k; V�) and H0(u \ k; V�0) respectively.These are the �nite dimensional L\K{modules with the same highest weight as � and �0respectively. It follows from [18,6.3.12] (a sharpening of (6.31)) that (with m =Pbm�),(6.35) mult[� 0 : � 
 Sm(u \ p)jO(p�2r)] > 0:Recall from x1 that we realized each representation of O(p � 2r) as the highest weightfactor in a representation of U(p� 2r). As a module for O(p� 2r); u \ p is isomorphic toa direct sum of copies of the standard module; thus it is a module for U(p � 2r) as well.So we can decompose Sm(u\ p) with respect to U(p� 2r) and then restrict to O(p� 2r):It follows that the highest weight of any irreducible summand of Sm(u \ p), is of theform (c1; : : : ; cp�2r) with X ci = m; ci � 0 for all i;when written as a weight for U(p� 2r):Lemma 6.36.Let �; � 0 be irreducible representations of O(n), with � one{dimensional. Let 
 be anirreducible representation of U(n) with highest weight (c1; : : : ; cn), ci � 0. Supposemult[� 0 : � 
 (
jO(n))] > 0:Then deg(� 0) +Pni=1 ci � deg(�).Proof. This is obvious if � is trivial, so assume � = sgn. Replacing � 0 with � 0 
 sgn it isenough to show(6.37) mult[� 0 : 
jO(n)] > 0) deg(� 0 
 sgn) +X ci � n:Write � 0 = (a1; : : : ; ak; 0; : : : ; 0; �), so deg(� 0) =P ai + 1��2 (n� 2k). If the multiplicity isgreater than zero, then 
 must contain a vector of weight (d1; : : : ; dn) which is a highestweight vector for � 0: It follows that:(6.38)(a) di � dn+1�i = ai i � k,(b) di � dn+1�i = 0; k + 1 � i � [n2 ],(c) di � dn+1�i � 1��2 mod (2); k + 1 � i � [n2 ],(d) dn+12 � 1��2 mod (2) if n is odd.In addition, the relations Pni=1 di =Pni=1 ci and di � 0 for all i; hold.By (6.38)(a), di � ai � 1 for 1 � i � k: Thus(6.39) kX1 (ai + di) � 2k:



32 JEFFREY ADAMS AND DAN BARBASCHIf � = 1; then (6.37) becomesPk1 ai+Pn1 di � 2k;, which is immediate from (6.38). Assume� = �1. We need to show Pk1(ai + di) +Pnk+1 di � n. By (6.38)(c) and (6.38)(d), we getdi � 1 for k + 1 � i � n� k: The assertion follows from this together with (6.39). �This also completes the proof of Proposition 6.29(1). �Part (2) of the Proposition may be proved similarly, using an extensionion of Lemma6.36 to general � , and a version of Lemma 6.28 for O(p; q): Since we won't need it we omitthe details, but we note that it is also an immediate consequence of Theorem 5.1.x7. Occurence of the Discrete SeriesIn this section we prove that the entire genuine discrete series of fSp(2n;R), and half ofthe genuine discrete series of eO(p; q), occur in the correspondence. We assume p+q = 2n+1throughout, and �x  . The arguments hold for p+ q = 2n as well, recovering some of theresults of [11]. We depart from our convention of x1 and let ~O(p; q) = O(p; q) if n is even,and we let fSp(2n;R) = Sp(2n;R) when considering a dual pair (Sp(2n;R); O(p; q)) withp+ q even.Proposition 7.1.(1) Let � be a genuine discrete series representation of fSp(2n;R). Then, for any� = �1, � occurs in the correspondence with some eO(p; q), (�1)q = �.(2) Let � be a genuine discrete series representation of eO(p; q). Then precisely one of� and � 
 sgn occurs in the correspondence with fSp(2n;R).This follows from a doubling of variables argument due to Kudla and Rallis. The proofis divided into a series of Lemmas.For an irreducible representation � of fSp(2n;R) (resp. eO(p; q)), let Rn;p;q denote themaximal quotient of !n;p;q on which fSp(2n;R) (resp. eO(p; q)) acts by a multiple of � [5].We embed Sp(2n;R) � Sp(2n;R) diagonally in Sp(4n;R): This induces a natural mapfSp(2n;R) � fSp(2n;R) ! fSp(4n;R): Similarly eO(p; q)� ~O(q; p) maps to ~O(p+ q; p+ q).Lemma 7.2.(1) For any irreducible representation � of fSp(2n;R),(7.3)(a) �p;q(�) 6= 0, HomfSp(2n;R)�fSp(2n;R)(R2n;p;q(11); �
 �) 6= 0:(2) For any irreducible representation � of eO(p; q),(7.3)(b) �(�) 6= 0, Hom eO(p;q)� ~O(q;p)(Rn;p+q;q+p)(11); � 
 �) 6= 0:



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 33Proof. We prove (1), the proof of (2) is similar. To conserve notation let G = fSp(2n;R),G0 = eO(p; q), and let !n be the oscillator representation for the dual pair (G;G0). Thenaccording to ([11], I.8),(7.4)(a) HomG(!n; �) 6= 0, HomG�G0(!n; � 
 �0) 6= 0 for some �0:Thus if HomG(!n; �) 6= 0; then HomG�G�G0�G0(!n 
 !n; � 
 � 
 �0 
 �0) 6= 0: Since �0is a genuine representation of eO(p; q), (�0)� ' �0 
 sgnn. Therefore sgnn is a quotient of�0 
 �0, which gives(7.4)(b) HomG(!n; �) 6= 0) HomG�G��(G0)(!n 
 !n; � 
 � 
 sgnn) 6= 0;where �(G0) is the diagonal subgroup of G0 �G0. By Lemma 1.7 we may replace !n 
 !nwith !2n 
 sgnn: Thus the right hand side of (7.4)(b) is equivalent to(7.4)(c) HomG�G��(G0)(!2n; � 
 � 
 11) 6= 0, HomG�G(R2n;p;q(11); �
 �) 6= 0:Thius proves one direction of the statement. On the other hand, if (7.4)(c) holds (i.e. theright hand side is nonzero), the same is true for (7.4)(b), and ignoring the �(G0) action,we see that HomG�G(!n 
 !n; � 
 �) 6= 0. This is easily seen to imply HomG(!n; �) 6= 0,proving the Lemma. �Let P = MN be the stabilizer of the Lagrangian subspace L0 =< e1; : : : ; e2n >, and~P = ~MN its inverse image in fSp(4n;R). For � 2 Z=4Z we consider the Harish{Chandramodule of the induced representation(7.5)(a) IndfSp(4n;R)~P (��):We are using normalized induction, so this representation is unitarily induced and com-pletely reducible. Similarly, for G0 = eO(p; q); we consider the induced representation(7.5)(b) Ind ~O(2n+1;2n+1)~P (�);where the Levi component of P = MN is isomorphic to GL(m); ~M ' M � Z=2Z, and� = 11
 sgn.Lemma 7.6.(1) For � = �1 IndfSp(2n;R)~P (��) ' Mp+q=2n+1p�q=� R2n;p;q(11):(2) Ind ~O(2n+1;2n+1)~P (�
 1) ' Rn;2n+1;2n+1(11)� (Rn;2n+1;2n+1(11)
 sgn):Proof. Part (1) is proved in [9], and both (1) and (2) are in [24]. �



34 JEFFREY ADAMS AND DAN BARBASCHLemma 7.7.(1) Let � be a genuine irreducible representation of fSp(2n;R). Then �p;q(�) 6= 0 forsome p; q with (�1)q = � if and only if(7.7)(a) HomfSp(2n;R)�fSp(2n;R)[IndfSp(2n;R)~P (��); � 
 �] 6= 0; for � = �(�1)n:(2) For � an irreducible representation of eO(p; q), �(�) 6= 0 or �(� 
 sgn) 6= 0 if andonly if(7.7)(b) Hom eO(p;q)� ~O(q;p)[Ind ~O(2n+1;2n+1)~P (�); � 
 �] 6= 0:Proof. This follows immediately from Lemmas 7.2 and 7.6.Lemma 7.8. Let � be the Harish{Chandra module of a genuine discrete series represen-tation of fSp(2n;R) (resp. eO(p; q)). Then the space (7.7)(a) (resp. (b)) is non{zero.Proof. The two cases are similar, so we treat only fSp(2n;R). Let X be the variety ofLagrangian subspaces of R4n . Then X ' fSp(2n;R)= ~P : Let L2� I2n(�) be the L2{inducedversion of (7.5)(a). This is realized on L2 sections of the induced bundle B = fSp(4n;R)� ~P(��) over X .Let L =< e1 + en+1; : : : ; en + e2n; f1 + fn+1; : : : ; fn + f2n >. Then the orbit O of L byG = Sp(2n;R) � Sp(2n;R) is open in X . Let H be the stabilizer of L in G so O ' G=H.Then H ' Sp(2n;R) is embedded in G ' Sp(2n;R)�Sp(2n;R) via g ! (g; �(g)) where �is the outer automorphism of Sp(2n;R) of 1.4. Let Z ' Z=2Z be the kernel of the coveringmap fSp(2n;R) ! Sp(2n;R). Passing to the coverings we see that the map(7.9)(a) O ' ~G= ~H ! fSp(2n;R)=Zgiven by (g; h; �) ~H ! (g�(h�1); �)Z is an isomorphism, and induces an isomorphism be-tween the restriction of B to O and(7.9)(b) ~G�Z �jZ :Under this isomorphism the action of ~G on O becomes(g; h; �) � (x; �)Z = (gx�(h�1); ��)Z(g; h; x 2 Sp(2n;R)). Thus sections of the bundle (7.9)(b) are identi�ed with L2�(fSp(2n;R)),i.e. L2 functions on fSp(2n;R) transforming by � under Z, with fSp(2n;R)�fSp(2n;R) act-ing by conjugation twisted by � . Since � takes � to �� it follows that the discrete spectrum



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 35of this space is precisely the sum of � 
 � where � runs over the genuine discrete seriesrepresentations of fSp(2n;R).Therefore there is a non{zero map� : L2 � I2n(�) restriction�! L2�(fSp(2n;R)) ! � 
 �intertwining the action of fSp(2n;R) � fSp(2n;R), where the �rst map is restriction ofsections to O.To complete the proof we need to replace L2 � I2n(�) and � by their Harish-Chandramodules. Let ~K (resp. ~K) be the maximal compact subgroup of fSp(4n;R) (resp. fSp(2n;R)).The restriction of the ~K {�nite functions I2n(�) of L2 � I2n(�) is a dense subspace of the~K � ~K{�nite functions on O. Therefore � restricted to I2n(�) is non{zero. �Proof of Proposition 7.1. Part (1), and the occurence of either � or � 
 sgn in the corre-spondence in (2), is an immediate consequence of Lemma 7.8. The fact that both � and� 
 sgn cannot occur in (2) was proved in Lemma 1.5. �x8. Induction PrincipleIn this section we turn to a more general setting and let V be an orthogonal space ofsignature (p; q) and W be a symplectic space of dimension 2n, with no further restrictions.Throughout this section we �x  and let ! be the corresponding oscillator representationfor the dual pair (O(V ); Sp(W )).Suppose we are given a decomposition(8.1)(a) W =W+1 � � � � �W+r �W 0 �W�1 � � � � �W�rwhere all W�j are isotropic, W+j and W�j are in duality, and W 0 is a non{degeneratesymplectic space or 0. Let P = MN be the stablizer in Sp(W ) of the 
ags 0 � W�1 �W�1 �W�2 � � � � � W� = PiW�i . Let ~P = ~MN be the inverse image of P in ~Sp(W ).There is a surjective map(8.1)(b) M =gGL(W1)� � � � �gGL(Wr)� fSp(W 0)� ~M:Let(8.1)(c) V = V +1 � � � � � V +r � V 0 � V �1 � � � � � V �rbe a decomposition of V , and de�ne P 0 =M 0N 0 and ~P 0 = ~M 0N 0 in an analogous manneras for the symplectic group. In this case ~M 0 ' GL(V1)� � � � �GL(Vr)� ~O(V 0):Let !M denote the oscillator representation for (M;M 0). This is the product of theoscillator representations for the dual pairs (GL(Wj); GL(Vj)) and (Sp(W 0); O(V 0)). Itgives a correspondence between representations of M and(8.1)(d) M 0 =gGL(V1)� � � � �gGL(Vr)� ~O(V 0):If one member of a dual pair is the trivial group, then we take the trivial representationfor the oscillator representation for this pair.Set � = �( ) and �V = �( ; V ) as in (1.2).



36 JEFFREY ADAMS AND DAN BARBASCHDe�nition 8.2 ([7], 1.1.1). For a; b 2 Z de�ne the character �(a; b) of gGL(1) by�(a; b)(x; �) = �(xa; �a)�(xb; �b)�1= 
(xa; 12 )
(xb; 12 )�1�a�b= 8><>: 1 a � b(2)��1(x; �) a even; b odd�(x; �) a odd; b even:For (g; �) 2gGL(m) let �(a; b)(g; �) = �(a; b)(det(g); �).Note that �(a; b) is of type a+ b.Let ki = dim(Vi); ~ki =Pij=1 kj ; k = ~kr; `i = dim(Wi); and ~̀i =Pij=1 `j ; ` = ~̀r.De�nition 8.3. Let m = p+ q, and de�ne the character � of M by:� = ( jdetjn�m2 �~̀j+~kj+ 12 `j� 12kj+ 12 �(kj; k)�(detk; �k)�V gGL(Wj)1 fSp(W 0)and �0 of M 0 by�0 = ( jdetj�n+m2 +~̀j�~kj� 12 `j+ 12kj� 12 �(`j; `)�(det`; �`) gGL(Vj)�(det�`; �)(�1; det)`(n�`)R � ~O(V 0):Theorem 8.4: Induction Principle I. Let � be a representation of M and �0 a repre-sentation of M 0. Suppose there is a non{zero M �M 0 equivariant map(8.5)(a) !M ! � 
 �0:Then there is a non{zero ~O(V )� fSp(W ) equivariant map(8.5)(b) � : ! ! IndfSp(W )~P (��)
 Ind ~O(V )~P 0 (�0�0):Here �� factors to ~M , and extends to ~P trivially on N , and �0�0 factors to ~M 0 and extendsto ~P 0 trivially on N 0.Note: The cover ~O(V 0) of O(V 0) in (8.1)(d) (resp. (8.3)) is ~O(V 0)[n� `] (resp. ~O(V 0)[`]).Then �0�0 and the representation in (8.5)(b) are naturally representations of the covers ofO(V 0)[n] and O(V )[n].Proof. The proof is essentially the same as the proofs of ([7], Theorem 2.5) and ([3],Corollary 3.21). It follows from Frobenius reciprocity and the following two Lemmas.



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 37Lemma 8.5. In the setting of Theorem 8.4, suppose r = 1 so that V = V + � V 0 � V �,PV = MVNV is the stabilizer of V �, MV ' GL(V +)� O(V 0), and similarly for Sp(W ).Then there is a surjective ~MV � ~MW equivariant map! � !M�where � is the following character of MV �MW .� = 8>>>><>>>>: jdetj�n+ 2̀ 
(det`; 12 )�` (g; �) 2gGL(V +)jdetj�m2 + k2 
(detk; 12 )�V (g; �) 2gGL(W+)
(det`; 12 )(�1; det)n`R �` (g; �) 2 ~O(V 0)1 (g; �) 2 fSp(W 0)Proof. The proof is the same as the proof of ([3], Proposition 3.13). �Lemma 8.6. Let (GL(V ); GL(W )) be a dual pair. Suppose V = V1 � V2, and let PV =MVNV be the stabilizer of V1, so MV ' GL(V1) � GL(V2). Let M =gGL(V1) �gGL(V2),and let ~P = ~MN be the inverse image of P in gGL(V ). Similarly let W = W1 �W2, etc.Let !M be the oscillator representation for the dual pair (MV ;MW ). Set ki = dim(Vi) and`i = dim(Wi). Then there is a surjective ~P � ~P equivariant map ! � !M�, where � isthe following character: � = 8>>>><>>>>: jdetj� 12 `2�(`1; `) gGL(V1)jdetj 12 `1�(`2; `) gGL(V2)jdetj� 12k2�(k1; k) gGL(W1)jdetj 12k1�(k2; k) gGL(W2)Proof. See the proof of ([3], Proposition 3.13). We omit the details. �In the setting of Theorem 8.4, let KM be a maximal compact subgroup ofM . There is asurjective map from KM to the maximal compact subgroup K̂ \M of ~M . The KM{typein the next result factors to, and is identi�ed with, a representation of K̂ \M .Theorem 8.7: Induction Principle II. In the setting of Theorem 8.4, suppose � is a~K{type for fSp(2n;R), and �M is a KM{type for M satisfying the following properties.(1) �M is of minimal degree in �,(2) deg(�) = deg(�M ), � contains �M in its restriction to K̂ \M and is of minimaldegree and multiplicity one in Ind ~O(V )~P (��);(3) There exist characters � and �0 of M and M 0; trivial on K̂ \M and K̂ 0 \M 0 suchthat ��
 �0�0 is also a quotient of !M , and IndfSp(W)(W )~P (���) is irreducible.



38 JEFFREY ADAMS AND DAN BARBASCHThen �
H(�) is in the image of �.Proof. The proof is the same as the proof of [3], Proposition 3.25. �Theorem 8.8. In the setting of Theorem 8.4, assume dim(V +i ) = dim(W+i ) = ki for all1 � i � r; so with k =Pi ki;M 'gGL(k1)� � � � �gGL(kr)� fSp(2n� 2k;R)M 0 ' GL(k1)� � � � �GL(kr)� ~O(p� k; q � k):Let �i be any irreducible representation of GL(ki), and suppose �0 corresponds to �0 forthe dual pair (O(p� k; q� k); Sp(2n� 2k;R)). Then there is a non-zero map � from ! tothe tensor product of IndfSp(2n;R)~P (�1 
 � � � 
 �r 
 �0)and Ind ~O(p;q)~P (��1�V 
 � � � � ��r�V 
 �0�(n; k + n)):Proof. The existence of � follows from Theorem 8.4 and the fact that for the dual pair(GL(m); GL(m)) the correspondence is � ! � 
 (�1; det)mR for all �. �Note: The oscillator representation for the dual pair GL(m); GL(m) may be normalized sothat the action of the dual pair factors to the linear groups. We are using the unnormalizedoscillator representation, which accounts for the term (�1; det)mR .x9. Proof of the Main ResultsWe prove the four results in x5, and Theorem 3.3. Throughout this section we �x  and� = �1.The most natural way to prove Theorem 5.1 would be to prove it �rst for the discreteseries, and then in general using the induction principle (x8). Unfortunately, the results inx7 are not sharp enough to compute the correspondence of the discrete series.Instead we proceed by induction on n. Given the result for fSp(2n�2;R), the inductionprinciple computes the result for all representations but the discrete series of fSp(2n;R)(and eO(p; q)). This implies that the representation correspondence can only map discreteseries to discrete series; since these are in the domain of the correspondence, it remainsto match up parameters. This is a relatively simple matter using the results on harmonicK{types in section 6.Proof of Theorem 5.1n = 0:This is not quite empty, but an exercise in the de�nitions and covering groups. Considerthe dual pair (O(1; 0); Sp(0;R)). The group eO(1; 0) ' Z=2Z is isomorphic to O(1; 0) �Z=2Z, and fSp(0;R) ' Z=2Z. This dual pair is mapped to fSp(0;R) ' Z=2Z, and the



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 39correspondence is obtained by restricting the non{trivial character of this group to thedual pair. This takes the non{trivial character of fSp(0;R) to � = 11
 sgn of eO(1; 0). Thisis as predicted by Theorem 3.3, and Theorem 5.1 is immediate. The case of O(0; 1) is thesame. This completes the proof in this case.Inductive Step: Induced RepresentationsAssume Theorems 3.3 and 5.1 for fSp(2n � 2;R), and let � be a genuine irreduciblerepresentation of fSp(2n;R), which is not a discrete series or a limit of discrete series.Let fM and � be inducing data for � as in Theorem 5.1. We choose eP = fMN to beof the form in Theorem 8.8 (cf. 8.1), and so � is the (unique) irreducible quotient of thestandard module(9.1)(a) IndfSp(2n;R)eP (�):By Theorem 8.8 there is a non{zero map � from ! to the tensor product of (9.1)(a) and(9.1)(b) Ind eO(p;q)eP 0 (�0):Here p0; q0;fM 0 and �0 are as in Theorem 5.1, the twist by � coming from �(n; k + n) ofTheorem 8.8.Recall from (x4) that � is the unique irreducible constituent of (9.1)(a) containing aminimal eK{type �, and similarly �0. It is enough to show(9.2) � is in the image of �:Let �
�00 be any irreducible quotient of the image of �: By [5] �00 containsH(�). Write thestandard module (9.1)(a) as X(
), with 
 = (�; �), and similarly (9.1)(b). It is immediatefrom the calculations in x6 that O(�) = �0 (cf. the proof of Theorem 5.5 below). ByProposition 6.1, H(�) is a minimal eK 0{type of (9.1)(b), and it follows that �00 = �0, as weneeded to show.To see (9.2) we apply Theorem 8.7. Let �M be the minimal K̂ \M{type of �. ByCorollary 5.2 applied to fSp(2r;R) the fSp(2r;R) component of �M is p0; q0{harmonic. ByProposition 6.21, and ([11],III.9) for the GL terms, �M is of lowest p0; q0{degree in �, socondition (1) of Theorem 8.7 holds. By Proposition 6.18, degp;q(�) = degp;q(�M ), andsince p � q = p0 � q0 this equals degp0;q0(�M ). Also by Proposition 6.18, the restriction of� to K̂ \M contains �M . By Proposition 6.21, � is of lowest degree in (9.1)(a), and alsoof multiplicity one (this is a general fact about standard modules). This veri�es (8.7)(2).Take � to be a generic character of M given by a power of jdetj on each of the GLterms, and let �0 = ��. Then ��
�0�0 is a quotient of !M (cf. the proof of Theorem 8.8)and (9.1)(a) is irreducible by the usual argument. Thus (3) for Theorem 8.7 holds, andapplying the theorem we conclude (9.2).Inductive Step: Limits of Discrete Series



40 JEFFREY ADAMS AND DAN BARBASCHLet � be a genuine limit of discrete series representation of fSp(2n;R) not in the discreteseries. Then � may be realized as the unique irreducible quotient of(9.3)(a) IndfSp(2n;R)eP (�)containing the (unique) minimal eK{type �. Here fM ' gGL(2)` � fSp(2t;R) and � is adiscrete series representation of fM . In the notation of (6.13), ` = Pimin(xi; yi) andt = Pi jxi � yij. This follows from the discussion in x6. As for (9.1)(a), by Theorem 8.8there is a non{zero map from the tensor product of (9.3)(a) and(9.3)(b) Ind eO(p;q)eP 0 (�0)where �0 is now a discrete series representation of fM 0. The same argument applied with(9.3)(a,b) in place of (9.1)(a,b) proves that the lowest eK and eK 0{types of (9.3)(a) and(9.3)(b) correspond. Theorem 5.1 reduces to Theorem 3.3(2) in this case, and holds fromthe calculations of x6.Inductive Step: Discrete Series.Theorem 5.1 reduces to Theorem 3.3(1) in this case, so it is enough to prove Theorem3.3(1).Proof of Theorem 3.3(1).It is convenient to start on the orthogonal group. So let �0 be in the discrete seriesrepresentation of eO(p; q). By Proposition 6.29 and Proposition 2.1, �0 occurs in the repre-sentation correspondence, while �0 
 sgn does not. The corresponding representation � offSp(2n;R) is also in the discrete series (the representation correspondence is the graph ofa bijection, �0 is in the domain and all but the discrete series in the range are accountedfor).Let �00 be the lowest eK 0{type of �0, and �0 the lowest eK{type of �. By Proposition6.28(2), �00 is of lowest degree and occurs in the space of joint harmonics; let � = H(�0).It is enough to show � = �0.We calculate the length of V(�), the element de�ned by the Vogan algorithm appliedto � (cf. x6). If � is the Harish{Chandra parameter of �, then V(�0) = �, and (theWeyl group orbit of) � is the in�nitesimal character. The relation between in�nitesimalcharacters is given by the orbit map which preserves lengths (cf. x1), so j�j = j�0j, where�0 is the Harish{Chandra parameter for �0. ThereforejV(�0)j = j�j= j�0j= jV(�00)j= jO(V(�00))j(9.2) = jV(H(�00))j by Proposition 6.1= jV(�)j:
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