GENUINE REPRESENTATIONS
OF THE METAPLECTIC GROUP

JEFFREY ADAMS AND DAN BARBASCH

§0. INTRODUCTION

Consider the dual pairs (O(p,q), Sp(2n,R)) with p + ¢ = 2n + 1. Let 379(2n,]R) be
the metaplectic group, and O(p, q) the detz cover of O(p,q) (we will be more precise in
§1). For ¢ a non—trivial additive character of R, the oscillator representation w(v) yields
a bijection (¢, p, q) between subsets of the irreducible representations of %(271,1&) and
those of O(p, q) [5]. The representations of 3’79(271,]1%) which arise are all genuine, i.e. do
not factor to the linear group Sp(2n,R). The main result of this paper is an explicit
description of this correspondence (Theorem 5.1).

Fix the discriminant § = (—1)9 of the orthogonal space. An immediate corollary of
Theorem 5.1 is a bijection, depending on 1, between the set

Sp(2n, R),

genuine

of (equivalence classes of) genuine irreducible admissible representations of 3’79(271, R) and
the union

U sowqe”

p+q=2n+1
(-1)*=s
of the irreducible admissible representations of the groups SO(p,q) (cf. Corollary 6.2 for
details). This result confirms, in the real case, part of a conjecture of Kudla [8], which in
turn is a generalization of a result of Waldspurger [22] in the case n = 1.

The bijection is one of similarity, rather than of duality, in that it takes small rep-
resentations to small representations. For example it takes the trivial representations
of SO(n + 1,n) and SO(n,n + 1) to the even halves of the oscillator representations of
Sp(2n, R).

The metaplectic group is an example of a non-linear group, to which the machinery of
the L—group does not apply. On the other hand it is of great importance in the theory of
automorphic representations, so it is of interest to understand it in these terms. With this
in mind notions such as L—packet, stability, etc. may be defined for Sp(2n,R) by carrying
over the corresponding notions from SO(p, ¢). Even in the easiest examples it is clear that
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care must be taken in making such extensions. For example the representations in an L—
packet defined in this manner may fail to have the same central character, a phenomenon
which is forbidden for linear groups (and also for the larger L-packets and Arthur—packets
of [4]).

This bijection is natural in terms of the Langlands classification. The Cartan subgroups
of O(p, q) are isomorphic to those of Sp(2n,R), and very roughly speaking the matching
is given by the same characters. For example discrete series representations having the
“same” Harish-Chandra parameter correspond. This naturality is expressed in the com-
mutative diagram of Proposition 6.1. The correspondence of K—types on the space of joint
harmonics also has nice properties; each K-type for 5’79(277,, R) is harmonic for precisely one
choice of p,q with given discriminant. Furthermore lowest K-types in the sense of Vogan
are always of lowest degree in the sense of Howe [5].

These properties are special to the range in which the two groups are roughly the same
size. Similar properties also hold for the dual pairs (O(p, q), Sp(2n,R)) with p, ¢ even and
p+q = 2n,2n+2 [11]. In fact our approach is quite close to that of [11], with the additional
complications arising from the presence of non—trivial covering groups.

61. PRELIMINARIES

In this section we describe facts about the double covers, dual pairs and generalities
about the metaplectic representation that we will need. The main reference for the double
covers and the metaplectic representation are [10] and [15]. The setup is for any local field
F, but we concentrate on the case F = R. We omit the details of many straightforward
calculations.

For any positive integer m we equip W = R®™ with the usual symplectic structure

given by J = (_(} Ig‘), and standard basis eq,...,em,f1,..., fm. Then Sp(2m,R)

is the isometry group of this form, and the metaplectic cover 5’79(2m) is defined by the
normalized cocycle ¢(, ) of [15] or [10]. Thus

Sp(2m,R) = Sp(2m,R) x Z/2Z,  (g,¢)(g,€') = (99", ¢c'c(g,9")).

If ¢ is a non-trivial (unitary) additive character of R, let w(t) be the Harish-Chandra
module of the oscillator representation of Sp(2m, R), ([15], section 4), ([10], part I). The
character ¢ may be written 1, (z) = €!%%; up to isomorphism w(1),) only depends on the
image of a in R* /R*"

Let V' be a real 2n + 1-dimensional vector space equipped with a non—degenerate sym-
metric bilinear form (, ) of signature (p,q), and basis v1,...,vp,v1,...v, for which the
matrix of (,) is diag(Ip, —1;). We let O(p,q) denote the isometry group of (, ). Now
V ® W has a symplectic structure with standard basis v; ® eq, ..., v; ® fn. The natural
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map « : O(p,q) x Sp(2m,R) — Sp(2m(2n + 1), R) makes (O(p, q), Sp(2n,R)) into a dual
pair. We write po = [§] and gy = [4] for the ranks of O(p) and O(q).

The main result concerns the case m = n, but many secondary results hold with little
or no restriction.

Let GL(m) be the two—fold cover of GL(m) defined by the cocyle
c(g, h) = (det(g), det(h))r

where (2, 1)g is the Hilbert symbol [16] for R. It is convenient to let O(p, q) be the two—fold
cover of O(p, q) defined by c(g, h) = (det(g),det(h))g (p + ¢ = 2n + 1). This is split over
SO(p,q) and splits over O(p, q) if and only if n is even. For later use we let O(p, ¢)[k] be
the cover defined by cocycle c¢(g, h)*.

Now « lifts to a map & : O(p,q) % %(271,1&) — 3’5(271(271 + 1), R). In particular for
9 € O0(p.q),

(1.1)(a) a(g,€) = ((g)¢€)
and for g € Sp(2n,R)
(1.1)(b) (g, €) = (a(g), "1 A(g))

for a certain map A : Sp(2n,R) — £1.
The image of Sp(2n,R) in Sp(2n(2n + 1), R) is the inverse image of Sp(2n,R), and the
image of the center of Sp(2n,R) is the center of Sp(2n(2n+ 1), R). Our choice of covering

O(p, q) implies that the analogous statements hold for O(p, q). It also has the advantage
that n odd and n even may be treated uniformly.

Given 1, let
(12)(a) X(0)(@,€) =z, 3¥)e
where
_ (ay)
(1.2)(b) v(a,¢) = @)

2iw

is the Weil index [15]. We have y(¢,) = e”s 98" and

2

(1.2)(c) X(%a) (2, €) = sgn(a)e & (8ne—De,

This is a character of the (, )g double cover of R*, and so we can compose x(1) with the

determinant to get a character of GL(m). We denote the ensuing genuine character by the
same symbol, x(¥)(g, €) := x(¥)(det(g), €).
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This satisfies
(1.2)(d) x(W)(, €) =sgn(z)x(¥)(z,¢),  x(¢)(z,€)® = sgn(x).

If V is an orthogonal space of dimension m and discriminant §, we let (cf. [7], 2.5)
(1.2)(e) X, V)(g,€) = y(det(g), 39) ™" (3, det(g) )re™.

In general, if G is a double cover of G and 7 is a representation of CN}’, we say 7 is of type
k if m(e) = €* for € in the kernel of the covering. With this convention x (1, V)(g,¢€) is a
character of /C_}’\E(V) of type m = dim V.

If the signature of V' is p,q with p + ¢ odd, then

(1.2)(f) X%, V) = x() 7.
This is the formula we will use most of the time. By (d) this may be thought of as
sgn(det) =5

We fix a genuine character

€ n even

(1.2)(g) §(¥)(g,€) = { x(¥)(det(g) 6)_1 n odd

of 6(p, q). The map m — 7 ® £ defines a bijection between the irreducible representations
of O(p, q) and the irreducible genuine representations of O(p, q).
If 4 is fixed we drop it from the notation and write w = w(¥), x = x(¢), xv = x(¢, V)

and § = £(v).

Pulling w(t) back to O(p,q) x Sp(2n,R) via & we obtain the representation corre-
spondence for this dual pair [5]. This is a correspondence between certain irreducible
Harish-Chandra modules. B .

By (1.1) the representations of O(p, ¢) and Sp(2n,R) in the image of the correspondence
are genuine, i.e. of type 1. If m, 7’ are genuine irreducible representations of %(2n, R) and
5(]9, q) respectively which correspond, we write

(1.3) m' =00, p,q)(r), m=0()(r).

If o is fixed we write 0, , = 0(¢, p,q) and 6 = 0(z).
For an irreducible (admissible) representation @ of a group G, we denote by 7* its
contragredient. In particular, for ¢ as in (1.2)(g), we have

(1.4)(a) £*(g,¢) = £ @ sgn(detg)™.
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Combined with the results on page 91 of [12], we find the following expressions for 7*. In

case G = 3'\1/9, let 7 = Adk, where k = diag(l,,, —I,,) (this is an outer automorphism of
G). Then

T®sgn™ for G = O(V),

(1.4)(b) m= { TorT for G = Sp(W).

From (1.2)(d) and the fact that w(¢)) ~ w(¢))* we see

(1.4)(c) 0(4,p,q) () = 0(1h,p, q)(7*) @ sgn™.

Let V' denote the same space as V' with form Q' = —@Q, of signature (g, p). Let d be the
tautological identification of O(V') and O(V'). Note that O(V') = O(q,p), and so we can
identify representations of O(p, q) and O(g,p) by choosing such an isomorphism; however
the 0-correspondences are different. The next lemma gives the relationship between 0, 4
and 0 .

Lemma 1.5. For any irreducible representation ™ of 5’79(277,,]1@),

(4, p,q)(m) = 0(4b, ¢, p) (7).

Proof. The map Id® k is an isomorphism between V@ W and V' ® W which interchanges
Q-(,)and —Q - (, ). Let ¥ be the ensuing isomorphism Sp(V @ W) — Sp(V' @ W).
The diagram

O(V) x Sp(W) —2— Sp(Veo W)
5®Tl l\ll
OV @ Sp(W) —2— Sp(V' @ W)

is commutative and w(¢, VW) = w(y, V'@ W)oW. The lemma follows from the formula
for 7*. O

Note that (1.4)(c) and the Lemma give

(1.6) (4, p,q)(w) = 0(1, ¢, p) () ® sgn™.

Suppose Wy and W5 are symplectic spaces. Then W; @ W inherits a natural symplectic
structure and there is a canonical map Sp(Wl) ® Sp(Wa) — Sp(W1 & Wa). We will use
this map in the special case Sp(2m R) x Sp(2m R) — Sp(4m R). Similarly there is a
canonical map O(p, q) x O(p ,q') — O(p-l—p 4+ q).
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Lemma 1.7. Let wy ;4 be the oscillator representation of %(271(1) + q),R) restricted to
the dual pair (Sp(2n),O0(p,q)).

(1) wnpq®@Wn p.q X Wan pq®sgn™ as representations of §13(2n, R) x §};(2n, R) x O (p, q)
with 6(}9, q) acting diagonally on the left hand side.

(2) Wnpg®Wnpg' = Wnptp! q+q' 45 TEPTESENtations of Sp(2n,R) x O(p,q) x O(0', '),
with Lg??(Zn, R) acting diagonally on the left hand side.

Proof. There are obvious isomorphisms between the polynomial Fock spaces wy, p 4 in the
statements. We need to check the equivariance. Assertion (1) for Sp(2n,R) x Sp(2n,R)
and assertion (2) for 5(p, q) X 5(q, p) follow from the explicit descriptions of the actions
in [15] on the smooth models.

If (X,Y) is a complete polarization of W then GL(X) acts on S(X) in the oscillator
representation by

w(1h) (g, €)(¢) () = |det(9)| 2 x($)(9,€) " $lg~ ).

Since the action of 6(p, q) is via a homomorphism to éL(X ® V), it acts in wy 54 by
translation tensored with £. Assertion (1) for O(p, ¢q) follows immediately, the twist if n is
odd coming from x(¢)? = sgn. The proof of assertion (2) is similar. [

The first part of the next Lemma is due to Rallis [14] and Przebinda [13]. The second
is the result obtained by applying the same technique in the other direction. It says that
the duality correspondence is a bijection when all O(p,q) with fixed discriminant (and
P+ q = 2n + 1) are considered at once. Thus we are reduced to proving occurence, and
computing the correspondence explicitly.

Lemma 1.8.
(1) Suppose w is a representation of O(p, q), and 0(1)(m) # 0. Then 6(¢) (7@ sgn) = 0.

(2) Let m be a genuine representation of Sp(2m,R), and suppose 0(¢,p,q)(m) # 0.
Then 0()pr g (1) = 0 for all (p',q") # (p,q) with ¢ = q mod (2).

Proof. Suppose both m and m®sgn are quotients of wy, ;, , restricted to 6(}9, q). By Lemma
1.7(1) this implies 7 ® ™ @ sgn is a quotient of w(v)ay, p 4 ® sgn™. Since 7* ~ 7 ® sgn”,
and the trivial representation is a quotient of 7 ® 7*, this implies that sgn is a quotient
of way, p.q. However this is impossible since (cf. Proposition 2.1) the sgn K-type of O(p, q)
does not occur in the space of joint harmonics when paired with Sp(4n,R). This proves
(1).

Now suppose 7 is a quotient of both wy,, , and wy, . o restricted to 5’79(2m, R). By
Lemmas 1.5(1) and 1.7(2) this implies that 7 ® 7* is a quotient of wy, p4q' q+p'- As in the
proof of (1) this implies that the trivial representation is a quotient of wy, piqr g+p- This
can also be ruled out by K-types. By [6], cf. ([11],].4), the trivial K-type for 5’;)(2m,]R)
occurs in this space only if O(p+ ¢',q+ p') is quasi-split, i.e. p+ ¢ —q¢—p' =0,£1, +2.



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 7

This together with p + ¢ = ¢+ p gives ¢ = ¢’ £ 0, 1, and since the discriminants are equal
q = ¢'. Therefore p =p’,q = ¢, proving (2). O

Groups will be denoted G, K, T ..., their Lie algebras by go, €y, to..., and their com-
plexified Lie algebras by g, €, t.... For G reductive, a Cartan involution will be denoted 6
with fixed points K, €y and & respectively in G, gy and g, and g = €@ p as usual. For h a
Cartan subalgebra of g (always 6—stable) we will denote a system of roots by A = A(h, g)
with positive system A, and p = p(AT) = 13> «. This notation will be extended in
various standard ways, for example p. denotes one—half the sum of the positive compact
imaginary roots, and p(u) one-half the sum of the roots of a (nilpotent) subalgebra wu.
Unless otherwise stated G will denote Sp(2n,R), G will denote %(2m,R). These groups
have maximal compact subgroups K and K as chosen in §2. Similarly, G’ will denote
O(p, q) with corresponding G’, K’ and K'.

We now describe the semisimple orbits and Cartan subgroups for Sp(2n,R). We begin
by choosing representatives for the conjugacy classes of Cartan subgroups as in [2].

For non-negative integers m,r,s with 2m + r + s = n we define a Cartan subgroup
Hg;;r’s of Sp(2n,R) with Lie algebra hgbz;g’s. Write W = R?* = W, & W, & W3 where
Wy is spanned by {e;, fi|ll < i < 2m}, Wy by {e;, fil2m +1 < i < 2m + r} and W3 by
{ei, fil2m+r+1 <i <n}. We identify Sp(W;) and sp(W;) with their images in Sp(2n, R)
and sp(2n,R). For z; = x; +iy; € C, 1 < i < m let

X Y

(1.9)(a) 0500 sz = | v | esm)

Yy -X

where X = diag(z1,...,2,) and Y = diag(y1,...,Ym). For §; e R (1 < i <r) we let

(19)( 0000 = () espOm)

with X = diag(01,...,60,), and for z; € R (1 <i < s) let

(1.9)(c) hosﬁ’s(xl, ooy xg) =diag(xy, ..., s, —T1,...,—Ts) € sp(W3).
Taking the sum of these elements gives us an element

(1.9)(d) b?I;T’s(zl, coes ZmyO1y .o 00,21, .. ) € 8p(2n, R)

m,r,s

and this defines the Cartan subalgebra hg " of sp(2n,R), with complexification b
The compact Cartan subalgebra is ty = bg’"’o. Let

(1.9)(e) Hg ™"~ (C*)™ x (SH" x (R*)*
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be the Cartan subgroup of Sp(2n, R) with Lie algebra hg;;g’s. These are representatives for
the conjugacy classes of Cartan subgroups of Sp(2n,R). The compact Cartan subgroup is
T = Hg;)"’o. Write the elements of Hg "™ accordingly as

(1.9)(f) Hg " (21, oy Zms Uty o oo Upy T, - -, T2)

(Z,' € (C*,’U,Z' € Sl,xi € R*)

The Weyl group of hg ;* in sp(2n,R) is generated by all permuations of {z;}, 2 —
Zi, —zi, all permutations of {#;}, and all permuations and sign changes of {z;}. This
describes the semisimple orbits. Note that two semisimple elements hg ""(21,...) and

bsy *(21,-..) are in the same orbit if and only if they have the same eigenvalues, and
01,...,0, and 07, ...,0! are the same up to permutation.

We write H =T A with h = t®a, T = HNK and A = exp(ap) as usual. The centralizer
of A is

(1.10)(a) M = GL(1,R)* x GL(2,R)™ x Sp(2r,R).
Let
(1.10)(b) M = GL(1,R)* x GL(2,R)™ x Sp(2r,R)

with double covers of GL and Sp as at the beginning of this section. There is a natural
surjection M —» M.

Let H (respectively H) be the inverse image of H in M (resp. M). Then H,H are
Cartan subgroups of M, M. Furthermore

(1.10)(c) H ~ (R*)* x (S1)" x (C* x Z/2Z)™

where R* is the two—fold cover of R* defined by the Hilbert symbol, and S1 is the connected
two-fold cover of St given by z — 22, |2| = 1.

We now turn to a description of the Cartan subgroups and semisimple orbits for O(p, q).
We follow [1].

Suppose 2m + s < min(p,q). Write V = V1 @ Vo ® V3 where Vi = span {v;,v;[1 <
i,j < 2m}, Vo = span {v;,v;|2m +1 < i,j < 2m + s} and V3 = span {v;,v; |2m + s <
i <p2m+s<j<gq} Then SO(V;) is embedded naturally in SO(V') and we identify
SO(V;) and so(V;) with their images in SO(V) and so(V). For w; = z; +iy; € C let

Y X

(1.11)(a) 600wy, ) = | Y € so(V3)

X Y
X
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where X = diag(x1,...,2m),Y = diag(y1,...,ym). For ¢c; € R, let

(1.11)(b) h2%5(cy,. .. cs) = (X X> € s0(Vs)

where X = diag(cy,...,cs). Finally let r; = [p_zgn_s], ro = [q_zgn_s], and for 6;,¢; € R
let

~ ~

(111)(6) bO,T1+T2,0(917 .. '797“17 ¢17 ) ¢7’2) = dia’g(éh sy 97’17 ¢17 ) ¢7‘2) S 50(V3)

with 6 = <_09 ")

Taking the sum of these elements gives us an element
(1.11)(d) X =by % (wy o Wiy 01,0 Ory P1, e Prys €1y Cs) € 50(D, Q)
and this defines a Cartan subalgebra b /", with complexification b7";". Let
(1.11)(e) HJWs o (C)™ x ()" x (R)?

be the Cartan subgroup of SO(p, q) with Lie algebra b,"/;°. This gives a set of represen-
tatives of the conjugacy classes of Cartan subgroups of SO(p,q). The compact Cartan
subgroup T' is H)t". According to the decomposition (1.11)(e), we write elements of
Hm,?“,s as ’

p,q

(L.11)(f) HY "% (21, -y Zmy Ul oo vy Uy s ULy e ey Upy s Ty -+ o Ts)

with z; € C*,u;,v; € S, 2; € R*.

The Weyl group of "/ in o(p, ¢) is similar to the case of Sp. The only change is that
on uy,..., U ,v1,...,V, it is of type B,, x B,, acting by permutation and sign changes
on {u;} and {v;} separately.

The corresponding Cartan subgroup of O(p, ) is isomorphic to H}";"* x Z where Z is
the center of O(p, q).

The centralizer of A is
(1.12)(a) M' =2 GL(1,R)® x GL(2,R)™ x O(p',q")
with p’ =p— s — 2m,q' = g — s — 2m. The inverse image of M’ in O(p, q) is

(1.12)(b) M' = GL(1,R)® x GL(2,R)™ x O(p', ¢')[n].

It follows from the preceding discussion that there is a bijection (depending on the
additive character 1) between the regular semisimple adjoint orbits of Sp(2n,R) and the
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union of the regular semisimple adjoint orbits of SO(p,q) with 6 = (—1)¢ fixed. This is
explained in more detail in [1], where it is described geometrically in terms of the orbit
correspondence; here we resort to a simple explicit description.

Fix ¢ = ¢, with a > 0. Let

(1.13)(a) X =bg) (21, s Zmy Uty e ooy Uy, U1y ooy Upyy Ty ooy Ts)
be a regular semisimple element, with w; > -+ > u,, > 0 > vy > -+ > v,,. Let

p=2m+ri+s,q=2m+re+s+lorp=2m+ri+s+1,q=2m+ry+ s, depending
on J. Then the orbit of X € sp(2n,R) corresponds to the orbit of X’ € so(p, q), where

(1.13)(b) X' = bpd P (215 s Zmy Uty e Uy —Vpyy ooy —UL, T1, e, Ts).
If 9 = 1, with a < 0, then the same result holds, with u,...,ur,, —vp,, ..., —01
replaced by vy,...,0p,, —Up,,..., —U].

By the preceding description of the semisimple orbits the following result is immediate.
Let sp(2n,R)ss be the regular semisimple orbits of sp(2n,R), and so(p, ¢)ss similarly.

Lemma 1.14. Fix 1p. There is a bijection between
sp(2n, R) s

and

U o)

p+g=2n+1
(-1)7=5

We refer to this as the orbit correspondence.

We write X' = O(¢)(X) if the orbits of X and X' correspond as in Lemma 1.14.
Dualizing, we obtain a correspondence A <> X' = O(9)(A) of regular semisimple elements
of the duals. Finally if X' = O(¢)(X), let b, b’ be the Cartan subalgebras centralizing
X, X’ respectively. The correspondence gives rise naturally to a correspondence of systems
of positive roots, which we write AT <> At = O(¥)(AT). As usual we drop ¢ from the
notation if it is fixed.

It is evident that every Cartan subgroup of SO(p, ¢) is isomorphic to a Cartan subgroup
of Sp(2n,R). This correspondence preserves conjugacy classes, and is a bijection on con-
jugacy classes if SO(p, q) is quasisplit. We use the correspondence of semisimple orbits to
choose these isomorphisms as follows.

Fix § = £1 and 9. Let (ho, AT) be a pair consisting of a Cartan subalgebra of sp(2n, R)
and a system of positive roots. Let ¢ : hy — by C so(p, ¢) be an isomorphism. By abuse

of notation we write ¢p(AT) for the natural system of positive roots of hj,. More precisely,
fix X € b so that A = {a|a(X) > 0}. Then ¢p(AT) ={o/|/(¢(X)) > 0}.
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Proposition 1.15. Given (ho, AT), there exist p,q, and a pair (h)y, A1) such that AT =
O(A™) and b, is isomorphic to ho. This determines p,q uniquely (subject to (—1)2 =14).
Furthermore the isomorphism ¢ : bo — by may be chosen so that ¢(AT) = A'*. This
determines ¢ up to conjugation by Sp(2n,R) and O(p,q).

Furthermore ¢ lifts to an isomorphism ¢ : H — H' N SO(p,q). Write H = TA,M =

Centg(A) as usual, and similarly for H'. Then ¢ extends to an isomorphism of the GL
factors of M and M' (c¢f. (1.10)(a) and (1.12)(a)).

62. MAXIMAL COMPACT SUBGROUPS AND JOINT HARMONICS

We first consider G = Sp(2n, R), G = 3’79(271, R). Recall W and J as in §1. Then
G:={g € GL(W) |'gJg=J}.
We choose the maximal compact subgroup K of G to be
K:={geG|gJ=Jg}

Since J? = —Id, it defines a complex structure on W. Let W ~ C" denote the re-
sulting complex space. Then W admits a positive definite symmetric Hermitian form
(v,w) =< Ju,w > +i < v,w > . This gives an isomorphism of K with the isometry
group U(Wg, (, )). We define the determinant character of K to be the pullback of the
determinant character of this unitary group by the explicit isomorphism chosen.

The inverse image K of K in G is connected, and its representations may be studied
by passing to the Lie algebra. To be explicit, K is isomorphic to the detz cover of K,
i.e. to K = {(g,2)|lg € U(n),z € C*,det(g) = 22}. The character 7 : (¢,2) — z of K
satisfies 72(g) = _det(g) and is denoted det'/2. We choose an isomorphism, unique up to
conjugation, of K with K so the character of K acting on the the unique K-fixed line in

w(1p) goes to detz. (This line is spanned by the Gaussian in the Schroedinger model, or
the constants in the Fock model.) We fix the Cartan subgroup 7" of K as in (1.9), with

the usual positive system A(t,€). Then K genuine 18 parametrized by certain dominant
weights A € it; in the usual coordinates A = (a1,...,a,) with a3 > ag > -+ > a,, and
a; € Z+ % The distinguished character det'/? corresponds to the weight (%, cee %) This
parametrization depends on 1.

Now consider G’ = O(p, q), G = 5(]9, q), with maximal compact subgroups K’ = O(p) x
O(q), and K'. We fix the Cartan subgroup T of K’ as in (1.11), with the usual positive
system. We identify an irreducible representations of O(p) with its “highest weight” A =
(Ao;€). Here Ao = (a1,...,ap,) € itj is the usual highest weight of a finite dimensional
representation of SO(p). We are following [23], where € = 1 (resp. € = —1) corresponds to
the length of the first column less than (resp. greater than) or equal to pg. If p is odd, then
—1Id acts by (—1)2+2b¢ in this representation. If p is even and a,, # 0 then ¢ = £1
give the same representation; in all other cases they are distinct. Furthermore (0; —1) is the
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one-dimensional representation sgn(g) = sgn(det(g)) = det(g), and (a1, ..., ap,; €) @sgn =

(a1,...,a0p,; —€).
A similar discussion holds for O(q), and the irreducible finite dimensional representa-
tions of K’ are parametrized by (ai,...,ap,;€) ® (b1,...,bg;n). The irreducible genuine

representations of K' are also parametrized in the same way, by tensoring with the gen-
uine character ¢ of K’ as in (1.2)(g). (Here ¢ is the character of O(p, q) given by (1.2)(g),
restricted to K'.)

The action of K x K’ on the space of joint harmonics gives a bijection between certain
irreducible representations of K and K’ [5]. If a K ~type p corresponds to a K "“type 1,
we write p' = H (v, p,q)(p) and g = H(1p)(1'). As usual we drop ¢ from the notation if it
has been fixed.

The next result follows from [6], as in ([11], I.4) and ([3], Proposition 1.4).

Proposition 2.1.
(1) The correspondence on the space of joint harmonics is as follows.

u':(al,...,apo;l)@)(bl,...,bqo;l)—>

H@W) (W) = (a1, ., apyy —bgy, - - -, —b1) + (

pP—4q p—q)

p = (a1, .,ax,0,...,0;=1)® (by,...,bs,0,...,0;1) —

p—2k

R N— — _

H(@b)(u’):(al,...,ak,1,...,1,0,...,0,—bg,...,—b1)+(p2q, ..,p2q)
with p — k+ 0 <mn,
p = (ar,...,ax,0,...,0;1)® (b1,...,b0,0,...,0;—1) —
q—2¢

R NE— — _

'H(w)(,u’):(al,...,ak,O,...,0,—1,...,—1,—bg,...,—bl)+(p2q, ..,pzq)

with g+ k — £ < n.
(2) The p,q-degree of p = (a1,...,an) is >, la;i — 55L|. The degree of

= (a1, -,ax,0,...,0;€) ® (b1, ...,bs,0,...,0;n)

is equal to >, a; + 155(p — 2k) + > b; + 1_T”(q— 20).

Note that the dependence on 1) is via the dependence of the parametrization of K’ -types

on .
The images of H (1, p, q) and H (1)) are described by the next Proposition.
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Proposition 2.2.
(1) Let p be any (genuine) K —type for Sp(2n). Consider the groups O(p,q) with fized
discriminant. Then there is a unique choice of p and q such that u is p, q—harmonic.
(2) Let ' = (a1,...,0x,0,...,0;€) ® (b1,...,bs,0,...,0;7n) be a (genuine) K'—type for
O(p,q). Then y' is in the space of joint harmonics if and only if k + 15 (p — 2k) +

{+ 1;2"(q — 20) < mn. This holds for precisely one of p' and i’ ® sgn.

Proof. Part (2) is an immediate consequence of Proposition 2.1, and we omit the details.
For part (1), we claim that we may write u uniquely in the form

(2.3)(a) (a1,...,Qp, o, b1, ..., bs)
where

—_——
(2.3)(b) po = (r—s,...,r—s)-I-(%,...,%,—%,...,—%)

with a,, > r— s+ %, r—s— % > by, and at least one of these inequalities is strict. The
algorithm in chapter 6 of [18] (see §6 for more detailed calculations) attaches to p an
element A% (p) € t. It is of the form

t
(2.4) N () = (a1,...,ar,0,...,0,01,...,05)

with g > - >, > 0> (1 > -+ > (5. Thus r, s if they exist, are uniquely determined.
The same holds for x,y from the particular form of . Running the algorithm in reverse
on the X's as in (2.4), we see that every p must be of the form (2.3)(a) with some choice
of (z,y) (essentially chapter 6 in [18]).

Given this form, p corresponds to p’ in the space of joint harmonics for O(2r + ¢ +
1,25 +t), with

, 1 1
1 :(al—r+3—§,...,ar—r+s—5,0,...,0;1)@
] | A
(—bs+r—s+§,...,—b1+r—s+5,1,...,1,0,...,0;6),

where

+

('6)_{(%4—1) 0<y<[f]

Similarly p corresponds to u' in the space of joint harmonics for O(2r +1¢,2s+t+ 1), with
J

, 1 1 ——
1 :(a1—r-l—s—i—5,...,ar—r+s-|-5,1,...,1,0,...,0;6)@

1 1
(—bs-l-r—s—5,...,—b1-|-7’—s—5,0,...,0;+1),
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_ (,+1) 0<w
(7,€) = t+1
(v,—1) [5]
Note that for ¢ even and ©z =y = [%] the two cases agree, since for even orthogonal groups
(al,...,1;+1) = (al,...,l;—l).

It remains to show p is p, ¢-harmonic for at most one choice of ¢ with (—1)? = §. Given
J, to determine (p,q) it is enough to find py. Assume § = 1, the other case is similar.
Suppose g is p,g—harmonic corresponding to a p’ as in Proposition 2.1. Then in the
expression p = (fi1, ..., fin), we must have p,, = 52 if e =1, or p,, = 554 +1if e = —1.
This is the same as i, + (n+1— 2pg) = 3 or 5. But the sequence r; = p; + (n + 1 — 2i)
decreases monotonically by at least 2 each consecutive term, so there is at most one ¢ such
that ; = 5/2 or 3/2, never both. If all r; > 2 then py = n, if all 7; < 1, then py = 0. This
proves (1). O

where

Remark. This Proposition also follows naturally from the calculations in the proof of
Proposition 6.1. Namely if 4 and u' correspond, then A%(u) and A% (y’) correspond in
a simple fashion, implying in addition that r,s,¢ given by formula (2.4) for p, and the
(r',s',t") coming from formula (6.6) coincide. Thus p = 2r +t+ 1 or p = 2r +t according
to the parity of .

Example 2.4. The example of small weights ([18], Definition 5.3.24) is important. These
are weights of the form

/—/CEA/—/L
_ o1l L
= 5 g Ty Tyl

Then g is small, i.e. gy = p and it corresponds to a p’ in the split group O(n + 1,n) as
well as O(n,n + 1). Specifically p corresponds to p’ for O(n + 1,n) with

with (. 1) 0<y<[o
. Y, A )
0= Ly o <

On the other hand it goes to p/ for O(n,n + 1) with

with
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§3. DISCRETE SERIES

A genuine discrete series representation 7 of %(2n) is determined by its Harish-Chandra
parameter A. In coordinates we write

A=(ay,...,ak,b1,...,bp) € it], (t as in 1.9)

witha; >+ >ap>0>b; >+ >by, a;,b;j €Z+32anda;+b;#0foralli,j. Thenr
has lowest K-type A+ p(A1) —2p.(A™) where AT is the system for which X is dominant.

The genuine limits of discrete series for 3’79(271,]1%) are obtained by allowing A to be
singular with respect to a set of simple noncompact roots. Explicitly these representations
are parametrized by pairs (AT, \) where A is dominant with respect to the roots in A*.

In coordinates it is of the form
mi m2 m, Ny n2 n1
— —— 7 - ~ - - ~ - -
(AL G0y A e 02y e ey Ty e Oy =g e ey =iy e vy =2 ey — Gy —Q] .« ..y —(1)
with a; € Z + %, ay > -+ > a, >0, and |m; — n;| <1 for all i. The lowest K—type of 7

has the same form as for discrete series, A + p(A1) — 2p.(AT).

Similarly a discrete series representation of SO(p,q) is given by its Harish—Chandra
parameter A = (a1,...,0p,,b1,...,bq,) With a;,b; € Z + % satisfying ay > --- > ap, >
0,b1 > «++ > by, > 0,a; # bjVi,j. Assume for the moment that p is odd and ¢ is even.
The lowest K'—type p = X+ p(A1) — 2p.(AT) is of the form

p=(z1,...,25,0,...,0;£1) ® (y1,---,Yq; 1) k,y; € Z > 0.
The second 1 has no effect since y,, > 0. The two representations given by the first £1

have the same restriction to S(O(p) x O(q)) since sgn ® sgn of O(p) x O(q) is trivial on
this subgroup. Passing to O(p, q¢) we obtain the following Lemma.
Lemma 3.1. The discrete series representations w of O(p,q) are parametrized by
A= (Aoj€) =(a1,---,0p,,b1,...,bg5€)
with ay > -+ > apy > 03010 > -+ > by, > 0;0a4,b; € 7+ i and a; —bj # 0 for alli,j. Here

27
7 is determined by its Harish—Chandra parameter Ay and its lowest K'—type p which is of

the form
32) p= {

The genuine discrete series of 5(p, q) are obtained by tensoring the discrete series of
O(p, q) with £, so we use the same parameters.

We will refer to A = (Ag; €) as a Harish-Chandra parameter for O(p, q) or 6(p, q). The

(1,0, Tps 1) ® (Y1, -,92,0,...,0;€)  (zp, >0)  p even, ¢ odd
(1, 2k, 0,...,0;€) ® (Y1, -+, Ygo; +1)  (yg >0) p odd, q even.

limits of discrete series are parametrized as for Sp(2n,R), by pairs (AT, \) where \g is
AT-dominant and \g of the form

mi m2 my ni n2 Ny

—N— — —N— —— — —
(G1...,01,02...,02, . Qoo Gy A ooy ATy A2 e ey A2y e ey Qe ey Ay)

with a; € Z + %, ay > --->a, >0, and |m; —n;| <1 for all . Again p is of the form
(3.2).
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Theorem 3.3. Fiz 1) and § = £1. (1) Let m be a genuine discrete series representation
of 5’5(271) with Harish—Chandra parameter . Choose p,q so that A occurs in the orbit
correspondence for the dual pair (Sp(2n,R), O(p,q)). Recall (Lemma 1.14) p,q is uniquely
determined, subject to (—1)4 = 9.

Let X' = O(X) be a corresponding element of so(p,q)*.
tation correspondence with 6(]9, q), and 0, ,(m) is the discrete series representation with
Harish Chandra parameter (X';+1). Furthermore w does not occur in the correspondence
for any other O(r,s) (with (—1)* =6).

If 1 s the lowest I?—type of m, then p is of lowest p, q—degree, and H(u) is the lowest
K'—type of 7.

Conversely every discrete series of 6(p, q) with Harish-Chandra parameter (x;+1) cor-

Then © occurs in the represen-

responds to a discrete series of Sp(2n), and those of the form (x; —1) do not occur in the
correspondence.

(2) The same results as in (a) holds for limits of discrete series, where if w is given by
data (AT, X) then 0, ,(7) is given by (O(AT), (O(N);1)).

Explicitly (cf. 1.13) let ¢ = ¢, with a > 0, and suppose A = (a1,...,ap,,b1,...,bq)
witha; > - >ap, >0>0by >+ > by,. Then p=2po+1,q = 2qgg or p = 2py,q =2qp+1
and

)\/ = ((al,. . .,apo, _qu- . .,—bl);-l-l).

Theorem 3.3 will be proved in §9.

Note: The minimal K-type of a discrete series representation or a limit of discrete series
is unique, and such a representation is determined by its minimal K—type. This follows
from [6] or in our case from the results of §6.

§4. STANDARD MODULES

We use the version of the Langlands classification of [21], which is valid for disconnected
and non-linear groups of Harish-Chandra’s class. Throughout this section G will denote
O(p,q) (~p = 2n+1) or Sp(2n, R), with maximal compact subgroup K and covering groups

G and K.
We first consider G = O(p, q). Let H = T'A be a f—stable Cartan subgroup of G. Recall
from §1 that H is isomorphic to

(4.1)(a) (C)™ x (81" x (R*)* x Z

with 2m + s < min(p, q), Z the center of O(p, q). The centralizer M of A is isomorphic to
(4.1)(b) GL(1,R)®* x GL(2,R)™ x O(p',q"), ('=p—s—2m,¢ =q—s—2m)

and the inverse image M of M in 6(}9, q) is isomorphic to

(4.1)(c) GL(1,R)* x GL(2,R)™ x O(p', ¢')[n].
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For inducing data on M we take an irreducible representation o = @ v ® 7 of M. Here
B =03Q®- - ® [ is a product of characters, v = v1 ® -+ ® 7., 1s a product of relative
limits of discrete series representations and 7 is a limit of discrete series representation
of 5(p’, q'). The restriction of o to A is a multiple of a character v; choose a parabolic
subgroup P = MN so that Re < a,v >> 0 for all roots a of a in n.

The standard module for 5(]9, q) associated to this data is

(4.1)(d) X(P,o) = Ind2"" (o)

(here and elsewhere we extend o to MN trivially on V). This has the same type as does
7. If (M, o) also satisfy condition (F-2) of [21], which we make explicit in Lemma 4.3,
then this module has a unique irreducible quotient, and every irreducible representation is
obtained this way. The data (M ,0) are unique up to conjugation by K and will be called
inducing data for .

We next describe standard modules for genuine representations of %(2n,R). Recall
from §1 that a Cartan subgroup H of Sp(2n,R) is isomorphic to

(4.2)(a) (C)™ x (SH" x (R*)® (r+s+2m=n)

in which case M is isomorphic to

(4.2)(b) GL(1,R)* x GL(2,R)™ x Sp(2s,R).
Let
(4.2)(c) M = GL(1,R)* x GL(2,R)™ x Sp(2s,R).

For inducing data we take ¢ = f® vy ® 7 with = 1 ® --+ ® s a product of genuine
characters, v = 1 ®- - -®7,, a product of genuine relative limits of discrete series represen-
tations, and 7 a genmne limit discrete series representation. Then o factors to a genuine
representation o of M, and every genuine representation o of M comes from a unique such
0. Choosing N satistying the positivity condition as above, the standard module associated
to the data (M,7) or (M, o) is

(4.2)(d) X(P,0) = [nd5"®"")(g).

It has the same properties as in the case of 5(]9, q). We freely pass back and forth between
(M,7) and (M, o) without further comment.

Condition (F-2) of [21] for O(p,q) and §[/)(2n,R) is made explicit as follows. Fix a
genuine character x of GL(1), and write

1 O(p, q)

4.2)(e i (2, €) = |o|¥isgn(x)% - o
(4.2)(e) Bi(w,€) = |z|"sgn(x) {x(ar,e) Sp(2n, R)
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A limit of discrete series representation of GL(2,R) is parametrized by (k, ) with k € N
and p € C; the lowest K—type of this representation has highest weight & + 1 for O(2).

The genuine limit of discrete series representations of /C_T'\E(2, R) are parametrized the same
way by tensoring with y(det); this is independent of yx since for such a representation
T & sgn ~ .

Lemma 4.3. Let G = 6(1), q) or 3’79(271,]1%) as before. The data (M, o) satisfy condition
(F-2) of [21] if and only if:

(1) For each GL(2,R)—factor, p =0 implies k € Z,

(2) v; = +v; implies 0; = 0;.
In this case, X(f’, o) has a unique irreducible quotient.

We will prove this in §7.

We also use character data for these groups as described in [21], which refers to [18,20].
Unexplained notation is as in [21].

A limit character for G is a pair (H,~y). Here H is a Cartan subgroup of G, and + is a
triple

(4.4)(a) (¥, I,7)

consisting of a positive system W for the imaginary roots of b in g, a character I' of H ,
and an element 7 of h*. These must satisfy two conditions. First of all < «,57 >> 0 for all
ac V¥, and dI' =7 + p(¥) — 2p.(V).

A limit character is called final if in addition it satisfies the following two conditions.
First of all if « is a simple root of ¥ then

(4.4)(b) < o,y >= 0 implies « is non—compact.
Secondly if « is a real root of h in g then
(4.4)(c) < «,5 >= 0 implies I'(my) # €4

for mqy € H and €, = 1 as in [18,8.3.11], i.e. a does not satisfy the parity condition. We
will make condition (4.4)(c) explicit and relate this data to inducing data in §6.
Attached to a final limit character v is a standard module X () which has an irreducible

quotient X (7y), and the K —conjugacy classes of final limit characters thereby parametrize

the admissible dual of G. The central character of X (vy) is the restriction of I to the center
of G; in particular X (v) is genuine if and only if " is genuine.

§5. MAIN RESULTS

We consider the dual pairs (5(p, q), %(277,,]1%)) with p + ¢ = 2n + 1. Throughout this
section we fix 0 = +1, and a non—trivial additive character 1) of R. Recall (1.2) x = x(¢)

is a genuine character of Z}’\E(m, R) for any m. Also recall for V' an orthogonal space of

signature (p, ¢), the genuine character xy = x(¢, V) ofaf(m, R) satisfies xy = x(¢)"PT9.
We write 6, ; = 0(, p, q) for the f-correspondence as in (1.3).



GENUINE REPRESENTATIONS OF THE METAPLECTIC GROUP 19

Theorem 5.1. Let w be a genuine irreducible representation of §1/9(2n), with inducing

data (cf. §4)
M = GL(1,R)* x GL(2,R)™ x Sp(2r,R) oc=a®@B® .

By Theorem 3.3, there exist p',q" satisfying p' + ¢ = 2¢ + 1 and (=1)* = §(—1)™, such
that T is in the domain of O, 4. Let n = Oy 4 (7).

Letp=a+2b+p,g=a+2b+¢q. Thenp+q=2n+1,(-1)1=9, O, 4(m) #0 and
is in the domain of 0, 4. The inducing data for 6, ,(m) are given by

M = GL(1,R)* x GL(2,R)™ x 6(p', q')[n] o =a*xy @ Fxvon

In these formulas, a*xy means afxv @ --- ® ayxv, similarly for B, and 0’ is given by

7 a even,
n =< nx a odd, n even,
nx ! a odd, n odd.

Note. To define ¢’ in Theorem 5.1 we have identified the GL(1) and GL(2) factors of M
and M’ as in §1.

We summarize some useful properties of this correspondence which follow immediately
from Theorem 5.1 and its proof.

Corollary 5.2.
(1) Let p be a lowest Iz'ftype of . Then i is of lowest p,q—degree in 7.
(2) p.q are the unique choice with (=1)7 =6 and Hpq(p) # 0.
(3) Let p be a minimal K ~type of 0, and write the element A\ (i) of t associated to p
by the Vogan algorithm (cf. §6) as
t

——
)‘G(H) = ()‘17'"7a7“707"'707ﬂ17"'7ﬂ8)

with oy > -+ > ap. > 0> 01 > -+ > 0Bs. Then p,q = 2r +t+1,2s +1t or
2 4+ 1,25+ + 1.

(4) @' =Hy q(p) is a lowest K'type of 7. In particular i’ has multiplicity one in '
and the standard module of 7'.

(5) Hp,q defines a bijection between the lowest I}—types of ™ and the lowest I?’ftypes
of .

(6) A representation 7 of %(271,1&) occurs in the correspondence for the dual pair
(Sp(2n,R),O(p, q)) if and only if some (equivalently every) minimal K —type 1S
P, q—harmonic.

(7) A representation ©' of 6(}9, q) occurs in the correspondence if and only if some
(equivalently every) minimal K'-type is harmonic.
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A comment is also in order due to our choice of coverings of orthogonal groups (§1).
The group 6(p’, q') in M is 6(1)’, q')[n], while 7 is defined on 6(1)’, q')[c]. Sincen—c=a
mod (2), there is an identification in the definition of n' if a is odd. Strictly speaking it
should read ' = (nx)¢ (n even) or ' = (n&)x~! (n odd) where ¢ is the genuine character
1 ® sgn of the trivial cover O(r, s) x Z/2Z of O(r, s) (cf. 1.2).

Let SO(p,q)” be the admissible dual of SO(p, q), i.e. the set of equivalence classes of
irreducible admissible Harish-Chandra modules for SO(p, ¢), and let %(2n, R) be

genuine

the genuine admissible dual of Sp(2n, R).

Corollary 5.3. Fiz 6 and . Then the representation correspondence gives a bijection

%(2’”, R);enuine &) U SO (p7 Q)A

p+g=2n+1
(-1)?=s

More precisely, if 7 is a genuine irreducible representation of %(271), let 7, = 0(2, p, q)()
be the #-lift of 7 to 6(]9, q) for the unique choice of p, ¢ for which this is non—zero. Then
my ® £ factors to O(p, q), and let 7’ be the restriction to SO(p,q). Then 7 — 7’ gives
one direction of the bijection.

Conversely if 7’ is an irreducible representation of SO(p, q), extend 7’ to an irreducible
representation of O(p,q) (there are two such choices), and tensor with £. Precisely one
such choice of representation 7(, is in the domain of 6(1)); let 7 = (1)) (7()-

§6. SOME CALCULATIONS

In this section we do some calculations involving K—types. The main results are Propo-
sitions 6.1, 6.18, 6.21 and 6.29. Throughout this section we fix ¢ = ¢, with a > 0 (cf.
81).

Let p be a K-type for a group G. Proposition 5.3.3 of [18] produces an element A € t*
where t is a fundamental Cartan subalgebra of g. We refer to this map as the Vogan
algorithm, and denote it p — V() = A.

Proposition 6.1. Let p be a I?ftype for %(271), and suppose p s p,g—harmonic. Then
the following diagram is commutative:

Sp(2n) O(p,q)

A —2 5 N
A small but useful observation is that for the purposes of computation it is better

to compute the inverse of V, i.e. the multi-valued map A — p. With this in mind we
summarize some standard theory [18], [6].
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Let G be a reductive group with a compact Cartan subgroup 7.. We use t. as a fixed
complex Cartan subalgebra of g (an “abstract” Cartan subalgebra in the sense of [19]).
Let aq, ..., ax be a set of strongly orthogonal non—compact roots of t. in g. Associated to
this set is a G—conjugacy class of Cartan subgroups of G. We choose H in this conjugacy
class, and writing H = T'A as usual we may and do assume t C t., and t* C t.

The Cartan involution of g carried back to t. via a Cayley transform gives an involution
o of te. Let ¥ = (A, v) € it} o x t satisfying o(A) = A and o(v) = —v. Then the Cayley
transform identifies A (resp. v) with an element of it{ (resp. a*), and 7 with an element
of h*.

Let m be an irreducible representation of G with character data (H,vy) = (¥,I',7)
(cf. 84). Write ¥ = (A, v) with A € t, and let ¢ = q(A) = [ & u be the #—stable parabolic
subalgebra of g defined by A ([18],Definition 5.2.1). The normalizer L of q in G is quasi-
split. The minimal K-types of 7 are of the form

(6.2) p=A+punp)—punt)+puL

for some fine L N K-type up.

Proof of Proposition 6.1. Let G = %(271,1&),@’ = 6(}9, q), etc. , with maximal compact
subgroups and compact Cartan subgroups chosen as in §2. Given pu, let 7 = X () be an
irreducible representation with lowest K—type p. Then 7 = (A, v) with A = V(u) € t. By
the above discussion g = A+ p(unyp) — p(un€) + py. To avoid covering groups we work
on the Lie algebras whenever possible.

After conjugating by W (t., g) we may write

T1 Tr mo Yr Y1
N

A

- ~N - e e
(6.3) A= A Ao s A 0y o3 0, = Aoy =g o = A1, e — A1)

with Ay > - > A, > 025, y;, > 0.
The fine €N lo—types pp, for lp ~ [[;_; u(zi, yi) X sp(2mo, R) are described as follows. If
x; # y; then py is trivial on this factor. If x; = y;, then py, is trivial, or has highest weight

T Yi

—f—

(6.4)(a) j:(%,..., %%)

DN | =

on this factor. Finally on sp(2mg,R), puz has highest weight of the form
(6.4)(b) (1,...,1,0,...,0) or (0,...,0,—1,...,—1)

or

(6.4)(c) (%,...,%,_%,...,_5).
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In the case of a genuine representation 7 of §}/9(2n,]R), pr, will have form (6.4)(c) on this
factor.
A straightforward computation now gives:

myq
A X T 1
(65)(&) u:(rO,/]_,...,O{]_‘,...,rar,...,a;,.’i'—g—f—5,. ,.’i'—g—f—g,
ma2
. -\ ~ Yr Y1

5 B 1, . ~ y . ~
7"'7$_y_5767‘7'"767‘7"'7617"'7/31)-

N =

Here

k k
T =Y Tk = Y Y
i=1 i=1
(6.5)(b)
~ ~ 1 1 €5
a; = A\ + (1'1_1 — y,‘_1) + §($z — yz) + 5 + B (6,‘ =0, :I:l),
- N 1 1 ¢
i = =i+ (@ior = gim1) + 5 (@i —yi) — 5 + 517
{:}:1 ri =1vy; and )\iEZjL%
€ =

0 otherwise,

and m; and me are any non-negative integers with my +mo = mg. We set £ = z,., y = ¢,
We now let A = O()\), and do the corresponding calculation on the orthogonal group.

It follows from Proposition 2.2 that p is p, g-harmonic with p = 2x +mo+1,q¢ = 2y + my

or p = 2x + mo,q = 2y + mg + 1. We consider only the first case, the second is similar.
From 1.13 we have

Z1 e m Y1 Yr m
(66) /\:(}\1,...,/\1,...,/\r,...,/\T,O,...,0;/\1,...,)\1,...,/\r,...,)\r,o,...,O)

with md = [22tL] and mg :
As before with ' = ¢’(\) =1 W/

(6.7) p=X+p Np') —p(W NE) +pp.

We assume first that mg is even, and compute
(6.8)(a)
1 T, mi 1 T mo

!/ !/ !/ !/ / / / / /
po=(ay,...,a, . 0,00, 0,0..0) (B, By Bry ey By 0,000, 0) + pipr
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Here
_ i i 1 1
=N\ — p_2 14 (Ti1 — Gim1) + 5(331 —yi) + B
_ N . 1 1
(6.8)(b) B =X\ + 2% + (Gim1 — Ti—1) + 5(%‘ — ;) + 5

Now If ~ [[i_; w(wi, yi) ®o(mo+1,mp), and on the unitary group factors fine &' N [{—types
are as in (6.4)(a). On O(mo + 1,myg), the fine L' N K’ type pr is of the form

(6.9) (0,...,0;0)®(1,...,1,0,...,0;€).

A similar statement holds for 6(m0 + 1,myp), upon tensoring with &.

It follows from Proposition 2.1 that if p is any I?ftype for %(2n, R) of the form (6.2),
then p' = H(u) is of the form (6.7). In (6.7) we take prs to be the same as pz on the
unitary group factors, and on O(mg + 1, mg) it is given by (6.9) with

(-I-l,m2, -|-1) 0 S 2m2 S mo
(+1,m1, —1) mg < 2mg < 2my.

65,01

The other case (p = 2x + myg) is similar. This completes the proof of Proposition 6.1. O

Proposition 6.10. s
(a) Let m = X (7y) be an irreducible genuine representation of Sp(2n,R). Writey = (A, v)
and X as in (6.3), and let ¢ = q(A\) = (D u. Then the lowest K—types of X () are of
the form

p=XA+punp)—pune)+ L
such that all the possible py, have the same restriction to sp(2mg,R). Thus pr is
trivial except on sp and on factors u(x;,y;) of lo with z; =y; and \; € Z + 3
(b) The analogous statement holds for O(p, q).
Proof. This follows from the preceding discussion, and the following Lemma.

Lemma 6.11. Let m be a genuine principal series representation of L§f71¥7(2n,11§) or 6(n +
1,n). Then 7 contains a unique fine K—type.

Proof. For %(2n, R), let A = (]ﬁ;)" as in §1. We consider I" as a character of A. Write

[ = Ja|"sgu(z)* x "

on the i** factor (v; € C,6; =0,1). Let n; = > ; 0i, and ng = n — nyi. Then by Frobenius
reciprocity
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is the unique fine K-type in the corresponding induced representation.
The proof for O(p,q) is similar. We omit the details. This completes the proof of
Proposition 6.10. [J

We now describe character data in more detail, and relate this to inducing data (cf. §4).
Let (H,~y) be a limit character for G = Sp(2n,R). As in (6.3) write
(6.12)(a)

Ty Tr mo Yr Y1
7~ -\ N 7 -\ \/—/Hr -\ N la -\ ™\,
A= (AL, ey A e Ary e A, 0,0 = Ay = A = A, e, —AY), 20 € Z.
and corresponding to this write
6.12) (b = (ag o ! @r 1 yr 1 Y1
(6.12)(b) v =(ag,..., 07" . Qe QT VL e Uy By, B B, BT

For any i, (because we may conjugate by the stabilizer of A in K) we may assume ﬂg =al
for all j < min(z;,y;). For the parameter to be genuine, we also need z; # y; = A; € Z-|-§,

T, >y = ol =0,and y; >z, = B = 0.
For each i let

g':{xi:yi . Ai € Z
Z {7 < min(zs, yi)log # 0} X € Z+ 3,
(6.13)(a) T, =mx; — ¥

vi=yi —

ti = x} + yi.

Then set

(6.13)(b) =t t=) _t

Ltiﬁ be the covering group of H defined in §1, and let M, M and M be as in 64, In
fact H and M are determined by 7: H is isomorphic to

——t

(R)" x (€)' x U(1)
and M is isomorphic to - - s
GL(1)™ x GL(2)* x Sp(2t,R).

(That H is so determined is due to the condition that v satisfies condition (4.4)(b); see
the proof of Proposition 6.15.)
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Now v determines a (relative) discrete series representation & of M, explicitly described
as follows. For each ¢ there are ¢; limits of (relative) discrete series representations of

GL(2), all with lowest K—type (2A; + 1)x, and the center acting by |det|a5.

On Sp(2t,R) there is a limit of discrete series representation with Harish—Chandra
parameter

) . Yy Y1
- N\ ~N - N\ N\ 7~ N ~N e e
(614)(&) ()‘17---7)‘17---7)‘7“7---7)‘7’7_)‘rv---7_)\7“7---7_)\17---7_)\1)-

The positive imaginary roots on this factor are the corresponding restriction of W.

The character I of H satisfies dI' = 7 + p(¥) — 2p.(¥). Thus I' is determined by 7 and
U except on the cover of the R* factors. We consider I' as a character of H, genuine on
each factor for which the cover is non-trivial (so I' factors to a genuine character of H).
For i =1,...,mg write I' on the corresponding factor of R* as

(6.14)(b) [(z,€) = |z

Proposition 6.15. (H,~) satisfies condition (4.4)(b) if and only if v; = tv; = 6; = 0;.

Visgn(w)” x(w,€) "

Proof. Suppose < a,5 >= 0. If a is a long root and + is data for a genuine representation,
then I'(m,) = %, and (4.4)(b) is immediate for these roots. If a is a short root on a
factor of C* then a straightforward calculation shows that (4.4)(b) holds if and only if
Ai € Z. This is taken care of by our choice of H: the short real roots for which a(%) =0
and \; € Z + % are imaginary. If « is a short real root on the factors of R* then a similar
calculation shows (4.4)(b) is equivalent to the condition stated in the Proposition.

The preceding steps may be reversed to express character data in terms of inducing
data. O

We turn next to an orthogonal group O(p, q) = O(2po+1, 2qp). Let v be a limit character,
and write

+ —
T T mg Y1 Yr Mg

- -\ Y - N\ Y - N\ Y -~ - \/_/H
(616)(&) )\:()\1,...,)\1,...,)\T,...,)\T,O,...,Oh®()\1,...,)\1,...,)\r,...,)\r,O,...,O)

as in (6.6). Then write the real part of the parameter as

(6.16)(b) v = (aj,...,af", ..., ap,...,a"" vy,. ..,Vmg)®
(B s B B BE Vit 1 s Vit ).
The corresponding Cartan subgroup H of SO(p, ¢) is isomorphic to
(R*)ma'—i—mo_ % ((C*)Z % U(l)t

where £ and ¢ are defined as in the previous case (cf. (6.12)(c)). Again I' is determined by
¥ except on the copies of R*. Write I'(x) = |z|"'sgn(x)% on these terms.
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Lemma 6.17. v satisfies condition (4.4)(b) if and only if v; = *v; = 0; = 0;.

Proof. If « is a short root then my, = 1 and ¢, = —1 [18, 8.3.8 and 8.3.11] The first fact
comes down to the isomorphism SO(2,1) ~ PGL(2,R), and the second from a straight-
forward calculation that the integers d; of [18,8.3.9] are even. Thus (4.4)(b) is automatic
for these roots. The proof for the other roots is the same as for the symplectic group. We
omit the details. O

This result extends in the obvious way to O(p, q) and 6(1), q).

Propoiitiova.IS. N
Let G = Sp(2n,R) or O(p,q) and let

(6.18)(a) Ind<. (o)

be a standard module for G (cf. §4). Let p be a minimal K —~type of (6.18)(a), and suppose
@ is p,q—harmonic. Let ppr be the (unique) minimal K N M —type of o. Then degy, (1) =
degp.q(pear), and pas is contained in the restriction of p to K N M.

Proof. We first consider G = Sp(2n, R). Write V() = A as in (6.3), p as in (6.5)(a), and
other notation as in (6.5)(b). By the proof of Lemma 6.11 we have m; = ) . d; with I’
written as in (6.13).

Then p =22 +mo+ 1,9 =2y + mg or p = 2T+ mgy,q = 2y + mo + 1. We consider only
the first case, the second is similar. Let z = P54 =& — g + %

By Proposition 2.1, deg, (1) = >, wilas — 2| + 32, yi|Bi — 2| + ma.

It is not hard to see that a; — 2 > 0 > 3; — z. This implies the degree of p is the sum
of the following terms:

(6.19)(a) = 4i(2xi +1)
(6.19)(b) +2_ @il = 2)

(6.19)(c) -2 (B = 2)

(6.19)(d) +my

On the other hand with ¢ described preceding Proposition 6.15 we compute the lowest

—_

K N M—type pp of 0. We pull this back to the group M. The degree of 7i,, is the sum
of the degrees of the factors. With notation as in (6.13), on each of the ¢; factors of type

GL(2), the degree of pps is 2A; + 1. This contributes

(6.20)(a) Z&@Ai +1) (independent of ;)
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to the degree of 11,,.

On the §1/9(2t,R) factor, o is a limit of discrete series representation with Harish—
Chandra parameter A given by (6.14)(a). Define ', y', o etc. by applying (6.5)(b). Then
par on this factor is (22 + 1, 2g")-harmonic. With 2’ = (22’ + 1 — 2g’)/2, we see that the
degree of pps is the sum of

(6.20)(b) > wilai =4l
(6.20)(c) >yl =,

By (6.13)(a) =} — y; = x; — y; for all . Therefore by (6.5), Z; — 9. = &; — ¥;, @, = «;, and
B = p; for all i. Also ' — ¢ =& — § and so 2’ = z. It follows that (6.20)(b) (resp. (c))
equals (6.16)(b) (resp. (c)).

Finally on each @\f/(l) factor, the degree is d;, which gives a contribution of

(6.20)(d) ma

to the degree of 1i,,. Comparing (6.16) to (6.20) we conclude that deg(u) = deg(par). This
calculation also shows that the highest weight of pjps is the same as the highest weight of
i (independent of the choice of p), proving the last claim of the Proposition in this case.

The proof for 5(]9, q) is similar. We won’t use this fact, and so we leave the details to
the reader. 0O

Proposition 6.21. Let p be a lowest I?ftype of an wrreducible genuine representation m
of Sp(2n,R), and choose p,q so that p is p,q-harmonic. Then u is of lowest p,q-degree
in w, and in the standard module of «.

Proof. Obviously it is enough to prove the second claim. We use notation as in the proof
of Proposition 6.18. In particular write 7 = X (), A as in (6.3) and p as in (6.5)(a). Let
p,q and z be as in the proof of Proposition 6.18, and write deg = deg,, ,. For any k-tuple
write deg, (21, ...,25) = >, |v; —2|. With Z, 9, m¢ as in (6.5) (computed for p), write any
K—type v as

(6.22) ¥ =V 7,7=) = (@1, .., 05, C1, ..., Cmgs by, .., b1).

Then deg(vy) = deg.(v+) + deg.(v0) + deg.(v-). By (6.5)(a) p satisfies

(6.23) ar, ...,z > 2> fBy,..., 0.

The standard module X () may be realized as a derived functor module from the parabolic
subalgebra q = q(A) of g [18]. By the generalized Blattner formula ([18], Theorem 6.3.12)

the highest weight of any K—type p' of m may be written

(6.24) po=pt Y mea (mg > 0)
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where the sum runs over the roots of t. in [ and unp, and p is a lowest K ~type of .
Furthermore if the sum is restricted to roots in [, then the resulting weight is the highest

weight of a K N L-type in the corresponding principal series representation X () of L.
In our coordinates these roots are those in the following table.

(6.25)(a) ete 1<i,j<Z

(6.25)(b) —€te; THmp<i,j<n

(6.25)(c) e +e) 1<i<d F+mo<j<n
(6.25)(d) € +¢€,2¢ 1<i<2<y<T+m
(6.25)(e) —€ —€,=2 T<i<T+my<j<n
(6.25)(f) +e; £, 2 T<i,j < T+ myg

These roots also satisfy
<o, A>>0, and if < a, A >> 0 then « is not of the form ¢; — ¢;.

Lemma 6.26. If vy is any k—tuple satisfying (6.23), then

deg(y+ ) maa) > deg(y)

a,b,c

for any my > 0. Here ), . denotes a sum over roots of the form (6.25)(a,b,c).

Proof. Adding roots of the form €; + ¢; and —e; — €; of type (6.25)(a—b) changes vy to a v/
satisfying (6.23) and such that deg(y') > deg(y), with equality if and only if all m, = 0.
So we may as well assume that no such roots occur. Then

’y—i—Zmaa:(...,ai+ki-I—ai,...,...,cl,...,cmo,...bj+€j+ﬁj,...)

ab,c
where > ki =)l and > a; =) 3; = 0. Then
Z|ai+a’i‘|‘ki_z|+Z|bj+ﬂj+€j_z| >
Z(ai—z-l-ai—i-ki)-l-Z(z—bj—ﬁj—Kj):Z(ai—z)-l-Z(z—bj).
The claim follows. [

Lemma 6.26 applies to pu + Zd,e,f mea, and gives

(6.27)(a) deg(p') > deg(p + Z Mo ).
d.e,f
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The right hand side of (6.27)(a) equals

(6.27)(b)

deg.([u+ Y maaly) +deg.([u+ Y maao) + degs([n+ > maa)-)
d d.e,f €

(6.27)(c)

> deg,(ng) + deg. ([ + Y maco) + > mq + deg, ()
d,e,f d,e

(6.27)(d)

> deg.(nq) + deg. ([ + Y maalo) + deg, (n_).
7

Here (d) follows from repeated applications of the inequality deg, ([y+ a]o) + 1 > deg. (o)
for any weight v and « in (6.25)(d,e).

Separating the sum (6.24) into roots of [ and u N p gives [u + >3 maalo = [p +
> aeA(t.,)) Mato, so by the discussion following (6.24) this is a mftype of a prin-
cipal series representation of %(2m0, R). This has (unique) lowest mftype

mi ma
—f— —
(1 1 1 1)
27 '727 27 Y 2

(¢f. (6.5)(a)).

Lemma 6.28. Let w be a minimal principal series representation of L9f71/7(2n, R), containing
1 - 1 1 -~ 1
the (unique) fine K-type p = (5,...,5,—5,...,—5) (cf. Lemma 6.11). Then p is of

lowest n + 1, n—degree in m.

Proof. This follows easily from Frobenius reciprocity. We omit the details. O
Proposition 6.21 follows from (6.27)(d) and Lemma 6.28. O
We only need part (1) of the next Proposition for the proof of the main results in §5.

Proposition 6.29.
Let 11 be a lowest K'—type of an irreducible genuine representation w of O(p,q).
(1) If m is a discrete series representation then p is of lowest degree in 7.

(2) For any m, assume p occurs in the space of joint harmonics. Then p is of lowest
degree in .



30 JEFFREY ADAMS AND DAN BARBASCH

Proof. We may safely ignore the covering groups, and for the remainder of this section we
let G =O(p,q) = O(2po + 1,2q0), K = O(p) x O(q), etc.

Let m be a discrete series representation of G with Harish-Chandra parameter A = (Ag; €)
(cf. §3) and lowest K-type u. Let u' be any K-type of 7.

Suppose p is of the form

(6.30)(a) p=(ay,...,a,,0,...,05€) @ (b1,...,bg;n)

for some 0 < r < po (cf. §3). Write any K-type v as v = (v+,%0,7—) with v4

(a1, ar), 7= = (b1,...,bg3m) and o = (@r41,-- ., ap,;€). Then deg(y) = dego(y+) +
deg (7o) +deg(~y—) where the second and third terms are for the groups O(p —2r) and O(q)
respectively.

It follows from the formula g = Ao + p(uNp) — p(uNp) that A\g may be written

1 31

(6.30)(b) Ao = (@1, 0, po— 1 — 5,...,5,5;&,...,@10).

By induction by stages ([18], Corollary 6.3.10) it follows that 7 may be realized as a derived
functor module for q = @ u with L ~ U(1)%*" x O(p — 2r), from a one-dimensional rep-
resentation 7z, of L. The O(p —2r) component of 7y, is the one-dimensional representation
(0,...,0;€) realized on the space C.. By the Blattner formula (6.24) it follows that

(6.31) o=+ Zmaa

with a € unyp.
The roots of uNp are (among those) of the form

(6.32)(a)
i(ei—ej),ei+ej,ej 1§i§7’, p0-|-1§j§n
(6.32)(b) teitej, T+1<i<py, po+1<j<m

As in (6.27)(a—c) it is immediate that

(6.33)(a)

deg(') > deg(p+ 3" mac)
b

(6.33)(b)

> deg(py) + deg((p+ > maclo) + deg(p_) + Y madeg(p_)

where the subscripts denote the roots of (6.32)(a,b). Noting that [u + >, maao = py, it

is enough to show

(6.34) deg(py) + Y ma > deg(po).-
b
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This requires a refinement of the Blattner formula. We only consider the factor O(p — 2r)
of L. Let 7, 7’ be the O(p — 2r) factor of H*(uN€,V,) and H°(uN ¢, V, ) respectively.
These are the finite dimensional L N K-modules with the same highest weight as p and '
respectively. It follows from [18,6.3.12] (a sharpening of (6.31)) that (with m =), ma,),

(6.35) mult[t" : 7® S™(uN p)low—2r)] > 0.

Recall from §1 that we realized each representation of O(p — 2r) as the highest weight
factor in a representation of U(p — 2r). As a module for O(p — 2r), uNp is isomorphic to
a direct sum of copies of the standard module; thus it is a module for U(p — 2r) as well.
So we can decompose S™(uNp) with respect to U(p — 2r) and then restrict to O(p — 2r).
It follows that the highest weight of any irreducible summand of S™(unNyp), is of the
form
(C1,.. vy Cp_2r) with Zci =m, ¢; >0 for all i,

when written as a weight for U(p — 2r).

Lemma 6.36.
Let 7,7" be irreducible representations of O(n), with T one—dimensional. Let v be an
irreducible representation of U(n) with highest weight (c1,...,¢y), ¢; > 0. Suppose

mult[t" : T @ (Y|om))] > 0.

Then deg(t') + >0, ¢i > deg(T).

Proof. This is obvious if 7 is trivial, so assume 7 = sgn. Replacing 7" with 7/ ® sgn it is
enough to show

(6.37) mult[T" = ¥|o@m)] > 0 = deg(7' @ sgn) + Zci > n.

Write 7/ = (ay,...,a%,0,...,05¢), so deg(7') = Y a; + 15 5 (n — 2k). If the multiplicity is
greater than zero, then v must contain a vector of Welght (dy,...,dy,) which is a highest
weight vector for 7. It follows that:

(6.38)

(a) di —dpy1-s=a; i<k,

(b) di —dnt1-i =0, k+1<i<[%]

) di =dpy1-; =15 mod (2), k+1<i<[Z],
d

(c
(d) gl = 1€ mod (2) if n is odd.

In addition, the relations Y., d; = > =, ¢; and d; > 0 for all 7, hold.
By (6.38)(a), d; > a; > 1 for 1 <4 < k. Thus

k

(6.39) > (ai + di) > 2k

1
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If e = 1, then (6.37) becomes Z’f a;+Y.7 d; > 2k,, which is immediate from (6.38). Assume
e = —1. We need to show YV (a; +d;) + Yy, di > n. By (6.38)(c) and (6.38)(d), we get
d; > 1 for k+1 <1i<n— k. The assertion follows from this together with (6.39). O

This also completes the proof of Proposition 6.29(1). O

Part (2) of the Proposition may be proved similarly, using an extensionion of Lemma
6.36 to general 7, and a version of Lemma 6.28 for O(p, q). Since we won’t need it we omit
the details, but we note that it is also an immediate consequence of Theorem 5.1.

§7. OCCURENCE OF THE DISCRETE SERIES

In this section we prove that the entire genuine discrete series of §1/9(2n, R), and half of
the genuine discrete series of 0) (p, q), occur in the correspondence. We assume p+q = 2n+1
throughout, and fix ¢. The arguments hold for p + ¢ = 2n as well, recovering some of the
results of [11]. We depart from our convention of §1 and let O(p, q) = O(p, ¢) if n is even,

and we let Sp(2n,R) = Sp(2n,R) when considering a dual pair (Sp(2n,R),O(p, q)) with
P+ q even.

Proposition 7.1.

(1) Let ™ be a genuine discrete series representation of §1/9(2n,]R). Then, for any
d = 1, m occurs in the correspondence with some O(p,q), (—1)9 = 4.

(2) Let m be a genuine discrete series representation of O(p,q). Then precisely one of
7 and T ® sgn occurs in the correspondence with Sp(2n,R).

This follows from a doubling of variables argument due to Kudla and Rallis. The proof
is divided into a series of Lemmas.

For an irreducible representation 7 of 379(2n,R) (resp. 5(p, q)), let Ry, , , denote the

maximal quotient of w,, ,, , on which Sp(2n,R) (resp. O(p,q)) acts by a multiple of 7 [5].
We embed Sp(2n,R) x Sp(2n,R) diagonally in Sp(4n,R). This induces a natural map
Sp(2n,R) x Sp(2n,R) — Sp(4n,R). Similarly O(p, q) x O(q,p) maps to O(p + q,p + q).

Lemma 7.2.

(1) For any irreducible representation © of §}/9(2n,]R),
(7.3)(a) Opq(m) #0 & Homg, o, ryx5p(2n.R) (Ranpq(1L), 7@ ) # 0.

(2) For any irreducible representation © of 6(17, q),

(7.3)(b) 0(r) £ 0 Homg, . 500 Brptraan (1), 7 &) # 0.
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Proof. We prove (1), the proof of (2) is similar. To conserve notation let G = %(271, R),

G' = O(p,q), and let w,, be the oscillator representation for the dual pair (G,G’). Then
according to ([11], I.8),

(7.4)(a) Homg (wy,, ) # 0 < Homgxg (W, 7@ 7') #0 for some 7.

Thus if Homg (wy,, 7) # 0, then Homgxaxa'xa' (Wn @ wy, m @ T @ ' @ ©') # 0. Since 7’
is a genuine representation of O(p,q), (7')* ~ 7’ ® sgn™. Therefore sgn™ is a quotient of
' @ 7', which gives

(7.4)(b) Homg (wn, 7) # 0 = Homgxaxa(e)(wWn ® wn, ™ @ m @ sgn™) # 0,

where A(G") is the diagonal subgroup of G’ x G’. By Lemma 1.7 we may replace w,, ® wy,
with wa, ® sgn™. Thus the right hand side of (7.4)(b) is equivalent to

(7.4)(c) Homgyaxa(a)(Wan, T®@ ™ @ 1) # 0 < Homgxa(R2np,q(1), 7@ m) # 0.

Thius proves one direction of the statement. On the other hand, if (7.4)(c) holds (i.e. the
right hand side is nonzero), the same is true for (7.4)(b), and ignoring the A(G’) action,
we see that Homgx g (wn ® wp, m @ ) # 0. This is easily seen to imply Homg(wy,, ) # 0,
proving the Lemma. [

Let P = MN be the stabilizer of the Lagrangian subspace Lo =< e1,...,e2, >, and

P = MN its inverse image in Sp(4n,R). For a € Z/47Z we consider the Harish-Chandra
module of the induced representation

(7.5)(a) Ind PR (o).

We are using normalized induction, so this representation is unitarily induced and com-

pletely reducible. Similarly, for G’ = O(p, q), we consider the induced representation
O(2n+1,2n+1

(7.5)(b) Indg' (0.

where the Levi component of P = MN is isomorphic to GL(m), M ~ M x 7/2Z, and

x = 1 ® sgn.

Lemma 7.6.
(1) For a ==+1

Ind?)p(zn’R)(Xa) ~ @ Rop pq(1).

p+g=2n+1
P—q=a

(2)

Ind?fz"“’z”“)(x ®1) = Ry 2nt12041(1) © (Ry 2n41,2041(1) ® sgn).

Proof. Part (1) is proved in [9], and both (1) and (2) are in [24]. O
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Lemma 7.7.

(1) Let  be a genuine irreducible representation of Sp(2n,R). Then 0, 4(7) # 0 for
some p,q with (—=1)7 =0 if and only if

(7.7)(a) Homs [IndT@ ) () x @ 7] £0, for a = 5(—1)".

Sp(2n,R)x Sp(2n,R)
(2) For m an irreducible representation of O(p,q), 0(x) # 0 or O(x @ sgn) # 0 if and
only if

O(2n+1,2n+1
(7.7)(b) Homg, o o0qmInda 7 (), m @ 7] £ 0.

Proof. This follows immediately from Lemmas 7.2 and 7.6.

Lemma 7.8. Let  be the Harish-Chandra module of a genuine discrete series represen-
tation of Sp(2n,R) (resp. O(p,q)). Then the space (7.7)(a) (resp. (b)) is non—zero.

Proof. The two cases are similar, so we treat only %(271,1&). Let X be the variety of
Lagrangian subspaces of R**. Then X ~ Sp(2n,R)/P. Let L? — I, () be the L?-induced

version of (7.5)(a). This is realized on L? sections of the induced bundle B = Sp(4n,R) x 5
(x“) over X.

Let L =<ej;+ent1,---,€n+€2n, f1 + fnt1,---, fn + fon >. Then the orbit O of L by
G = Sp(2n,R) x Sp(2n,R) is open in X. Let H be the stabilizer of L in G so O ~ G/H.
Then H ~ Sp(2n,R) is embedded in G ~ Sp(2n,R) x Sp(2n,R) via g — (g, 7(g)) where T
is the outer automorphism of Sp(2n,R) of 1.4. Let Z ~ Z/2Z be the kernel of the covering
map 379(2n, R) — Sp(2n, R). Passing to the coverings we see that the map

(7.9)(a) O~G/H — Sp(2n,R)/Z

given by (g, h,e)H — (g7(h™1),€)Z is an isomorphism, and induces an isomorphism be-
tween the restriction of B to O and

(7.9)(b) G xz x|z
Under this isomorphism the action of G on O becomes
(ga h7 6) ) (.I‘, 6)Z = (ng(h_l)a 66)Z

(g9, h,z € Sp(2n,R)). Thus sections of the bundle (7.9)(b) are identified with Li(%@n, R)),

i.e. L? functions on ,%(271, R) transforming by x under Z, with ,%(271, R) x §];(2n, R) act-
ing by conjugation twisted by 7. Since 7 takes 7 to 7* it follows that the discrete spectrum
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of this space is precisely the sum of 7 ® 7 where 7 runs over the genuine discrete series
representations of Sp(2n, R).
Therefore there is a non—zero map

¢ : L — In(a) 4" L2 (Sp(2n,R)) — n® 7

intertwining the action of S’E(Zn,R) X %(271,]1%), where the first map is restriction of
sections to O.

To complete the proof we need to replace L? — Iy, (a) and 7 by their Harish-Chandra
modules. Let K (resp. K) be the maximal compact subgroup of Sp(4n, R) (resp. Sp(2n,R)).
The restriction of the K-finite functions I5,(x) of L? — Iz, () is a dense subspace of the
K x K-finite functions on ©. Therefore ¢ restricted to Iy, () is non-zero. [

Proof of Proposition 7.1. Part (1), and the occurence of either m or 7 @ sgn in the corre-
spondence in (2), is an immediate consequence of Lemma 7.8. The fact that both 7 and
7 ® sgn cannot occur in (2) was proved in Lemma 1.5. O

§8. INDUCTION PRINCIPLE

In this section we turn to a more general setting and let V be an orthogonal space of
signature (p, q) and W be a symplectic space of dimension 2n, with no further restrictions.
Throughout this section we fix ¢ and let w be the corresponding oscillator representation
for the dual pair (O(V), Sp(W)).

Suppose we are given a decomposition

(8.1)(a) wW=w/e  eWrew’sew o oW,

where all WjjE are isotropic, WjJr and W, are in duality, and W0 is a non-degenerate
symplectic space or 0. Let P = MN be the stablizer in Sp(W) of the flags 0 C W C
Wy eWy Cc---C W™ =5 .W,. Let P=MN be the inverse image of P in Sp(W).

There is a surjective map

(8.1)(b) M = GL(Wy) x -+ x GL(W,) x Sp(W°) — M.
Let
(8.1)(c) Vv=vte -eVieVieV & -0V

be a decomposition of V, and define P’ = M’N’ and P’ = M’N’ in an analogous manner
as for the symplectic group. In this case M’ ~ GL(V}) x -+ x GL(V;) x O(V?),

Let wys denote the oscillator representation for (M, M'). This is the product of the
oscillator representations for the dual pairs (GL(W;), GL(V;)) and (Sp(W?),0(V?)). It

gives a correspondence between representations of M and
(8.1)(d) M =GL(W) x -+ x GL(V,) x O(VY).

If one member of a dual pair is the trivial group, then we take the trivial representation
for the oscillator representation for this pair.

Set x = x(¢) and xv = x(¢, V) as in (1.2).
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Definition 8.2 ([7], 1.1.1). For a,b € Z define the character ((a,b) of 55(1) by

C(a,b)(z,€) = x(z°, “)x(xb eb)_l

Il
=2
—~~

8
\.Q
N[—= ™M
=
=

5
\.O" >
N
&

|

—

™

7

>

1 a = b(2)
x Yz, €) a even,b odd

x(x,€) a odd, b even.

For (g,€) € GL(m) let ¢(a,b)(g, €) = ¢(a,b)(det(g), €).
Note that ((a,b) is of type a + b. .
Let k, = dlm(‘/,), k, = Z;'=1 kj, k= k,«, E, = dzm(WZ), and E, = Z;'=1 Ej, {= KT.

Definition 8.3. Let m = p + q, and define the character & of M by:

. | det|n= 5 —itRitati=5kita ¢ (k;, k) x(deth, ) xy @\NE(WJ')
1 Sp(W?°)

and &' ofM, by

. det| =+ E+h R =33k =5 (0, £)x(det?, ') GL(V;)
x(det=, €)(—1, det) " e O(VY).

Theorem 8.4: Induction Principle I. Let o be a representation of M and o' a repre-
sentation of M. Suppose there is a non—zero M x M equivariant map

(8.5)(a) wy S oR0.
Then there is a non—zero O(V') x Sp(W) equivariant map
Sp o)
(8.5)(b) ¢ :w— Ind P (08) @ Ind\) (0'¢").
Here o€ factors to M, and extends to P trivially on N, and o'¢’ factors to M' and extends

to P' trivially on N'.

Note: The cover O(V?) of O(V?) in (8.1)(d) (resp. (8.3)) is O(V?)[n—£] (resp. O(V)[£)).
Then ¢’¢" and the representation in (8.5)(b) are naturally representations of the covers of
O(V%[n] and O(V)[n].

Proof. The proof is essentially the same as the proofs of ([7], Theorem 2.5) and ([3],
Corollary 3.21). It follows from Frobenius reciprocity and the following two Lemmas.
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Lemma 8.5. In the setting of Theorem 8.4, supposer =1 so that V =VT V'@V,
Py = My Ny s the stabilizer of V=, My =~ GL(VT) x O(V?), and similarly for Sp(W).
Then there is a surjective My x My equivariant map

W — WV

where v is the following character of My x Myy.

|det| "5y (det’, Ly)et  (g,€) € GL(VT)
) det] EHEy(det®, Lp)xv  (g,¢) € GL(W)

y(dett, 1) (=1, det)2tet  (g,¢) € O(VO)

1 (9,€) € Sp(W°)

Proof. The proof is the same as the proof of ([3], Proposition 3.13). O

Lemma 8.6. Let (GL(V),GL(W)) be a dual pair. Suppose V =V, & Va, and let Py =
My Ny be the stabilizer of Vi, so My ~ GL(V1) x GL(Va). Let M = GL(V1) x GL(V3),
and let P = MN be the inverse image of P in GL(V) Similarly let W = W1 & Wy, etc.
Let wyps be the oscillator representation for the dual pair (My, My ). Set k; = dim(V;) and
l; = dim(W;). Then there is a surjective PxP equivariant map w —» wy v, where v is
the following character:

\det|=2%2((61,6)  GL(W
\det|2%1¢ (0o, 0)  GL(Va
|det|=2*2(C (ky, k) GL(Wy)
\det|2%1 ¢ (ko k) GL(Ws)

Proof. See the proof of ([3], Proposition 3.13). We omit the details. O

In the setting of Theorem 8.4, let fﬁ be a maximal compact subgroup of M. There is a

surjective map from fﬁ to the maximal compact subgroup K N M of M. The fwtype

in the next result factors to, and is identified with, a representation of m .
Theorem 8.7: Induction Principle II. In the setting of Theorem 8.4, suppose j is a
K—type for 3\]/9(277,,]1@), and pz7 s a fv—type for M satisfying the following properties.
(1) par is of minimal degree in o,
(2) deg(p) = deg(par), o contains ppr in its restriction to KN M and is of minimal
degree and multiplicity one in

Indlo;(v) (oa),

(3) There exist characters « and o of M and M, trivial on KN M and K' 0\ M’ such

Sp(W)(W) (0€a)

that oo ® o’a’ is also a quotient of wyr, and Ind is irreducible.
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Then p® H(p) is in the image of ¢.
Proof. The proof is the same as the proof of [3], Proposition 3.25. 0

Theorem 8.8. In the setting of Theorem 8.4, assume dim(V,") = dim(W;") = k; for all
1 <i<r;sowithk=>, ki,

M ~ GL(ky) x -+ x GL(ky) x Sp(2n — 2k, R)
M ~GL(ky) % - x GL(ks) x O(p — k, q — k).

Let o; be any irreducible representation of GL(k;), and suppose oq corresponds to 1y for
the dual pair (O(p —k,q — k), Sp(2n — 2k, R)). Then there is a non-zero map ® from w to
the tensor product of

Indsﬁp@n,R)(o.l R Qo 0'0)

and i
IndIOB(paQ)(O'TXV ® -+ X orxv @ 10C(n, k+n)).

Proof. The existence of ® follows from Theorem 8.4 and the fact that for the dual pair
(GL(m),GL(m)) the correspondence is 1 — 7 ® (—1,det)f* for all 7. O

Note: The oscillator representation for the dual pair GL(m), GL(m) may be normalized so
that the action of the dual pair factors to the linear groups. We are using the unnormalized
oscillator representation, which accounts for the term (—1, det).

§9. PROOF OF THE MAIN RESULTS

We prove the four results in §5, and Theorem 3.3. Throughout this section we fix 1) and
0 = =+1.

The most natural way to prove Theorem 5.1 would be to prove it first for the discrete
series, and then in general using the induction principle (§8). Unfortunately, the results in
§7 are not sharp enough to compute the correspondence of the discrete series.

Instead we proceed by induction on n. Given the result for Sp(2n — 2, R), the induction
principle computes the result for all representations but the discrete series of %(271,1&)
(and 5(p, q)). This implies that the representation correspondence can only map discrete
series to discrete series; since these are in the domain of the correspondence, it remains
to match up parameters. This is a relatively simple matter using the results on harmonic
K-types in section 6.

Proof of Theorem 5.1
n =20:

This is not quite empty, but an exercise in the definitions and covering groups. Consider
the dual pair (O(1,0), Sp(0,R)). The group O(1,0) ~ Z/2Z is isomorphic to O(1,0) x
Z/27, and %(O,R) ~ Z/2Z. This dual pair is mapped to %(O,R) ~ Z/27, and the
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correspondence is obtained by restricting the non—trivial character of this group to the
dual pair. This takes the non—trivial character of Sp(0,R) to & = 1 ® sgn of O(1,0). This
is as predicted by Theorem 3.3, and Theorem 5.1 is immediate. The case of O(0,1) is the
same. This completes the proof in this case.

Inductive Step: Induced Representations

Assume Theorems 3.3 and 5.1 for 5’79(2n — 2,R), and let 7 be a genuine irreducible
representation of §1/9(2n, R), which is not a discrete series or a limit of discrete series.

Let M and o be inducing data for 7 as in Theorem 5.1. We choose P = MN to be

of the form in Theorem 8.8 (¢f. 8.1), and so 7 is the (unique) irreducible quotient of the
standard module

(9.1)(a) Ind2P" ) (q).
By Theorem 8.8 there is a non—zero map ® from w to the tensor product of (9.1)(a) and

(9.1)(b) md2" (o).

Here p’,q’,]\7’ and ¢’ are as in Theorem 5.1, the twist by n coming from ((n,k + n) of
Theorem 8.8.
Recall from (§4) that 7 is the unique irreducible constituent of (9.1)(a) containing a

minimal K—type p, and similarly «’. It is enough to show
(9.2) g is in the image of ®.

Let 7®@7"” be any irreducible quotient of the image of ®. By [5] 7 contains H(x). Write the
standard module (9.1)(a) as X (y), with 7 = (A, v), and similarly (9.1)(b). It is immediate
from the calculations in §6 that O(A) = X (c¢f. the proof of Theorem 5.5 below). By
Proposition 6.1, #(x) is a minimal K'—type of (9.1)(b), and it follows that 7 = 7/, as we
needed to show.

To see (9.2) we apply Theorem 8.7. Let pps be the minimal mf’cype of . By
Corollary 5.2 applied to 3’\1/9(27’, R) the 3’79(27’, R) component of ups is p’, ¢'~harmonic. By
Proposition 6.21, and ([11],II1.9) for the GL terms, uys is of lowest p’, ¢'—degree in o, so
condition (1) of Theorem 8.7 holds. By Proposition 6.18, deg, (1) = degy, o(par), and
since p — ¢ = p' — ¢’ this equals deg, 4 (par). Also by Proposition 6.18, the restriction of

—_

p to K N M contains pps. By Proposition 6.21, p is of lowest degree in (9.1)(a), and also
of multiplicity one (this is a general fact about standard modules). This verifies (8.7)(2).

Take « to be a generic character of M given by a power of |det| on each of the GL
terms, and let o/ = o*. Then ca ® o'’ is a quotient of wys (cf. the proof of Theorem 8.8)
and (9.1)(a) is irreducible by the usual argument. Thus (3) for Theorem 8.7 holds, and
applying the theorem we conclude (9.2).

Inductive Step: Limits of Discrete Series
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Let 7 be a genuine limit of discrete series representation of 3’79(271, R) not in the discrete
series. Then 7 may be realized as the unique irreducible quotient of

(9.3)(a) Ind2C"®) (o)

containing the (unique) minimal K—type p. Here M ~ GL(2)! x Sp(2t,R) and o is a
discrete series representation of M. In the notation of (6.13), £ = > min(z;,y;) and
t =Y, |zi — yi|. This follows from the discussion in §6. As for (9.1)(a), by Theorem 8.8
there is a non—zero map from the tensor product of (9.3)(a) and

(9.3)(b) nd2" (")

where ¢’ is now a discrete series representation of M’. M. The same argument applied with
(9.3)(a,b) in place of (9.1)(a,b) proves that the lowest K and K’-types of (9.3)(a) and
(9.3)(b) correspond. Theorem 5.1 reduces to Theorem 3.3(2) in this case, and holds from
the calculations of §6.

Inductive Step: Discrete Series.

Theorem 5.1 reduces to Theorem 3.3(1) in this case, so it is enough to prove Theorem
3.3(1).

Proof of Theorem 3.3(1).

It is convenient to start on the orthogonal group. So let 7’ be in the discrete series
representation of 5(]9, q). By Proposition 6.29 and Proposition 2.1, 7’ occurs in the repre-
sentation correspondence, while 7’ ® sgn does not. The corresponding representation m of
Sp(2n,R) is also in the discrete series (the representation correspondence is the graph of

a bijection, 7’ is in the domain and all but the discrete series in the range are accounted
for).

Let pg be the lowest K'—type of ', and o the lowest K—type of =. By Proposition
6.28(2), u( is of lowest degree and occurs in the space of joint harmonics; let p = H(u').
It is enough to show p = pp.

We calculate the length of V(u), the element defined by the Vogan algorithm applied
to p (c¢f. §6). If X is the Harish-Chandra parameter of 7, then V(up) = A, and (the
Weyl group orbit of) A is the infinitesimal character. The relation between infinitesimal
characters is given by the orbit map which preserves lengths (c¢f. §1), so |A| = |\/|, where
A is the Harish—Chandra parameter for 7’. Therefore

[V(po)| = |A|

(9:2) =[0(V(p
to))| by Proposition 6.1
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Thus po and p are both lambda-lowest K ~types of m [18,Definition 5.4.1]. Therefore
[17,Lemma 8.8] u and po are both lowest K-types, and therefore equal. This accounts

for all genuine discrete series representations of Sp(2n,R). This completes the proof of
Theorem 3.3(1) as well as Theorem 5.1. O
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