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1. Introduction.

In [Arthur1] and [Arthur2], Arthur has formulated a number of conjectures about
automorphic forms. These conjectures would have profound consequences for the
unitary representation theory of the group G(R) of real points of a connected re-
ductive algebraic group G defined over R. Our purpose in this paper is to establish
a few of these local consequences. In order to do that, we have been led to com-
bine the ideas of Langlands and Shelstad (concerning dual groups and endoscopy)
with those of Kazhdan and Lusztig (concerning the fine structure of irreducible
representations).

We will recall Arthur’s conjectures in detail in sections 22 and 26, but for the
moment it is enough to understand their general shape. We begin by recalling the
form of the Langlands classification. Define

Π(G(R)) ⊃ Πunit(G(R)) ⊃ Πtemp(G(R)) (1.1)

to be the set of equivalence classes of irreducible admissible (respectively unitary
or tempered) representations of G(R). Now define

Φ(G(R)) ⊃ Φtemp(G(R)) (1.2)

to be the set of Langlands parameters for irreducible admissible (respectively tem-
pered) representations of G(R) (see [Langlands], [Borel], [AV2], section 5, and Def-
inition 22.3). To each φ ∈ Φ(G(R)), Langlands attaches a finite set Πφ ⊂ Π(G(R)),
called an L-packet of representations. The L-packets Πφ partition Π(G(R)). If
φ ∈ Φtemp(G(R)), then the representations in Πφ are all tempered, and in this way
one gets also a partition of Πtemp(G(R)).

Now the classification of the unitary representations of G(R) is one of the most
interesting unsolved problems in harmonic analysis. Langlands’ results immedi-
ately suggest that one should look for a set between Φ(G(R)) and Φtemp(G(R))
parametrizing exactly the unitary representations. Unfortunately, nothing quite so
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complete is possible: Knapp has found examples in which some members of the set
Πφ are unitary and some are not.

The next most interesting possibility is to describe a set of parameters giving
rise to a large (but incomplete) family of unitary representations. This is the local
aim of Arthur’s conjectures. A little more precisely, Arthur defines a new set

Ψ(G/R) (1.3)(a)

of parameters (Definition 22.4). (We write G/R rather than G(R) because Arthur’s
parameters depend only on an inner class of real forms, and not on one particular
real form.) Now assume that G(R) is quasisplit. Then Arthur defines an inclusion

Ψ(G/R) →֒ Φ(G(R)), ψ 7→ φψ . (1.3)(b)

Write ΦArthur(G(R)) for the image of this inclusion. Then

Φ(G(R)) ⊃ ΦArthur(G(R)) ⊃ Φtemp(G(R)). (1.3)(c)

Roughly speaking, Arthur proposes that Ψ(G/R) should parametrize all the uni-
tary representations of G(R) that are of interest for global applications. More
specifically, he proposed the following problems (still for G(R) quasisplit at first).

Problem A. Associate to each parameter ψ ∈ Ψ(G/R) a finite set Πψ ⊂
Π(G(R)). This set (which we might call an Arthur packet) should contain the
L-packet Πφψ (cf. (1.3)(b)) and should have other nice properties, some of which
are specified below.

The Arthur packet will not in general turn out to be a union of L-packets; so we
cannot hope to define it simply by attaching some additional Langlands parameters
to ψ.

Associated to each Arthur parameter is a certain finite group Aψ (Definition
21.4).

Problem B. Associate to each π ∈ Πψ a non-zero finite-dimensional represen-
tation τπ of Aψ.

Problem C. Show that the distribution on G(R)

∑

π∈Πψ

(ǫπdim(τπ)) Θ(π)

is a stable distribution in the sense of Langlands and Shelstad ([Langlands2],
[Shelstad]). Here ǫπ = ±1 is also to be defined.

Problem D. Prove analogues of Shelstad’s theorems on lifting tempered char-
acters (cf. [Shelstad]) in this setting.

Problem E. Extend the definition of Πψ to non-quasisplit G, in a manner
consistent with appropriate generalizations of Problems B, C, and D.

Problem F. Show that every representation π ∈ Πψ is unitary.

We give here complete solutions of problems A, B, C, D, and E. Our methods
offer no information about Problem F. (In that direction the best results are those
of [Barbasch], where Problem F is solved for complex classical groups.)
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The central idea of the proofs is by now a familiar one in the representation
theory of reductive groups. It is to describe the representations of G(R) in terms of
an appropriate geometry on an L-group. So let ∨G be the (complex reductive) dual
group of G, and ∨GΓ the (Galois form of the) L-group attached to the real form
G(R). The L-group is a complex Lie group, and we have a short exact sequence

1 → ∨G→ ∨GΓ → Gal(C/R) → 1 (1.4)(a)

We also need the Weil group WR of C/R; this is a real Lie group, and there is a
short exact sequence

1 → C× →WR → Gal(C/R) → 1. (1.4)(b)

(The Weil group is not a complex Lie group because the action of the Galois group
on C× is the non-trivial one, which does not preserve the complex structure.)

Definition 1.5 ([Langlands], [Borel]). A quasiadmissible homomorphism φ from
WR to ∨GΓ is a continuous group homomorphism satisfying

(a) φ respects the homomorphisms to Gal(C/R) defined by (1.4); and
(b) φ(C×) consists of semisimple elements of ∨G.

(Langlands’ notion of “admissible homomorphism” includes an additional “rele-
vance” hypothesis on φ, which will not concern us. This additional hypothesis is
empty if G(R) is quasisplit.) Define

P (∨GΓ) = {φ : WR → ∨GΓ | φ is quasiadmissible }.

Clearly ∨G acts on P (∨GΓ) by conjugation on the range of a homomorphism, and
we define

Φ(G/R) = { ∨G orbits on P (∨GΓ) }.

(If G(R) is quasisplit, this is precisely the set of parameters in (1.2). In general
Langlands omits the “irrelevant” orbits.)

Now a homomorphism φ is determined by the value of its differential on a basis
of the real Lie algebra of C×, together with its value at a single specified element of
the non-identity component of WR; that is, by an element of the complex manifold
∨g × ∨g × ∨GΓ. The conditions (a) and (b) of Definition 1.5 amount to requiring
the first two factors to be semisimple, and the third to lie in the non-identity
component. Requiring that these elements define a group homomorphism imposes
a finite number of complex-analytic relations, such as commutativity of the first
two factors. Pursuing this analysis, we will prove in section 5

Proposition 1.6. Suppose ∨GΓ is an L-group. The set P (∨GΓ) of quasiad-
missible homomorphisms from WR into ∨GΓ may be identified with the set of pairs
(y, λ) satisfying the following conditions:
a) y ∈ ∨GΓ − ∨G, and λ ∈ ∨g is a semisimple element;
b) y2 = exp(2πiλ); and
c) [λ,Ad(y)λ] = 0.

The Langlands classification described after (1.2) is thus already geometric: L-
packets are parametrized by the orbits of a reductive group acting on a topological
space. Subsequent work of Langlands and Shelstad supports the importance of this
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geometry. For example, one can interpret some of the results of [Shelstad] as saying
that the L-packet Πφ may be parametrized using ∨G-equivariant local systems on
the ∨G orbit of φ.

By analogy with the theory created by Kazhdan-Lusztig and Beilinson-Bernstein
in [KL] and [BB], one might hope that information about irreducible characters is
encoded by perverse sheaves on the closures of ∨G-orbits on P (∨GΓ). Unfortu-
nately, it turns out that the orbits are already closed, so these perverse sheaves
are nothing but the local systems mentioned above. On the other hand, one can
often parametrize the orbits of several rather different group actions using the same
parameters; so we sought a different space with a ∨G action, having the same set
of orbits as P (∨GΓ), but with a more interesting geometry.

In order to define our new space, we need some simple structure theory for
reductive groups. (This will be applied in a moment to ∨G.)

Definition 1.7. Suppose H is a complex reductive group, with Lie algebra h,
and λ ∈ h is a semisimple element. Set

h(λ)n = {µ ∈ h | [λ, µ] = nµ } (n ∈ Z) (1.7)(a)

n(λ) =
∑

n=1,2,...

h(λ)n (1.7)(b)

e(λ) = exp(2πiλ) ∈ H. (1.7)(c)

The canonical flat through λ is the affine subspace

F(λ) = λ+ n(λ) ⊂ h. (1.7)(d)

We will see in section 6 that the canonical flats partition the semisimple elements
of h — in fact they partition each conjugacy class — and that the map e is constant
on each canonical flat. If Λ is a canonical flat, we may therefore write

e(Λ) = exp(2πiλ) (any λ ∈ Λ). (1.7)(e)

Finally, write F(h) for the set of all canonical flats in h.

Definition 1.8 Suppose ∨GΓ is the L-group of a real reductive group (cf. (1.4)).
The geometric parameter space for ∨GΓ is the set

X = X(∨GΓ) = { (y,Λ) | y ∈ ∨GΓ − ∨G, Λ ∈ F(∨g), y2 = e(Λ) }.

This is our proposed substitute for Langlands’ space P (∨GΓ). The set F(∨g)
is difficult to topologize nicely, as one can see already for SL(2); this difficulty is
inherited by X . To make use of geometric methods we will always restrict to the
subspaces appearing in the following lemma.

Lemma 1.9 (cf. Proposition 6.16 below). In the setting of Definition 1.8, fix a
single orbit O of ∨G on the semisimple elements of ∨g, and set

X(O, ∨GΓ) = { (y,Λ) ∈ X | Λ ⊂ O}.

Then X(O, ∨GΓ) has in a natural way the structure of a smooth complex algebraic
variety, on which ∨G acts with a finite number of orbits.
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The variety X(O, ∨GΓ) need not be connected or equidimensional, but this will
cause no difficulties. We topologize X by making the subsets X(O, ∨GΓ) open and
closed. (It seems likely that a more subtle topology will be important for harmonic
analysis, as soon as continuous families of representations are involved.)

Of course the first problem is to check that the original Langlands classification
still holds.

Proposition 1.10. (cf. Proposition 6.17 below). Suppose ∨GΓ is an L-group.
Then there is a natural ∨G-equivariant map

p : P (∨GΓ) → X(∨GΓ), p(y, λ) = (y,F(λ))

inducing a bijection on the level of ∨G-orbits. The fibers of p are principal homo-
geneous spaces for unipotent algebraic groups. More precisely, suppose x = p(φ).
Then the isotropy group ∨Gφ is a Levi subgroup of ∨Gx.

This proposition shows that (always locally over R!) the geometric parameter
space X shares all the formal properties of P (∨GΓ) needed for the Langlands classi-
fication. In particular, if G(R) is quasisplit, L-packets in Π(G(R)) are parametrized
precisely by ∨G-orbits on X . What has changed is that the orbits on the new space
X are not closed; so the first new question to consider is the meaning of the closure
relation.

Proposition 1.11. Suppose G(R) is quasisplit. Let φ, φ′ ∈ Φ(G/R) be two
Langlands parameters, and S, S′ ⊂ X the corresponding ∨G-orbits. Then the fol-
lowing conditions are equivalent:
i) S is contained in the closure of S′.
ii) there are irreducible representations π ∈ Πφ and π′ ∈ Πφ′ with the property that

π′ is a composition factor of the standard representation of which π is the unique
quotient.

If φ is a tempered parameter, then the orbit S is open in the variety X(O, ∨GΓ)
containing it (cf. Lemma 1.9).

(In the interest of mathematical honesty, we should admit that this result is included
only for expository purposes; we will not give a complete proof. That (ii) implies
(i) (even for G(R) not quasisplit) follows from Corollary 1.25(b) and (7.11). The
other implication in the quasisplit case can be established by a subtle and not very
interesting trick. The last assertion follows from Proposition 22.9(b) (applied to an
Arthur parameter with trivial SL(2) part).)

Proposition 1.11 suggests the possibility of a deeper relationship between irre-
ducible representations and the geometry of orbit closures on X . To make the
cleanest statements, we need to introduce some auxiliary ideas. (These have not
been emphasized in the existing literature on the Langlands classification, because
they reflect phenomena over R that are non-existent or uninteresting globally.) The
reader should assume at first that G is adjoint. In that case the notion of “strong
real form” introduced below amounts to the usual notion of real form, and the
“algebraic universal covering” of ∨G is trivial.

Definition 1.12. Suppose G is a complex connected reductive algebraic group.
An extended group for G/R is a pair (GΓ,W), subject to the following conditions.

(a) GΓ is a real Lie group containingG as a subgroup of index two, and every element
of GΓ −G acts on G (by conjugation) by antiholomorphic automorphisms.
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(b) W is a G-conjugacy class of triples (δ,N, χ), with
(1) The element δ belongs to GΓ − G, and δ2 ∈ Z(G) has finite order. (Write

σ = σ(δ) for the conjugation action of δ on G, and G(R) or G(R, δ) for the
fixed points of σ; this is a real form of G.)

(2) N ⊂ G is a maximal unipotent subgroup, and δ normalizes N . (Then N is
defined over R; write N(R) = N(R, δ) for the subgroup of real points.)

(3) The element χ is a one-dimensional non-degenerate unitary character ofN(R).
(Here “non-degenerate” means non-trivial on each simple restricted root sub-
group of N .)

We will discuss this definition in more detail in sections 2 and 3. For now it
suffices to know that each inner class of real forms of G gives rise to an extended
group. The groups G(R) appearing in the definition are quasisplit (because of
(b)(2)) and the pair (N(R), χ) is the set of data needed to define a Whittaker
model for G(R).

Definition 1.13. Suppose (GΓ,W) is an extended group. A strong real form
of (GΓ,W) (briefly, of G) is an element δ ∈ GΓ −G such that δ2 ∈ Z(G) has finite
order. Given such a δ, we write σ = σ(δ) for its conjugation action on G, and

G(R) = G(R, δ)

for the fixed points of σ. Two strong real forms δ and δ′ are called equivalent if they
are conjugate by G; we write δ ∼ δ′. (The elements δ of Definition 1.12 constitute
a single equivalence class of strong real forms, but in general there will be many
others.)

The usual notion of a real form can be described as an antiholomorphic involution
σ of G. Two such are equivalent if they differ by the conjugation action of G. This
is exactly the same as our definition if G is adjoint. The various groups G(R, δ) (for
δ a strong real form of (GΓ,W)) constitute exactly one inner class of real forms of
G.

Definition 1.14. Suppose (GΓ,W) is an extended group. A representation of
a strong real form of (GΓ,W) (briefly, of G) is a pair (π, δ), subject to

(a) δ is a strong real form of (GΓ,W) (Definition 1.13); and
(b) π is an admissible representation of G(R, δ).

Two such representations (π, δ) and (π′, δ′) are said to be (infinitesimally) equiv-
alent if there is an element g ∈ G such that gδg−1 = δ′, and π ◦ Ad(g−1) is (in-
finitesimally) equivalent to π′. (In particular, this is possible only if the strong real
forms are equivalent.) Finally, define

Π(GΓ,W) = Π(G/R)

to be the set of (infinitesimal) equivalence classes of irreducible representations of
strong real forms of G.

Lemma 1.15. Suppose (GΓ,W) is an extended group for G (Definition 1.12).
Choose representatives { δs | s ∈ Σ } for the equivalence classes of strong real forms
of G (Definition 1.13). Then the natural map from left to right induces a bijection

∐

s∈Σ

Π(G(R, δs)) ≃ Π(G/R)
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(Definition 1.14; the set on the left is a disjoint union).

This lemma is an immediate consequence of the definitions; we will give the argu-
ment in section 2.

The set Π(G/R) is the set of representations we wish to parametrize. To do so
requires one more definition on the geometric side.

Definition 1.16. Suppose ∨GΓ is the L-group of the inner class of real forms
represented by the extended group GΓ (cf. (1.4) and Definition 1.13). The algebraic

universal covering ∨Galg is the projective limit of all the finite coverings of ∨G. This
is a pro-algebraic group, of which each finite-dimensional representation factors to
some finite cover of ∨G.

With the algebraic universal covering in hand, we can define a complete set of
geometric parameters for representations.

Definition 1.17. Suppose G is a connected reductive algebraic group endowed
with an inner class of real forms, and ∨GΓ is a corresponding L-group for G. A
complete geometric parameter for G is a pair

ξ = (S,V),

where

(a) S is an orbit of ∨G on X(∨GΓ) (Definition 1.8); and

(b) V is an irreducible ∨G̃-equivariant local system on S, for some finite covering
∨G̃ of ∨G.

We may write (Sξ,Vξ) to emphasize the dependence on ξ. In (b), it is equivalent

to require V to be ∨G
alg

-equivariant. Write Ξ(G/R) for the set of all complete
geometric parameters.

A slightly different formulation of this definition is sometimes helpful. Fix a
∨G-orbit S on X , and a point x ∈ S. Write ∨G

alg
x for the stabilizer of x in ∨G

alg
,

and define

Aloc,algS = ∨G
alg
x /

(
∨G

alg
x

)
0

for its (pro-finite) component group. We call Aloc,algS the equivariant fundamental
group of S; like a fundamental group, it is defined only up to inner automorphism

(because of its dependence on x). Representations of Aloc,algS classify equivariant
local systems on S, so we may also define a complete geometric parameter for G as
a pair

ξ = (S, τ),

where

(a) S is an orbit of ∨G on X(∨GΓ); and

(b) τ is an irreducible representation of Aloc,algS .
Again we may write (Sξ, τξ).

Theorem 1.18. Suppose (GΓ,W) is an extended group for G (Definition 1.12),
and ∨GΓ is an L-group for the corresponding inner class of real forms. Then there
is a natural bijection between the set Π(G/R) of equivalence classes of irreducible
representations of strong real forms of G (Definition 1.14), and the set Ξ(G/R) of
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complete geometric parameters for G (Definition 1.17). In this parametrization, the
set of representations of a fixed real form G(R) corresponding to complete geometric
parameters supported on a single orbit is precisely the L-packet for G(R) attached
to that orbit (Proposition 1.10).

As we remarked after Proposition 1.6, one can find results of this nature in
[Shelstad].

For each complete geometric parameter ξ, we define (using Theorem 1.18 and
Definition 1.14)

(π(ξ), δ(ξ)) = some irreducible representation parametrized by ξ (1.19)(a)

M(ξ) = standard representation with Langlands quotient π(ξ). (1.19)(b)

As a natural setting in which to study character theory, we will also use

KΠ(G/R) = free Z-module with basis Π(G/R). (1.19)(c)

We will sometimes call this the lattice of virtual characters. One can think of it as
a Grothendieck group of an appropriate category of representations of strong real
forms. In particular, any such representation ρ has a well-defined image

[ρ] ∈ KΠ(G/R).

By abuse of notation, we will usually drop the brackets, writing for example
M(ξ) ∈ KΠ(G/R). (All of these definitions are discussed in somewhat more depth
in sections 11 and 15.)

In order to write character formulas, we will also need a slight variant on the
notation of (1.19)(a). Fix a strong real form δ of G, and a complete geometric
parameter ξ. By the proof of Lemma 1.15, there is at most one irreducible repre-
sentation π of G(R, δ) so that (π, δ) is equivalent to (π(ξ), δ(ξ)). We define

π(ξ, δ) = π. (1.19(d)

If no such representation π exists, then we define

π(ξ, δ) = 0. (1.19)(e)

Similarly we can define M(ξ, δ).

Lemma 1.20 (Langlands — see [Green], [IC4]). The (image in KΠ(G/R) of
the) set

{M(ξ) | ξ ∈ Ξ(G/R) }

is a basis for KΠ(G/R).

Because the standard representations of real groups are fairly well understood, it
is natural to try to describe the irreducible representations in terms of the standard
ones. On the level of character theory, this means relating the two bases {π(ξ)}
and {M(ξ)} of KΠ(G/R):

M(ξ) =
∑

γ∈Ξ

mr(γ, ξ)π(γ). (1.21)
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(The subscript r stands for “representation-theoretic,” and is included to distin-
guish this matrix from an analogous one to be introduced in Definition 1.22.) Here
the multiplicity matrix mr(γ, ξ) is what we want. The Kazhdan-Lusztig conjectures
(now proved) provide a way to compute the multiplicity matrix, and a geometric
interpretation of it — the “Beilinson-Bernstein picture” of [BB]. Unfortunately,
this geometric interpretation is more complicated than one would like in the case of
non-integral infinitesimal character, and it has some fairly serious technical short-
comings in the case of singular infinitesimal character. (What one has to do is
compute first at nonsingular infinitesimal character, then apply the “translation
principle.” The translation principle can introduce substantial cancellations, which
are not easy to understand in the Beilinson-Bernstein picture.) We have therefore
sought a somewhat different geometric interpretation of the multiplicity matrix.
Here are the ingredients. (A more detailed discussion appears in section 7.)

Definition 1.22. Suppose Y is a complex algebraic variety on which the pro-
algebraic group H acts with finitely many orbits. Define

C(Y,H) = category of H-equivariant constructible sheaves on Y . (1.22)(a)

P(Y,H) = category of H-equivariant perverse sheaves on Y . (1.22)(b)

(For the definition of perverse sheaves we refer to [BBD]. The definition of H-
equivariant requires some care in the perverse case; see [LInt], section 0, or [LChar],
(1.9.1) for the case of connected H .) Each of these categories is abelian, and every
object has finite length. (One does not ordinarily expect the latter property in a
category of constructible sheaves; it is a consequence of the strong assumption about
the group action.) The simple objects in the two categories may be parametrized
in exactly the same way: by the set of pairs

ξ = (Sξ,Vξ) = (S,V) (1.22)(c)

with S an orbit of H on Y , and V an irreducible H-equivariant local system on
S. The set of all such pairs will be written Ξ(Y,H), the set of complete geometric
parameters for H acting on Y . Just as in Definition 1.17, we may formulate this
definition in terms of the equivariant fundamental group

AlocS = Hy/(Hy)0 (y ∈ S)

and its representations. We write µ(ξ) for the irreducible constructible sheaf cor-
responding to ξ (the extension of ξ by zero), and P (ξ) for the irreducible perverse
sheaf (the “intermediate extension” of ξ — cf. [BBD], Definition 1.4.22).

The Grothendieck groups of the two categoriesP(Y,H) and C(Y,H) are naturally
isomorphic (by the map sending a perverse sheaf to the alternating sum of its
cohomology sheaves, which are constructible). Write K(Y,H) for this free abelian
group. The two sets {P (ξ) | ξ ∈ Ξ} and {µ(ξ) | ξ ∈ Ξ} are obviously bases of their
respective Grothendieck groups, but they are not identified by the isomorphism.
Write d(ξ) for the dimension of the underlying orbit Sξ. We can write in K(Y,H)

µ(ξ) = (−1)d(ξ)
∑

γ∈Ξ(Y,H)

mg(γ, ξ)P (γ) (1.22)(d)
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with mg(γ, ξ) an integer. (The subscript g stands for “geometric.”) In this formula,
it follows easily from the definitions that

mg(ξ, ξ) = 1, mg(γ, ξ) 6= 0 only if Sγ ⊂
(
Sξ − Sξ

)
(γ 6= ξ). (1.22)(e)

The matrix mg(γ, ξ) is essentially the matrix relating our two bases of K(Y,H).
It is clearly analogous to (1.21). In each case, we have a relationship between
something uncomplicated (the standard representations, or the extensions by zero)
and something interesting (the irreducible representations, or the simple perverse
sheaves). One can expect the matrix m to contain interesting information, and to
be difficult to compute explicitly.

Definition 1.23. In the setting of Definition 1.8, define

C(X(∨G
Γ
), ∨G

alg
)

to be the direct sum over semisimple orbitsO ⊂ ∨g of the categories C(X(O, ∨GΓ), ∨G
alg

)
of Definition 1.22. The objects of this category are called (by a slight abuse of ter-

minology) ∨G
alg

-equivariant constructible sheaves on X . Similarly we define

P(X(∨G
Γ
), ∨G

alg
),

the ∨G
alg

-equivariant perverse sheaves on X . The irreducible objects in either
category are parametrized by Ξ(G/R) (cf. Definition 1.22), and we write

KX(∨G
alg

)

for their common Grothendieck group. We write µ(ξ) and P (ξ) for the irreducible

objects constructed in Definition 1.22, or their images in KX(∨G
alg

). These satisfy
(1.22)(d) and (e).

Since Theorem 1.18 tells us that the two Grothendieck groups KX(∨G
alg

) and
KΠ(G/R) have bases in natural one-to-one correspondence, it is natural to look for
a functorial relationship between a category of representations of strong real forms
of G, and one of the geometric categories of Definition 1.23. We do not know what
form such a relationship should take, or how one might hope to establish it directly.
What we are able to establish is a formal relationship on the level of Grothendieck
groups. This will be sufficient for studying character theory.

Theorem 1.24 Suppose (GΓ,W) is an extended group for G (Definition 1.12),
and ∨GΓ is an L-group for the corresponding inner class of real forms. Then there
is a natural perfect pairing

<,>: KΠ(G/R) ×KX(∨G
alg

) → Z

between the Grothendieck group of the category of finite length representations of

strong real forms of G, and that of ∨G
alg

-equivariant (constructible or perverse)
sheaves on X (cf. (1.19) and Definition 1.23). This pairing is defined on the level
of basis vectors by

< M(ξ), µ(ξ′) >= e(G(R, δ(ξ)))δξ,ξ′ .
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Here we use the notation of (1.19) and Definition 1.22. The group G(R, δ(ξ)) is
the real form represented by M(ξ); the constant e(G(R)) = ±1 is the one defined
in [Kott1] (see also Definition 15.8), and the last δ is a Kronecker delta. In terms
of the other bases of (1.19) and Definition 1.23, we have

< π(ξ), P (ξ′) >= e(G(R, δ(ξ)))(−1)d(ξ)δξ,ξ′ .

The content of this theorem is in the equivalence of the two possible definitions of
the pairing. We will deduce it from the main result of [IC4]. As an indication of
what the theorem says, here are three simple reformulations.

Corollary 1.25.

a) The matrices mr and mg of (1.21) and Definition 1.22(d) are essentially inverse
transposes of each other:

∑

γ

(−1)d(γ)mr(γ, ξ)mg(γ, ξ
′) = (−1)d(ξ)δξ,ξ′ .

b) The multiplicity of the irreducible representation π(γ) in the standard representa-
tion M(ξ) is up to a sign the multiplicity of the local system Vξ in the restriction
to Sξ of the Euler characteristic of the perverse sheaf P (γ):

mr(γ, ξ) = (−1)d(γ)−d(ξ)
∑

i

(−1)i(multiplicity of Vξ in HiP (γ) |Sξ).

c) The coefficient of the standard representation M(γ) in the expression of the
irreducible representation π(ξ) is equal to (−1)d(γ)−d(ξ) times the multiplicity of
the perverse sheaf P (ξ) in the expression of µ(γ)[−d(γ)].

Here part (c) refers to the expansion of π(ξ) in the Grothendieck group as a linear
combination of standard representations (cf. Lemma 1.20); and similarly for µ(γ).

Another way to think of Theorem 1.24 is this.

Corollary 1.26. In the setting of Theorem 1.24, write

K = KΠ(G/R)

for the set of (possibly infinite) integer combinations of irreducible representations
of strong real forms of G. Then K may be identified with the space of Z-linear

functionals on the Grothendieck group KX(∨G
alg

):

KΠ(G/R) ≃ HomZ(KX(∨G
alg

),Z).

In this identification,
a) the standard representation M(ξ) of G(R, δ(ξ)) corresponds to e(G(R, δ(ξ)))

times the linear functional “multiplicity of Vξ in the restriction to Sξ of the
constructible sheaf C;” and

b) the irreducible representation π(ξ) of G(R, δ(ξ)) corresponds to e(G(R, δ(ξ)))(−1)d(ξ)

times the linear functional “multiplicity of P (ξ) as a composition factor of the
perverse sheaf Q.”



12

Here in (a) we are interpreting KX(∨G
alg

) as the Grothendieck group of con-
structible sheaves, and in (b) as the Grothendieck group of perverse sheaves.

We call elements of KΠ(G/R) formal virtual characters of strong real forms of G.
In order to bring Langlands’ notion of stability into this picture, we must first

reformulate it slightly.

Definition 1.27. In the setting of Definition 1.14 and (1.19), suppose

η =
∑

ξ∈Ξ

n(ξ)(π(ξ), δ(ξ))

is a formal virtual character. We say that η is locally finite if for each strong
real form δ there are only finitely many ξ with n(ξ) 6= 0 and δ(ξ) equivalent to
δ. Suppose that η is locally finite, and that δ is a strong real form of G. There
is a finite set π1, . . . , πr of inequivalent irreducible representations of G(R, δ) so
that each (πj , δ) is equivalent to some (π(ξj), δ(ξj)) with n(ξj) 6= 0. Each of these
representations has a character Θ(πj), a generalized function on G(R, δ); and we
define

Θ(η, δ) =
∑

j

n(ξj)Θ(πj),

a generalized function on G(R, δ). This generalized function has well-defined values
at the regular semisimple elements of G(R, δ), and these values determine Θ(η, δ).
In the notation of (1.19)(d,e), we can write

Θ(η, δ) =
∑

ξ

n(ξ)Θ(π(ξ, δ)).

We say that η is strongly stable if it is locally finite, and the following condition
is satisfied. Suppose δ and δ′ are strong real forms of G, and g ∈ G(R, δ)∩G(R, δ′)
is a strongly regular semsimple element. Then

Θ(η, δ)(g) = Θ(η, δ′)(g).

A necessary condition for η to be strongly stable is that each Θ(η, δ) should be
stable in Langlands’ sense. Conversely, Shelstad’s results in [Shelstad] imply that
if Θ is a stable finite integer combination of characters on a real form G(R, δ), then
there is a strongly stable η with Θ = Θ(η, δ).

Corollary 1.26 gives a geometric interpretation of formal virtual characters. We
can now give a geometric interpretation of the notion of stability.

Definition 1.28. In the setting of Definition 1.22, fix an H-orbit S ⊂ Y , and a
point y ∈ S. For a constructible sheaf C on Y , write Cy for the stalk of C at y, a
finite-dimensional vector space. The map

χlocS : Ob C(Y,H) → N, χlocS (C) = dim(Cy)

is independent of the choice of y in S. It is additive for short exact sequences, and
so defines a Z-linear map

χlocS : K(Y,H) → Z,
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the local multiplicity along S. If we regard K(Y,H) as a Grothendieck group of
perverse sheaves, then the formula for χlocS on a perverse sheaf P is

χlocS (P ) =
∑

(−1)idim(HiP )y.

Any Z-linear functional η on K(Y,H) is called geometrically stable if it is in the
Z-span of the various χlocS .

In the setting of Definition 1.23, a Z-linear functional η on K(Y,H) is called geo-

metrically stable if its restriction to each summandK(X(O), ∨Galg) is geometrically
stable, and vanishes for all but finitely many O.

Theorem 1.29. In the identification of Corollary 1.26, the strongly stable formal
virtual characters correspond precisely to the geometrically stable linear functionals.

This is an immediate consequence of Corollary 1.26 and Shelstad’s description of
stable characters in [Shelstad1]. (It is less easy to give a geometric description of
the stable characters on a single real form of G, even a quasisplit one.)

In a sense Arthur’s conjectures concern the search for interesting new stable char-
acters. We have now formulated that problem geometrically, but the formulation
alone offers little help. The only obvious geometrically stable linear functionals are
the χlocS . For S corresponding to an L-packet by Proposition 1.10, the correspond-
ing strongly stable formal virtual character is essentially the sum of all the standard
representations attached to the L-packet. This sum is stable and interesting, but
not new, and not what is needed for Arthur’s conjectures. To continue, we need a
different construction of geometrically stable linear functionals on K(Y,H).

Definition 1.30. Suppose Y is a smooth complex algebraic variety on which
the connected pro-algebraic group H acts with finitely many orbits. To each orbit
S we associate its conormal bundle

T ∗S(Y ) ⊂ T ∗(Y );

this is an H-invariant smooth Lagrangian subvariety of the cotangent bundle. At-
tached to every H-equivariant perverse sheaf P on Y is a characteristic cycle

Ch(P ) =
∑

S

χmicS (P )T ∗S(Y ).

Here the coefficients χmicS (P ) are non-negative integers, equal to zero unless S
is contained in the support of P . One way to construct Ch(P ) is through the
Riemann-Hilbert correspondence ([BorelD]): the category ofH-equivariant perverse
sheaves on Y is equivalent to the category of H-equivariant regular holonomic D-
modules on Y , and the characteristic cycle of a D-module is fairly easy to define
(see for example [Ginsburg] or [Kashiwara]). The functions χmicS are additive for
short exact sequences, and so define Z-linear functionals

χmicS : K(Y,H) → Z,

the microlocal multiplicity along S.
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Theorem 1.31 (Kashiwara — see [Kold], [Kashiwara], Theorem 6.3.1, or [Gins-
burg], Theorem 8.2.) The linear functionals χmicS of Definition 1.30 are geomet-

rically stable. More precisely, for every H-orbit S′ such that S′ ⊃ S there is an
integer c(S, S′) so that for every H-equivariant perverse sheaf on Y ,

χmicS (P ) =
∑

S′

c(S, S′)χlocS′ (P ).

Here χlocS′ is defined in Definition 1.28.

In fact Kashiwara’s interest was in an inverted form of this relationship, expressing
χlocS in terms of the various χmicS′ . (The invertibility of the matrix c(S, S′) is an
immediate consequence of the facts that c(S, S) = (−1)dimS , and that c(S, S′) 6= 0
only if S′ ⊃ S.) We could therefore have defined geometrically stable in terms of
the linear functionals χmicS .

Perhaps the main difficulty in Theorem 1.31 is the definition of the matrix
c(S, S′). That definition is due independently to Macpherson in [Ch]. Although
the D-module approach to characteristic cycles is intuitively very simple, it entails
some great technical problems (notably that of lifting [SKK]). We will therefore
find it convenient to use a geometric definition of χmicS due to MacPherson (see
(24.10) and Definition 24.11 below). With this definition, Theorem 1.31 has a very
simple proof due to MacPherson; we reproduce it at the end of section 24.

The matrix c(S, S′) and its inverse have been extensively studied from several
points of view (see for example the references in [Ginsburg]). If S 6= S′ is contained
in the smooth part of S′, then c(S, S′) = 0. Nevertheless (and in contrast with the
multiplicity matrices of (1.22)(d)) there is no algorithm known for computing it in
all the cases of interest to us.

Corollary 1.32. Suppose (∨G,W) is an extended group for G (Definition 1.12),
and ∨GΓ is an L-group for the corresponding inner class of real forms. Fix an orbit
S of ∨G on X(∨GΓ) (Definition 1.8) (or, equivalently, an L-packet for the quasisplit

form of G (Proposition 1.10)). Then the linear functional χmicS on KX(∨G
alg

)
(Definition 1.30) corresponds via Corollary 1.26 to a strongly stable formal virtual
representation ηmicS . The irreducible representations of strong real forms occurring
in ηmicS are those for which the corresponding perverse sheaf P has χmicS (P ) 6= 0.
This includes all perverse sheaves attached to the orbit S itself, and certain sheaves
attached to orbits S′ containing S in their closures. With notation as in (1.19) and
Definition 1.27, the corresponding stable distribution on G(R, δ) is

Θ(ηmicS , δ) = e(G(R, δ))
∑

ξ′∈Ξ

(−1)d(ξ
′)−dimSχmicS (P (ξ′))Θ(π(ξ′, δ)).

In terms of standard representations, this distribution may be expressed as

Θ(ηmicS , δ) = e(G(R, δ))(−1)dimS
∑

ξ′∈Ξ

c(S, Sξ′)Θ(M(ξ′, δ)).

The set { ηmicS } (as S varies) is a basis of the lattice of strongly stable formal
virtual representations.
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(Recall that the tempered representations correspond to open orbits; in that case
χmicS = (−1)dimSχlocS , and we get nothing new.)

As the second formula of Corollary 1.32 shows, obtaining explicit character for-
mulas for ηmicS amounts to computing the matrix c(S, S′) in Theorem 1.31.

Our approach to Arthur’s conjectures is now fairly straightforward. Arthur at-
taches to his parameter ψ a Langlands parameter φψ , and thus (by Proposition
1.10) an orbit Sψ. We define Πψ to consist of all those representations appearing
in ηmicSψ

; that is, representations for which the corresponding perverse sheaf has the

conormal bundle of Sψ in its characteristic cycle. We will show (Corollary 27.13)
that this agrees with the previous definition of Barbasch and Vogan (in the case of
“unipotent” parameters) in terms of primitive ideals. We will show in Proposition
22.9 that Arthur’s group Aψ turns out (for S = Sψ) to be a quotient of a certain

geometrically defined group Amic,algS ; the difference arises only from our use of the
algebraic universal covering of ∨G, and for these local purposes our choice seems
preferable. In section 24, we extend the analysis of Definition 1.30 to define a

representation τmicS (P ) of Amic,algS , of dimension equal to χmicS (P ). Now Problems
A, B, C, and E are resolved as special cases of Corollary 1.32 and the preceding
definitions.

This approach to character theory lends itself very well to the local study of
endoscopy and the functoriality principle: the space X(∨GΓ) obviously depends
covariantly on ∨GΓ. There is no difficulty in obtaining a formulation of Shelstad’s
definition of endoscopic lifting (Definition 26.18). To complete the solution of Prob-
lem D, we use an appropriate “unstable” version of Theorem 1.31 (Theorem 25.8).
This we deduce from the version of the Lefschetz fixed point formula in [GMFP].
Since this introduction is already much too long, we postpone a detailed discussion
to sections 25 and 26.

It is a great pleasure to thank a few of the many mathematicians who helped us
to write a paper we barely feel competent to read. Mike Artin and Steve Kleiman
led us patiently through the algebraic geometry, answering hundreds of foolish
questions as well as several serious ones. Bob MacPherson, Kari Vilonen, Victor
Ginsburg, and Jean-Luc Brylinski taught us about perverse sheaves, D-modules,
and microlocal geometry. George Lusztig knows everything about reductive groups,
and so does Bert Kostant; they have helped us through many treacherous swamps.

The specific form of this paper we owe to Martin Andler. He suggested that
something like Proposition 1.11 had to be true; this led to the definition of the
geometric parameter space, and so made everything else possible. He has also
offered many corrections and improvements to the manuscript.

Most of all, we are grateful to Jim Arthur. In papers, in lectures, and in conver-
sation, he has opened up for us some of the mysteries of automorphic representation
theory. His gentle and encouraging manner allowed us to persist through long peri-
ods when we felt (no doubt correctly) that we were in far over our heads. Working
with his ideas has been a privilege mathematically and personally.

Index of notation.

We list here some of our principal notation and terminology, with a very brief
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summary of definitions and references to more complete discussion in the body of
the paper.

Aloc,canφ : group of connected components of the centralizer in ∨G
can

of a Lang-

lands parameter φ (Definition 5.11). A Langlands parameter φ gives a point x of the
geoemetric parameter space X(∨GΓ) (Proposition 6.17), which generates an orbit
S under ∨G. The ∨G

can
-equivariant fundamental group of S based at x (Definition

7.1) is written Aloc,canS or Aloc,canx ; it is naturally isomorphic to Aloc,canφ (Lemma

7.5).

Amic,canφ : micro-component group for a Langlands parameter φ (Definition 23.13).

Write S for the orbit on X(∨GΓ) corresponding to φ, and (x, ν) for a sufficiently

generic conormal vector to S at x ∈ S. Then Amic,canφ is the group of connected

components of the stablizer of (x, ν) in ∨G
can

.

Acanψ : group of connected components of the centralizer in ∨Gcan of an Arthur

parameter ψ (Definition 21.4). Naturally isomorphic to the micro-component group

Amic,canφψ
for the corresponding Langlands parameter (Proposition 21.9 and Defini-

tion 23.7).

d(ξ): dimension of the underlying orbit for a geometric parameter ξ ((1.22),(7.10)).

e(GR), e(ξ): Kottwitz’ sign attached to a complete geometric parameter or to
the corresponding real form of G (Definition 15.8, Lemma 15.9).

e(·): normalized exponential map exp(2πi·); usually from semisimple elements
or canonical flats in ∨g ((6.2), Lemma 6.11).

G: connected complex reductive algebraic group.

GΓ: weak extended group for G (Definition 2.13).

(GΓ,W): extended group for G (Definition 1.12, Proposition 3.6).

G(R, δ): real points of G with real form defined by δ ∈ GΓ −G (Definition 2.13).
∨G: dual group for G (Definition 4.2).
∨GΓ: weak L-group or E-group for G; an algebraic extension of the Galois group

of C/R by a dual group (Definition 4.3).

(∨GΓ,D): L-group or E-group for G, essentially as defined by Langlands (in
Galois form); D is a class of distinguished splittings.

(∨GΓ,S): L-group or E-group for G, as defined in [AV2] (Definition 4.14). Equiv-
alent to giving an L-group or E-group as in the preceding definition, but the set S
is different from D.

H(O): Hecke algebra attached to a regular semisimple conjugacy class O in ∨g

((16.10)).

KX(O, ∨GΓ): Grothendieck group of ∨G
can

-equivariant perverse sheaves (or
constructible sheaves, or holonomic D-modules) on X(O, ∨GΓ) (Definition 7.13,
(7.10)).

KΠz(O, GR): Grothendieck group of finite-length canonical projective represen-
tations of GR of type z and infinitesimal character O ((15.5)). Without the O,
no assumption on infinitesimal character. With G/R, the sum of these over all
strong real forms ((15.7)). With K, infinite sums (still with finite multiplicities)
are allowed (Corollary 1.26, (16.12)). With Kf , these infinite sums are required to
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include only finitely many representations of each strong real form (Definition 18.5).
With KC, complex-linear combinations of irreducible representations are allowed
(Proposition 25.1).

KΠz(O, G/R): mixed Grothendieck group of finite-length canonical projective
representations of strong real forms of G of type z and infinitesimal character O
((16.12)). (Formally, K denotes extension of scalars to Z[u1/2, u−1/2].)

lI(Λ), lI(ξ): integral length for a standard limit character of regular infinitesi-
mal character, or for the corresponding complete geometric parameter (Definition
16.16).

Lz(GR): equivalence classes of final standard limit characters of Cartan sub-
groups of GR (Definition 11.13).

Lz(G/R): equivalence classes of final standard limit characters of Cartan sub-
groups of GΓ (Definition 12.1).

Mz(GR), Mz(G/R): category of (canonical projective of type z) representations
of a real reductive group GR, or of strong real forms of GΓ ((15.2) and (15.7)).

M(Λ), M(ξ): standard limit representation attached to a limit character Λ, or
to the corresponding complete geometric parameter ξ (Definition 11.2, (15.7)).

O: semisimple ∨G-conjugacy class in ∨g; parametrizes an infinitesimal character
for g. Inserted in other notation, it restricts attention to objects living on that orbit,
or having that infinitesimal character ((6.10), Proposition 6.16, Lemma 15.4).

T Γ: Cartan subgroup of GΓ (Definition 12.1).

Λ: limit character of a Cartan subgroup of a real reductive group; parameter for
a standard representation (Definitions 11.2, 11.6, 11.10, 11.13; Definition 12.1).

χmicφ (π)(σ): trace at σ ∈ Amic,canφ of the representation τmic,canφ (Definition

23.13). Without the argument σ, the dimension of this representation, which is
equal to the multiplicity of the conormal bundle to the orbit Sφ in the characteristic
cycle of the perverse sheaf attached to π (Definition 19.13, Theorem 23.8).

ηlocφ : strongly stable standard formal virtual representation of strong real forms

of G attached to a Langlands parameter φ (Definition 18.13). We may replace φ
by the corresponding ∨G-orbit S on the geometric parameter space X(∨GΓ).

ηmicφ , ηmicS : strongly stable formal virtual representation of strong real forms of
G attached to a Langlands parameter φ or to the corresponding orbit S on the
geometric parameter space X(∨GΓ) (Corollary 19.16, Corollary 1.32).

ξ: complete geometric parameter (Sξ,Vξ). Here Sξ is an orbit of ∨G on the geo-
metric parameter space X(∨GΓ), and Vξ is an irreducible equivariant local system
on Sξ (Definition 1.17, Definition 7.6).

π(ξ): irreducible representation corresponding to the complete geometric pa-
rameter ξ (Theorem 10.4, Definition 10.8, and (1.19)). This is a representation of
G(R, δ(ξ))can.

π(Λ): Langlands quotient of the standard representationM(Λ) (Definition 11.2(e),
Theorem 11.14).

Πz(G/R): equivalence classes of pairs (π, δ), with δ a strong real form (for a
fixed extended group GΓ) and π an irreducible representation of G(R, δ)can of type
z (Definition 10.3, Definition 1.14). This set is in one-to-one correspondence with
Ξz(G/R).
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Πz(G/R)φ: the L-packet attached to the Langlands parameter φ; that is, the
subset of Πz(G/R) parametrized by complete Langlands parameters of the form
(φ, τ), or by complete geometric parameters supported on the orbit attached to φ
(Definition 10.8). Includes at most finitely many representations of each strong real
form.

Πz(G/R)micφ : the micro-packet attached to the Langlands parameter φ (Defini-

tion 19.15); the set of irreducible constituents of the stable virtual representation
ηmicφ . Contains the L-packet.

Ξ(∨GΓ): complete geometric parameters; that is, pairs ξ = (S,V) with S an
orbit of ∨G on the geometric parameter space X(∨GΓ), and V an irreducible ∨Gcan-
equivariant local system on S (Definition 7.6). Equivalently, complete Langlands
parameters; that is, equivalence classes of pairs (φ, τ), with φ a Langlands parameter

and τ an irreducible representation of Aloc,canφ (Definition 5.11). When ∨GΓ has the

structure of an E-group with second invariant z, we may write instead Ξz(G/R).

Φ(∨GΓ): equivalence classes of Langlands parameters; that is, ∨G-conjugacy
classes of quasiadmissible homomorphisms φ from WR to ∨GΓ (Definition 5.2).
Equivalently, equivalence classes of geometric parameters; that is, ∨G-orbits on
X(∨GΓ) (Definition 7.6). When ∨GΓ has the structure of an E-group with second
invariant z, we write instead Φz(G/R).

Ψ(∨GΓ): equivalence classes of Arthur parameters; that is, ∨G-conjugacy classes
of homomorphisms from WR ×SL(2,C) satisfying some additional conditions (Def-
inition 21.4). We sometimes write Ψz(G/R) as for Langlands parameters.

τmicφ (π): representation (possibly reducible) of Amic,canφ attached to an irre-

ducible representation π of a strong real form of G (Definition 23.13). Non-zero if
and only if π ∈ Πz(G/R)micφ .

Θ(η): distribution character of the virtual representation η ((18.1)). When the
argument includes a strong real form δ, η is a (locally finite) virtual representation
of all strong real forms, and Θ(η, δ) is the character of those defined on the group
G(R, δ)can.

ΘSR(η): smooth function on the strongly regular elements obtained by restrict-
ing the character of η.

2. Structure theory: real forms.

In this section we review the basic facts about real forms of reductive groups.
Since our concern is entirely with local problems over R, we have included proofs of
several well-known results that are perhaps less familiar to experts on real groups.
(The definitions, statements and some of the proofs have nevertheless been con-
structed with more general fields in mind.)

Suppose G is a connected reductive complex algebraic group. A real form of G
is an antiholomorphic involutive automorphism

σ : G→ G. (2.1)(a)
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Here “antiholomorphic” means that if f is any algebraic function on G, then the
function

g 7→ f(σg) (2.1)(b)

is also algebraic. Equivalently, the differential of σ (an automorphism of g =
Lie(G)) satisfies

dσ(ix) = −idσ(x). (2.1)(b′)

“Involutive” means that σ2 is the identity. The group of real points of σ is

G(R, σ) = G(R) = { g ∈ G | σg = g }. (2.1)(c)

Condition (2.1)(b′) shows that the Lie algebra g(R) determines dσ, and hence
determines σ. We may therefore speak of G(R) as the real form ofG without danger
of confusion. However, not every real form of the Lie algebra g exponentiates to a
real form of G. The multiplicative group G = C× has exactly two real forms, given
by the automorphisms

σs(z) = z, σc(z) = z−1. (2.2)(a)

The corresponding groups are

G(R, σs) = R×, G(R, σc) = S1. (2.2)(b)

The real forms of the Lie algebra C, on the other hand, are parametrized by real
lines in C. The corresponding subgroups {etz | t ∈ R} are not (identity components
of) real forms unless z is real or imaginary.

It is worth remarking that this definition is quite restrictive in some slightly
surprising ways. For example, the identity component of a disconnected group of
real points is not usually a group of real points. Thus familiar linear groups like
SO(p, q)0 are excluded. This is necessary to get the very clean character formulas
discussed in the introduction. (Of course it is a routine matter — though not a
trivial one — to relate the representations of SO(p, q)0 to those of SO(p, q), which
is a group of real points.)

Two real forms σ and σ′ are called equivalent if there is an element g ∈ G such
that

σ′ = Ad(g) ◦ σ ◦Ad(g−1). (2.3)(a)

We can write this as
σ′ = Ad(gσ(g−1)) ◦ σ. (2.3)(a′)

In terms of the groups of real points, it is equivalent to

G(R, σ′) = gG(R, σ)g−1. (2.3)(a′′)

The set of real forms equivalent to a fixed real form σ is therefore a homogeneous
space G/H ; the isotropy group is

H = { g ∈ G | gσ(g−1) ∈ Z(G) }. (2.3)(b)

This isotropy group contains G(R, σ)Z(G), but may be larger. (For example, if
G(R) = SL(2,R), then the group H contains the diagonal matrix with entries
(i,−i).) The point of the theory of strong real forms is to find a notion of equivalence



20

for which the corresponding isotropy group is just G(R). This in turn will allow us
to formulate results like Lemma 1.15.

This notion of equivalence is already a little more subtle than the one sometimes
encountered in the classification of real forms of simple Lie algebras. There one is
interested in the question of when the groups of real points of two real forms are
isomorphic. The group SO(4n,C) has two isomorphic but inequivalent real forms
(the isomorphism class is represented by SO∗(4n)) if n ≥ 1. The involutions are
conjugate by the non-identity component of O(4n,C). (There is a unique equiva-
lence class of real forms of SO(4n+2,C) with G(R) isomorphic to SO∗(4n+2).) A
less subtle example is provided by the inequivalent real forms R××S1 and S1×R×

of C× × C×.
Two real forms σ and σ′ are said to be inner to each other if there is an element

g ∈ G such that
σ′ = Ad(g) ◦ σ. (2.4)

This is an equivalence relation. (If σ is a real form, the automorphism σ′ defined
by (2.4) will certainly not be a real form for arbitrary g.) Because of (2.3)(a′),
equivalent real forms are inner to each other. We therefore get an equivalence
relation on equivalence classes of real forms. Obviously the relation is trivial if G
is abelian. The two isomorphic inequivalent real forms of SO(4n,C) mentioned
earlier are inner to each other, and to the real forms SO(2p, 2q). The real forms
SO(2p+ 1, 2q − 1) constitute a separate inner class.

Example 2.5. Suppose G = GL(n,C), and σc is the compact real form

σc(g) =t g−1, G(R, σc) = U(n).

For 0 ≤ p ≤ n, let gp be the diagonal matrix with p entries equal to 1 and n − p
equal to −1. Set

σp = Ad(gp) ◦ σc.

Then
G(R, σp) = U(p, q),

so all these forms are inner to each other. On the other hand, the split real form

σs(g) = g, G(R, σs) = GL(n,R)

is not inner to σc (as one can see — rather unfairly — by examining their restrictions
to the center of G).

We recall that a real form σ is called quasisplit if there is a Borel subgroup B ⊂ G
such that

σ(B) = B. (2.6)

Proposition 2.7. Suppose σ′ is a real form of the connected reductive complex
algebraic group G. Then there is a unique equivalence class of quasisplit real forms
of G inner to σ′. Specifically, there is a quasisplit real form σ of G and an element
g of G so that

σ′ = Ad(g) ◦ σ.
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Before giving the proof, we recall the basic structural fact on which it is based.

Proposition 2.8. Suppose G is a connected reductive complex algebraic group.
Fix a Borel subgroup B of G, a maximal torus T ⊂ B, and a set of basis vectors
{Xα} for the simple root spaces of T in the Lie algebra b. Let B′, T ′, {Xα

′} be
another set of choices of these objects. Then there is an element g ∈ G such that

gBg−1 = B′, gT g−1 = T ′, Ad(g)({Xα}) = {Xα
′}.

The inner automorphism Ad(g) is uniquely determined by these requirements; that
is, any two choices of g differ by Z(G). If we require only the first two conditions,
then the coset gT is uniquely determined; and if we require only the first condition,
then the coset gB is uniquely determined.

To get a formulation valid over any algebraically closed field k, one need only
replace the Lie algebra elements Xα by one-parameter subgroups xα : k → B.

Proof of Proposition 2.7. Fix B, T ⊂ B, and {Xα} as in Proposition 2.8. Then
the automorphism σ′ carries these objects to others of the same kind:

σ′(B) = B′, σ′(T ) = T ′ ⊂ B′, dσ(Xα) = Xα
′. (2.9)(a)

By Proposition 2.8, we can therefore find an element g ∈ G such that

Ad(g−1)(B′) = B, Ad(g−1)(T ′) = T, Ad(g−1)({Xα
′}) = {Xα}. (2.9)(b)

Define σ = Ad(g−1) ◦ σ′; then σ is an antiholomorphic automorphism of G, and

σ(B) = B, σ(T ) = T, σ({Xα}) = {Xα}. (2.9)(c)

Furthermore σ2 is an inner automorphism of G (namely Ad(g−1) ◦ Ad(σ′(g−1)))
with the properties in (2.9)(c). By Proposition 2.8, such an inner automorphism
is necessarily trivial, so σ is an involution. It is therefore a real form. Since σ
preserves B, it is quasisplit. By construction it is inner to σ′.

It remains to prove the uniqueness of the equivalence class of σ. So suppose σ′′ is
another quasisplit real form in the inner class of σ. By definition of quasisplit, this
means that there is a Borel subgroup B′′ fixed by σ′′. The first problem is to find
a σ′′-stable maximal torus in B′′. Write N ′′ for the unipotent radical of B′′, and
T ′′ = B′′/N ′′; this torus inherits a quotient real form σ′′, and is isomorphic by the
quotient map to any maximal torus of B′′. Using any of these isomorphisms, we get
a well-defined set of positive roots (characters of T ′′). These roots are permuted
by the action of σ′′ on the character lattice X∗(T ′′). Let Z be any element of the
Lie algebra t′′ on which all the positive roots take positive values; then Z + σ′′(Z)
has the same property. It follows that any preimage of Z+σ′′(Z) in b′′ is a regular
semisimple element. Let Z ∈ b be any preimage of Z; then Z+σ′′(Z) is a preimage
of Z + σ(Z), so it is a σ′′-fixed regular semisimple element of b′′. Its centralizer in
B′′ is therefore a σ′′-stable maximal torus.

Finally, we want to find a σ′′-stable set of basis vectors for the simple root spaces
of T ′′ in B′′. We know that σ′′ permutes these root spaces by a permutation of
order 2. We consider first a pair {α, β} of distinct simple roots interchanged by σ′′.
Choose any basis vector Xα for the α root space, and define Xβ = σ′′(Xα). Then
the relation (σ′′)2 = 1 forces Xα = σ′′(Xβ). Next, suppose the root α is fixed by
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σ′′. Let Yα be any basis vector for the root space. Then there is a complex number
cα with σ′′(Yα) = cαYα. Applying σ′′ to this relation, and using the fact that σ′′

is an antiholomorphic involution, we get cαcα = 1. Let zα be a square root of cα;
then it follows easily that Xα = zαYα is fixed by σ′′.

We have shown how to construct B′′, T ′′ ⊂ B′′, and {Xα
′′} as in Proposition

2.8 preserved by σ′′. By Proposition 2.8, we can find a g ∈ G carrying B to B′′,
etc. It follows that the antiholomorphic involution

σ̃′′ = Ad(g) ◦ σ ◦Ad(g−1)

preserves B′′, etc. Therefore (σ′′)−1σ̃′′ preserves them as well. But the assumption
that σ and σ′′ are in the same inner class means that this last automorphism is

inner. By Proposition 2.8, it is trivial. So σ′′ = σ̃′′. The right side here is equivalent
to σ, as we wished to show. Q.E.D.

Definition 2.10 (see [Springer]). Suppose G is a complex connected reductive
algebraic group, B ⊂ G is a Borel subgroup, and T ⊂ G is a maximal torus. The
based root datum for G defined by B and T is the quadruple

Ψ0(G,B, T ) = (X∗(T ),∆(B, T ), X∗(T ),∆∨(B, T )).

Here X∗(T ) is the lattice of rational characters of T , ∆(B, T ) ⊂ X∗(T ) is the set
of simple roots of T in b, X∗(T ) is the lattice of rational one-parameter subgroups
of T , and ∆∨(B, T ) ⊂ X∗(T ) is the set of simple coroots.

It is a consequence of Proposition 2.8 that any two based root data are canoni-
cally isomorphic. Following [Kott2], we use these canonical isomorphisms to define
the based root datum for G, Ψ0(G), as the projective limit over all such T ⊂ B:

Ψ0(G) = (X∗,∆, X∗,∆
∨) = lim

B,T
Ψ0(G,B, T ).

The structure of the based root datum consists of the lattice structures on X∗ and
X∗, the containments ∆ ⊂ X∗ and ∆∨ ⊂ X∗, and the perfect pairing

〈, 〉 : X∗ ×X∗ → Z.

By an isomorphism or automorphism of based root data we will understand a map
preserving these structures.

Proposition 2.11 (see [Springer], Corollary 2.14.) Suppose G is a complex con-
nected reductive algebraic group. Write Aut(G) for the (complex) group of rational
(equivalently, holomorphic) automorphisms of G, and Aut(Ψ0(G)) for the (discrete)
group of automorphisms of the based root datum of G. Then there is a natural short
exact sequence

1 → Int(G) → Aut(G)
Ψ0→ Aut(Ψ0(G)) → 1.

This sequence splits (but not canonically), as follows. Choose a Borel subgroup
B of G, a maximal torus T ⊂ B, and a set of basis vectors {Xα} for the simple
root spaces of T in the Lie algebra b; and define Aut(G,B, T, {Xα}) to be the set
of holomorphic automorphisms of G preserving B, T , and {Xα} as sets. Then the
restriction of Ψ0 to Aut(G,B, T, {Xα}) is an isomorphism.
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For the reader’s convenience we recall how the map Ψ0 is defined. Fix τ ∈
Aut(G), and choose any pair T ⊂ B as in Definition 2.10. (We assume no relation-
ship between τ and B or T .) If λ is any rational character of T , then λ ◦ τ−1 is a
rational character of τ(T ). This defines an isomorphism

X∗(T ) → X∗(τ(T ))

carrying ∆(B, T ) to ∆(τ(B), τ(T )). Similarly, composition with τ carries one-
parameter subgroups of T to one-parameter subgroups of τ(T ). Assembling these
maps, we get an isomorphism

Ψ0(τ, B, T ) : Ψ0(G,B, T ) → Ψ0(G, τ(B), τ(T )).

Since both range and domain are canonically isomorphic to Ψ0(G), this map pro-
vides the automorphism Ψ0(τ) that we want.

An automorphism belonging to one of the sets Aut(G,B, T, {Xα}) is called dis-
tinguished.

We have seen that the inner classes of real forms of G are in one-to-one corre-
spondence with the equivalence classes of quasisplit real forms. The quasisplit real
forms are easy to classify.

Proposition 2.12. Suppose G is a complex connected reductive algebraic group.
Then the equivalence classes of quasisplit real forms of G (and therefore also the
inner classes of all real forms) are in one-to-one correspondence with the involutive
automorphisms of Ψ0(G).

Proof. Suppose σ is any antiholomorphic automorphism of G; we will show how
to define an automorphism Ψ0(σ) of Ψ0(G). (This is not immediately handled by
Proposition 2.11, since σ is not a holomorphic automorphism of G.) Fix a Borel
subgroup B of G, and T ⊂ B a maximal torus. If λ is a holomorphic character of T ,
then λ ◦ σ−1 is an antiholomorphic character of σ(T ); so λ ◦ σ−1 is a holomorphic

character of σ(T ). The map sending λ to λ ◦ σ−1 is an isomorphism

X∗(T ) → X∗(σ(T )),

and it carries ∆(B, T ) to ∆(σ(B), σ(T )). Continuing in this way, we find that σ
induces an isomorphism

Ψ0(σ,B, T ) : Ψ0(G,B, T ) → Ψ0(G, σ(B), σ(T )).

Since both of these objects are canonically isomorphic to Ψ0(G), we have the au-
tomorphism we want. If σ′ is another antiholomorphic automorphism of G, then it
is clear from the definitions that

Ψ0(σ ◦ (σ′)−1) = Ψ0(σ) ◦ Ψ0(σ
′)−1.

Here the map on the left is given by Proposition 2.11, and those on the right by
the preceding construction. It follows from Proposition 2.11 that Ψ0(σ) = Ψ0(σ

′) if
and only if σ and σ′ differ by an inner automorphism. This proves the injectivity of
our map from inner classes of real forms to involutive automorphisms of the based
root datum.
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For the surjectivity, fix an automorphism a of Ψ0(G) of order 2, and data B, T ,
and {Xα} as in Proposition 2.8. We must find a real form σ of G with Ψ0(σ) = a.
The theory of Chevalley forms (forms of a reductive group defined and split over
any field) shows that there is a real form σs of G such that

σs(B) = B, σs(T ) = T, σs(Xα) = Xα,

and σs induces the identity automorphism of X∗(T ) and X∗(T ). On the other
hand, the splitting of the exact sequence of Proposition 2.11 produces a holomorphic
automorphism ta of G such that

ta(B) = B, ta(T ) = T, ta(Xα) = Xa(α),

and ta induces the automorphism a on X∗(T ) and X∗(T ). The composition σ =
ta ◦ σs is an antiholomorphic automorphism of G satisfying

σ(B) = B, σ(T ) = T, σ(Xα) = Xt(α),

and σ induces the automorphism a on X∗(T ) and X∗(T ). This implies first of
all that Ψ0(σ) = a. Since a has order 2, it follows that σ2 is a holomorphic
automorphism of G acting trivially on T and fixing the various Xα. Such an
automorphism is trivial by Proposition 2.8; so σ2 = 1, and σ is the real form we
want. Q.E.D.

We can now describe approximately the context in which we will do represen-
tation theory. We fix the connected reductive complex algebraic group G, and an
inner class of real forms of G. This inner class is specified by an automorphism
of order 2 of the based root datum Ψ0(G). We need to consider at the same time
representations of various real forms of G. It is natural therefore to consider pairs
(π, σ), with σ a real form of G (say in the specified inner class) and π a represen-
tation of G(R, σ). It is natural to define two such pairs (π, σ) and (π′, σ′) to be
equivalent if there is an element g ∈ G such that σ′ = Ad(g) ◦ σ ◦ Ad(g−1), and
π ◦Ad(g−1) (which is a representation of G(R, σ′) on the space of π) is equivalent
to π′. The difficulty with this definition first appears in the example of SL(2,R),
discussed after (2.3). If we let π be a holomorphic discrete series representation
of G(R, σ) = SL(2,R), and π′ the corresponding antiholomorphic discrete series
representation, then this definition makes (π, σ) equivalent to (π′, σ). Clearly this
will lead to inconvenience at least when we try to use the theory to write precise
character formulas. The next definition, taken from Definitions 1.12, 1.13, and 1.14
of section 1, provides a way around the problem.

Definition 2.13. Suppose G is a connected reductive complex algebraic group.
A (weak) extended group containing G is a real Lie groupGΓ subject to the following
conditions.

(a1) GΓ contains G as a subgroup of index two.
(a2) Every element of GΓ − G acts on G (by conjugation) as an antiholomorphic

automorphism.

Condition (a1) may be rephrased as follows. Write Γ = Gal(C/R) for the Galois
group.

(a1′) There is a short exact sequence

1 → G→ GΓ → Γ → 1.
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A strong real form of GΓ is an element δ ∈ GΓ − G such that δ2 ∈ Z(G) has
finite order. The associated real form for δ is the (antiholomorphic involutive)
automorphism σ(δ) of G defined by conjugation by δ:

σ(δ)(g) = δgδ−1.

The group of real points of δ is defined to be the group of real points of σ(δ):

G(R, δ) = { g ∈ G | δgδ−1 = g }.

Two strong real forms δ and δ′ of GΓ are called equivalent if they are conjugate by
G:

δ ∼ δ′ if and only if δ′ = gδg−1 for some g ∈ G.

Thus the set of strong real forms equivalent to a fixed strong real form δ is a
homogeneous space G/H ; the isotropy group is

H = { g ∈ G | gδg−1 = δ } = G(R, δ)

(cf. (2.3)).
A representation of a strong real form of GΓ is a pair (π, δ), subject to

(a) δ is a strong real form of GΓ ; and
(b) π is an admissible representation of G(R, δ).

Two such representations (π, δ) and (π′, δ′) are said to be (infinitesimally) equivalent
if there is an element g ∈ G such that gδg−1 = δ′, and π◦Ad(g−1) is (infinitesimally)
equivalent to π′. (In particular, this is possible only if the strong real forms are
equivalent.) Finally, define

Π(GΓ) = Π(G/R)

to be the set of (infinitesimal) equivalence classes of irreducible representations of
strong real forms of GΓ. (Here when we use the notation on the right, we must
have in mind a particular weak extended group GΓ.)

Clearly the equivalence of strong real forms implies the equivalence of the associ-
ated real forms. We have not formulated the obvious definition of “inner” for strong
real forms, since any two strong real forms for the same GΓ are automatically inner
to each other. In order for this to be a reasonable definition, we need to know that
every real form is represented by a strong real form of some extended group. This
is a consequence of Proposition 2.14 and Corollary 2.16 below.

We pause now to give the proof of Lemma 1.15. (The extra datum W needed to
complete the definition of an extended group plays no rôle in this lemma.) Surjec-
tivity of the map is clear; what must be established is injectivity. So suppose that
π and π′ are irreducible representations of G(R, δs) and G(R, δs′), respectively, and
that the pairs (π, δs) and (π′, δs′) are equivalent. We must show that δs = δs′ , and
that π is equivalent to π′. The hypothesis means that there is an element g ∈ G
such that

gδsg
−1 = δs′ , π ◦Ad(g−1) ∼ π′

The first condition says that the strong real forms δs and δs′ are equivalent. Since
they belong to a set of representatives for the equivalence classes, they must in fact
coincide. Consequently g commutes with δs, and so belongs to G(R, δs). But this
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means that π ◦ Ad(g−1) is equivalent to π, the equivalence being implemented by
the operator π(g) on the space of π. The second condition therefore implies that
π′ is equivalent to π as representations of G(R, δs), as we wished to show. Q.E.D.

We conclude this section by investigating the possible structures of weak ex-
tended groups.

Proposition 2.14. Suppose GΓ is a weak extended group. Then the set of real
forms of G associated to strong real forms of GΓ constitutes exactly one inner class
of real forms.

Proof. The conjugation action of any element δ of GΓ −G defines an antiholo-
morphic automorphism σ(δ) of G. This automorphism preserves Z(G), and in fact
its restriction σZ to Z(G) is independent of the choice of δ.

The proof of Proposition 2.12 attaches to each element δ of GΓ − G an auto-
morphism a = Ψ0(δ) of the based root datum of G. The proof also shows that
a is independent of the choice of δ, and that the various conjugation actions σ(δ)
give all antiholomorphic automorphisms σ of G such that Ψ0(σ) = a. In particular,
Proposition 2.12 implies that for any real form σ in the inner class defined by a,
there is a δ1 ∈ GΓ −G with σ(δ1) = σ. Since σ is an involution, this implies that
δ21 = z1 ∈ Z(G). To complete the proof, we must show that our choice of δ1 can be
modified to make z1 have finite order. We first compute

σZ(z1) = δ1zδ
−1
1 = δ1δ

2
1δ
−1
1 = δ21 = z1.

That is, z1 ∈ ZσZ . We can now apply the following elementary lemma.

Lemma 2.15. Suppose Z is a (possibly disconnected) complex reductive abelian
algebraic group, and σ is an antiholomorphic involutive automorphism of Z. Put

(1 + σ)Z = { zσ(z) | z ∈ Z }.

Then the quotient group Zσ/(1 + σ)Z is finite, and each coset has a representative
of finite order in Z.

Of course the quotient in the lemma is a Galois cohomology group.
We can now complete the proof of Proposition 2.14. By Lemma 2.15, there is

an element z2 ∈ Z(G) such that z = z1z2σZ(z2) has finite order. Set

δ = z2δ1.

Then σ(δ) = σ, and δ2 = z has finite order; so δ is the required strong real form.
Q.E.D.

Here is the classification of weak extended groups.

Corollary 2.16. Suppose G is a connected reductive complex algebraic group.
a) Fix a weak extended group GΓ for G. Let σZ be the antiholomorphic involution

of Z(G) defined by the conjugation action of any element of GΓ − G. We can
attach to GΓ two invariants. The first of these is an involutive automorphism

a ∈ Aut(Ψ0(G))

of the based root datum of G. The second is a class

z ∈ Z(G)σZ/(1 + σZ)Z(G).
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b) Suppose GΓ and
(
GΓ

)′
are weak extended groups for G with the same invariants

(a, z). Then the identity map on G extends to an isomorphism from GΓ to
(
GΓ

)′
.

c) Suppose a ∈ Aut(Ψ0(G)) is an involutive automorphism. Write σZ for the anti-
holomorphic involution of Z(G) defined by the action of any real form σ in the
inner class corresponding to a (Proposition 2.12); and suppose

z ∈ Z(G)σZ/(1 + σZ)Z(G).

Then there is a weak extended group GΓ with invariants (a, z).

Proof. For (a), any element δ of GΓ −G defines by conjugation an antiholomor-
phic automorphism σ(δ) of G. By Proposition 2.12 and its proof, the corresponding
automorphism a = Ψ0(σ(δ)) is independent of the choice of δ. To define z, fix a
quasisplit real form σq in the inner class defined by a, and choose δq ∈ GΓ −G so
that

σ(δq) = σq

(as is possible by Proposition 2.14.) Since σ2
q = 1,

δ2q = z ∈ Z(G);

and using δq to compute σZ , we see that

σZ(z) = z.

By Proposition 2.7, any other choice of σ′q differs from σq by conjugating with an
element Ad(g); so any other δ′q is of the form

δ′q = z1gδqg
−1.

We compute immediately that

(δ′q)
2 = z1σZ(z1)δ

2
q ,

so the class z is independent of all choices.
For (b), fix a quasisplit real form σq of G as in (a), and choose elements δq ∈

GΓ −G, δq
′′ ∈

(
GΓ

)′
so that

σ(δq) = σq, σ(δq
′′) = σq.

Write z = δ2q , z
′ = (δq

′′)2. By the hypothesis on the invariants of the two weak
extended groups, there is an element z1 ∈ Z(G) so that z = z′ (z1σZ(z1)). Set
δ′q = z1δq

′′; then

σ(δ′q) = σ(δq) = σq , δ2q = (δ′q)
2 = z. (2.17)(a)

Now the group GΓ is the disjoint union of G and the coset Gδq; these are multiplied
according to the rules

(g1δq)(g2δq) = g1σq(g2)z, (g1δq)(g2) = g1σq(g2)δq (2.17)(b)
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and the obvious rules for the other two kinds of product. We can define a bijection

from GΓ to
(
GΓ

)′
by using the identity on G, and sending gδq to gδ′q. By (2.17),

this bijection is a group homomorphism, proving (b).

For (c), choose a quasisplit real form σq of G in the inner class corresponding to
a (Proposition 2.12), and a representative z ∈ Z(G) of the class z. Define GΓ to
consist of the union ofG and the set of formal symbols gδq (topologized as the union
of two copies of G). Introduce a multiplication on GΓ by the rules in (2.17)(b); then
it is a simple matter to check that GΓ is a weak extended group with the desired
invariants. Q.E.D.

3. Structure theory: extended groups and Whittaker models.

Part of the goal of the Langlands classification is a parametrization of the rep-
resentations of real forms of G in terms of L-groups. A difficulty with this goal
is that several different pairs (real form, representation) may be isomorphic. The
basic example is (SL(2,R), discrete series), where we may have a holomorphic or
an antiholomorphic discrete series representation with the same infinitesimal char-
acter. Even though the notion of strong real form allows us to separate these pairs
(Lemma 1.15), it still gives no reason to prefer one over another. The L-group
parameters we find for these representations (typically local systems of some kind)
do include a distinguished parameter (a trivial local system). In order to establish
a parametrization like Theorem 1.18, we therefore need (roughly speaking) a way
to specify a preferred representation in each L-packet.

Langlands’ program suggests a way to approach this problem. One can specify
a “Whittaker model” for a quasisplit real form G(R) of G (or rather an equivalence
class of such models for an equivalence class of quasisplit strong real forms). Two
such models must differ by an automorphism of G(R), but not necessarily by an
inner automorphism. It is essentially known from [Kostant] that each tempered L-
packet for G(R) contains exactly one representation admitting a Whittaker model.
(Such a result is expected over any local field, but of course it is unlikely to be es-
tablished in the absence of a definition of L-packets.) In the case of non-tempered
L-packets, often no representation admits a Whittaker model. Nevertheless, there
will be exactly one irreducible representation in the L-packet for which the corre-
sponding standard representation admits a Whittaker model. This representation
will be taken as the “base point” corresponding to the trivial local system in The-
orem 1.18.

Definition 3.1. Suppose G(R) is a quasisplit real form of a complex connected
reductive algebraic group. Fix T ⊂ B Cartan and Borel subgroups ofG defined over
R, and write A ⊂ T for the maximal split torus in T . (Thus the identity component
of A(R) is an “Iwasawa A” for G(R).) Write N for the unipotent radical of B. List
the simple (restricted) roots of A in N as {α1, . . . , αl}, and write gαj ⊂ n for the
corresponding restricted root spaces. Then

n/[n, n] ≃
l∑

j=1

gαj . (3.1)(a)
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All the spaces here are defined over R, so we get a corresponding decomposition of
n(R)/[n(R), n(R)]. In particular, the space of (one-dimensional) unitary characters
of N(R) is isomorphic (by taking differentials) to

l∑

j=1

igαj (R)∗, (3.1)(b)

the space of imaginary-valued linear functionals on the simple restricted real root
spaces. A unitary character χ of N(R) is called non-degenerate if its restriction to
each simple restricted root subgroup is non-trivial.

Suppose χ is a non-degenerate unitary character of N(R). Write Cχ for the
one-dimensional space on which χ acts, and

Lχ = G(R) ×N(R) Cχ (3.1)(c)

for the corresponding line bundle on G(R)/N(R). The Whittaker model Wh(χ) for
G(R) defined by χ is the space of smooth sections of Lχ:

Wh(χ) ≃ { f ∈ C∞(G(R)) | f(gn) = χ(n)−1f(g) } (3.1)(d).

We make Wh(χ) into a smooth representation of G(R) by left translation.
A Hilbert space representation (π,Hπ) of G(R) is said to admit a Whittaker

model of type χ if there is a non-zero continuous map

H∞π →Wh(χ) (3.1)(e)

respecting the action ofG(R). (Equivalently, π should admit a non-zero distribution
vector transforming according to the character χ under N(R).)

We consider first the uniqueness of non-degenerate characters. The following
lemma is well illustrated by the examples of GL(2,R) (which has up to conjugacy
only one kind of Whittaker model) and SL(2,R) (which has two). The element t
of (c) below can always be chosen in T (R) in the first case, but not in the second.

Lemma 3.2([Kostant], Lemma 6.2.1). Suppose G(R) is a quasisplit real form
of a complex connected reductive algebraic group, and T ⊂ B are Cartan and Borel
subgroups defined over R.

a) The decomposition (3.1)(a) of n/[n, n] is invariant under Ad(B). Consequently
the adjoint action of B(R) on characters of N(R) preserves the set of non-
degenerate unitary characters. In particular, the notion of non-degenerate uni-
tary character of N(R) is independent of the choice of T .

b) Suppose t ∈ T . Then the automorphism Ad(t) of G is defined over R if and only
if it preserves each of the simple real restricted root spaces gαj (R).

c) Suppose χ and χ′ are non-degenerate unitary characters of N(R). Then there
is an element t ∈ T such that Ad(t) is defined over R (so that Ad(t) defines an
automorphism of N(R)), and t · χ is equal to χ′ (the action on characters being
defined by composition of the character with the inverse of the automorphism of
N(R)).

d) In (c), the coset tZ(G)is uniquely determined by χ and χ′. In particular, χ is
conjugate to χ′ by G(R) if and only if t ∈ T (R)Z(G).
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Proof. For (a), Ad(N) acts trivially on n/[n, n]; so we need only consider Ad(T ).
Because the decomposition arises from the weights of the action of a subtorus of
T , the invariance is clear. The second claim follows. For the last, recall that any
two choices of T (R) are conjugate by N(R).

For (b), the condition is obviously necessary for Ad(t) to be defined over R;
so suppose that it holds. Write σ for the complex conjugation on G. Because σ
preserves T , it must permute the root spaces in g; we write σ for the corresponding
permutation of the roots. Then Ad(t) is defined over R if and only if for every root
β of T in G, we have

β(σt) = (σβ)(t). (3.3)(a)

It suffices to verify this condition for simple roots β. Write α for the restriction of
β to A; then the real restricted root space gα consists of elements of the form

X + σX (X ∈ gβ).

Now
Ad(t)(X + σX) = β(t)X + (σβ(t))σX. (3.3)(b)

It follows that Ad(t) preserves the real restricted root space if and only if

(σβ(t))σX = σ(β(t)X).

Since σ is conjugate-linear, this is equivalent to (3.3)(a).
For (c), we regard the complexified differential of χ as a character of the Lie

algebra n. As such, it has a complex value dχ(X) ∈ C on any X ∈ n. The
condition that χ be unitary is equivalent to dχ taking purely imaginary values on
each simple restricted real root space. By (3.3)(a), this is equivalent to

dχ(X) = −dχ(σX) (X ∈ gβ) (3.4)(a)

for every simple root β. The non-degeneracy condition is

dχ(X) 6= 0 (X ∈ gβ − 0). (3.4)(b)

Suppose now that χ and χ′ are as in (c) of the lemma. Since the simple roots are
linearly independent, we can find t ∈ T with

β(t) = dχ(X)/dχ′(X) (X ∈ gβ − 0). (3.4)(c)

Combining (3.4)(c) with (3.4)(a) gives exactly the condition in (3.3)(a) for Ad(t)
to be defined over R. To compute the action of t on χ, it is enough to evaluate the
differential at an element X ∈ gβ. This is

d(t · χ)(X) = dχ(Ad(t−1)X) = dχ(β(t−1)X) = β(t)−1dχ(X) = dχ′(X).

It follows that t · χ = χ′, as we wished to show.
For (d), the proof of (c) shows that the choice (3.4)(c) of β(t) (for every simple

β) is forced by the requirement that t ·χ = χ′. This gives the first assertion. For the
second, χ is conjugate to χ′ by G(R) if and only if it is conjugate by the normalizer
B(R) = T (R)N(R) of N(R). Since N(R) fixes χ, (d) follows. Q.E.D.
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Recall now from Definition 1.12 the notion of an extended group (GΓ,W) for G.
The invariants of the extended group are the automorphism a of the based root
datum Ψ0(G) attached to the underlying weak extended groupGΓ (Corollary 2.16),
and the element

z = δ2 ∈ Z(G)σZ . (3.5)

Here δ is any element of a triple (δ,N, χ) ∈ W (Definition 1.12). The element z is
independent of the choice of δ, since W is a single conjugacy class under G.

Here is the classsification of extended groups.

Proposition 3.6. Suppose G is a connected reductive complex algebraic group.

a) Suppose (GΓ,W) and
((
GΓ

)′
,W ′

)
are extended groups for G with the same

invariants (a, z) (cf. (3.5)). Then the identity map on G extends to an isomor-

phism from GΓ to
(
GΓ

)′
carrying W to W ′. Any two such extensions differ by

an inner automorphism of GΓ from Z(G).
b) Fix a weak extended group GΓ for G with invariants (t, z). If (GΓ,W) is an

extended group, then its second invariant is a representative for the class of z.
Conversely, if z ∈ Z(G)σZ is an element of finite order representing the class of
z, then there is an extended group structure on GΓ with second invariant z.

Proof. For (a), fix (δ,N, χ) ∈ W . Since δ2 = z ∈ Z(G), conjugation by δ
defines an antiholomorphic involutive automorphism σ = σ(δ) of G, and thus a
real form G(R). By condition (b)(2) in Definition 1.12, G(R) is quasisplit. The
real forms defined analogously using W ′ are also quasisplit, and inner to G(R). By
Proposition 2.12, at least one of them must coincide with G(R). That is, we can
find (δ′, N ′, χ′) ∈ W ′ so that

σ(δ′) = σ. (3.7)(a)

Now N and N ′ are maximal unipotent subgroups of G defined over R. They are
therefore conjugate by an element g ∈ G(R). After replacing (δ′, N ′, χ′) by their
conjugates by g (which does not change δ′, and therefore preserves (3.7)(a)) we
may assume that

N ′ = N. (3.7)(b)

Now χ and χ′ are non-degenerate unitary characters of N(R). By Lemma 3.2, there
is an element t ∈ G normalizing N(R), carrying χ′ to χ, and with Ad(t) defined
over R. This last condition means that

σ(t) = tw

for some w ∈ Z(G). We finally replace (δ′, N ′, χ′) by their conjugates by t. This
replaces δ′ by w−1δ′, and therefore (since w is central) does not affect (3.7)(a).
Condition (3.7)(b) is preserved since t normalizes N . By the choice of t,

χ′ = χ. (3.7)(c)

We can now construct the desired isomorphism between the extended groups as in
the proof of Corollary 2.16(b), by sending δ to δ′.

For the uniqueness, any other such isomorphism must send (δ,N, χ) to a G-
conjugate g · (δ′, N, χ) of (δ′, N, χ) (since it carries W to W ′). We wish to show
that g ∈ G(R)Z(G). Since the isomorphism is the identity on G, we deduce three
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facts: the conjugation actions of δ and g(δ′)g−1 must agree on G; gNg−1 = N ;
and g · χ = χ. The first of these facts means that Ad(g) is defined over R. The
second fact implies that g = tn ∈ B. Since Ad(g) is defined over R, it follows that
n ∈ N(R) and that Ad(t) is defined over R. Because of Lemma 3.2(d), the third
fact guarantees that t ∈ Z(G), as we wished to show.

The first part of (b) is clear from the definitions. For the second part, the
argument before (2.17)(a) shows how to find an element δ of GΓ − G with σ(δ) a
quasisplit real form of G, and δ2 = z. Let N be any maximal unipotent subgroup
of G defined over R, and let χ be any non-degenerate unitary character of N(R).
Then the G-conjugacy class W of the triple (δ,N, χ) is evidently an extended group
structure with second invariant z. Q.E.D.

Corollary 3.8. Suppose G is a connected complex reductive algebraic group
endowed with an inner class of real forms. Then the equivalence classes of extended
groups for G are parametrized by elements of finite order in Z(G)σZ (cf. Corollary
2.16).

We have found no use for the wide selection of extended groups provided by
Corollary 3.8, and no reason to prefer one choice over another. This should probably
be taken as evidence that our definitions are imperfect. The analogous phenomenon
for dual groups (Proposition 4.7) has a much clearer rôle, as we will see.

4. Structure theory: L-groups.

The based root datum for a complex connected reductive algebraic group (Defi-
nition 2.10) characterizes that group up to isomorphism. On the other hand, based
root data of reductive groups may be characterized by some simple axioms (see
[Springer]). These axioms are symmetric in X∗ and X∗; that is, the quadruple
Ψ0 = (X∗,∆, X∗,∆

∨) is the based root datum of a reductive group if and only
if ∨Ψ0 = (X∗,∆

∨, X∗,∆) is as well. We call ∨Ψ0 the dual based root datum to
Ψ0. Notice that the automorphism groups of dual based root data are canonically
isomorphic:

Aut(Ψ0) ≃ Aut(∨Ψ0). (4.1)

Definition 4.2 (see [Langlands] or [Borel]). Suppose G is a complex connected
reductive algebraic group. A dual group for G is a complex connected reductive
algebraic group ∨G, together with an isomorphism from the dual of the based root
datum for G to the based root datum for ∨G:

∨Ψ0(G) ≃ Ψ0(
∨G).

By Proposition 2.8, any two dual groups for G are isomorphic, and the isomor-
phism is canonical up to inner automorphism of either group.

Definition 4.3 (cf. [AV2], Definition 10.5). Suppose G is a complex connected
reductive algebraic group. A weak E-group for G is an algebraic group ∨GΓ con-
taining a dual group ∨G for G as a subgroup of index 2. That is, there is a short
exact sequence

1 → ∨G→ ∨GΓ → Γ → 1.
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Here Γ = Gal(C/R) as in Definition 2.13.
It will often be convenient for us to use this terminology in a various more

specific ways, which we record here though they require Proposition 4.4 below for
their formulation. Suppose GΓ is a weak extended group for G (Definition 2.13).
Recall that there is attached to GΓ an involutive automorphism a of the based root
datum of G (Corollary 2.16); of course a really depends only on the inner class of
real forms of G defined by GΓ. A weak E-group for GΓ is a weak E-group for G
with second invariant a (Proposition 4.4(a)). We may also call this a weak E-group
for G and the specified inner class of real forms, or even a weak E-group for G(R)
(with G(R) a real form in the specified inner class).

Finally, we will occasionally need to use this terminology in a less specific way.
We will say that a weak E-group is an algebraic group HΓ containing a complex
connected reductive algebraic subgroup H of index two. That is, there is a short
exact sequence

1 → H → HΓ → Γ → 1.

Of course every complex connected reductive algebraic group may be regarded as
a dual group, so this definition does not enlarge the class of weak E-groups.

The notion of dual group is symmetric, in the sense that if ∨G is a dual group for
G then G is a dual group for ∨G). We emphasize that there is no such symmetry
between the notions of weak extended groups and weak E-groups. An E-group
is always a complex algebraic group, but an extended group never is (because of
condition (a2) in Definition 2.13).

Here is the classification of weak E-groups.

Proposition 4.4. Suppose G is a connected reductive complex algebraic group.

a) Fix a weak E-group ∨GΓ for G. Let θZ be the holomorphic involution of Z(∨G)
defined by the conjugation action of any element of ∨GΓ − ∨G. We can attach
to ∨GΓ two invariants. The first of these is an involutive automorphism

a ∈ Aut(Ψ0(G))

of the based root datum of G. The second is a class

z ∈ Z(∨G)θZ/(1 + θZ)Z(∨G).

b) Suppose ∨GΓ and
(
∨GΓ

)′
are weak E-groups for G with the same invariants

(a, z). Then any one of the canonical isomorphisms from ∨G to ∨G
′
described

after Definition 4.2 extends to an isomorphism from ∨GΓ to
(
∨GΓ

)′
.

c) Suppose a ∈ Aut(Ψ0(G)) is an involutive automorphism, and ∨G is a dual group
of G. Write θZ for the involution of Z(∨G) defined by the action of any auto-
morphism σ corresponding to a (Proposition 2.11 and (4.1)); and suppose

z ∈ Z(∨G)θZ/(1 + θZ)Z(∨G).

Then there is a weak E-group ∨GΓ with invariants (a, z).

(In order to make sense of the statement in (b), note that by the remarks after
Definition 4.2, the centers of any two dual groups of G are canonically isomorphic.)
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The proof is a slightly simpler version of the proof of Corollary 2.16, so we omit it.
We should record the construction of z, however. Let ∨δ be any element of ∨GΓ−∨G
such that the conjugation action of ∨δ on ∨G is a distinguished automorphism (as
defined after Proposition 2.11). (Such elements necessarily exist.) Then

∨δ
2

= z ∈ Z(∨G) (4.5)

is a representative of z.

Definition 4.6. Suppose G is a complex connected reductive algebraic group.
An E-group for G is a pair (∨GΓ,D), subject to the following conditions.

(a) ∨GΓ is a weak E-group for G (Definition 4.3).
(b) D is a ∨G-conjugacy class of elements of finite order in ∨GΓ − ∨G.
(c) Suppose ∨δ ∈ D. Then conjugation by ∨δ is a distinguished involutive automor-

phism of ∨G (see the definition after Proposition 2.11).

The invariants of the E-group are the automorphism a attached to ∨GΓ by
Proposition 4.4, and the element

z = ∨δ
2
∈ Z(∨G)θZ ;

here ∨δ is any element of D.
An L-group for G is an E-group whose second invariant is equal to 1. That is,

we replace condition (b) above by

(b)′ D is a ∨G-conjugacy class of elements of order two in ∨GΓ − ∨G.
Of course the notion of L-group is due to Langlands (cf. [Langlands], [Borel]).

Just as in Definition 4.3, we can speak of E-groups or L-groups attached to an
extended group, to an inner class of real forms, to a single real form, or to nothing
at all.

Here is the classification of E-groups.

Proposition 4.7. Suppose G is a connected reductive complex algebraic group.

a) Suppose (∨GΓ,D) and
((
∨GΓ

)′
,D′

)
are E-groups for G with the same invariants

(a, z). Then any one of the canonical isomorphisms from ∨G to ∨G′ described

after Definition 4.2 extends to an isomorphism from ∨GΓ to
(
∨GΓ

)′
carrying D

to D′.
b) In the setting of (a), suppose τ1 and τ2 are isomorphisms from ∨GΓ to

(
∨GΓ

)′
with the property that τi |∨G is one of the canonical isomorphisms described after
Definition 4.2, and that τi(D) = D′. Then there is an element g ∈ ∨G such that
τ1 = τ2 ◦Ad(g).

c) Fix a weak E-group ∨GΓ for G with invariants (a, z). If (∨GΓ,D) is an E-group,
then its second invariant (Definition 4.6) is a representative for the class of z.
Conversely, if z ∈ Z(∨G)θZ is an element of finite order representing the class
of z, then there is an E-group structure on ∨GΓ with second invariant z.

The argument follows that given for Proposition 3.6, and we leave it to the reader.

Corollary 4.8. Suppose G is a connected complex reductive algebraic group
endowed with an inner class of real forms. Then there is an L-group for G and
this class of real forms (Definition 4.6). Any two such L-groups (∨GΓ,D) and
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(
(∨GΓ)′,D′

)
are isomorphic. We may choose this isomorphism τ so that τ(D) =

D′, and the restriction of τ to ∨G is one of the canonical isomorphisms described
after Definition 4.2. This choice of τ is unique up to composition with an inner
automorphism from ∨G.

In the course of the proof of Theorem 1.18 (see Definition 13.7 below) it will
be convenient to reformulate the definition of E-group. We need a preliminary
definition, which will be applied in a moment to a dual group.

Definition 4.9. Suppose G is a complex connected reductive algebraic group,
B is a Borel subgroup, and T ⊂ B is a maximal torus. Write

χ(2∨ρ) : C× → T (4.9)(a)

for the sum of the positive coroots, an element of X∗(T ). Set

m(∨ρ) = χ(2∨ρ)(i) ∈ T, z(∨ρ) = m(∨ρ)2 = χ(2∨ρ)(−1). (4.9)(b)

The familiar fact that the sum of the positive coroots takes the value 2 on each
simple root α means that

Ad(m(∨ρ))(Xα) = i2Xα = −Xα, Ad(z(∨ρ))(Xα) = Xα (4.9)(c)

for any element Xα of the α root space. In particular, z(∨ρ) ∈ Z(G); this element
is independent of the choice of B and T , so it is preserved by all automorphisms of
G.

Suppose θ is an involutive (holomorphic) automorphism of G preserving a Borel
subgroup B. Fix a θ-stable maximal torus T ⊂ B (as is possible). We say that the
pair (θ,B) is large if θ acts by −1 on each θ-stable simple root space. We say that
(θ,B) is distinguished if θ acts by +1 on each θ-stable simple root space. (Since
T is unique up to conjugation by the θ-invariants in B, these definitions do not
depend on the choice of T .)

Lemma 4.10. Suppose G is a complex connected reductive algebraic group,
B ⊂ G is a Borel subgroup, and θ is an involutive holomorphic automorphism of G
preserving B. Fix a θ-stable maximal torus T ⊂ B.
a) The automorphism θ fixes the map χ(2∨ρ) of Definition 4.9. In particular, it

fixes the element m(∨ρ); so

θ′ = Ad(m(∨ρ)) ◦ θ

is another involutive automorphism of G preserving B.
b) The pair (θ,B) is large (respectively distinguished) if and only if (θ′, B) is dis-

tinguished (respectively large).
c) The pair (θ,B) is distinguished if and only if θ is a distinguished automorphism

(as defined after Proposition 2.11).

Proof. Parts (a) and (b) are immediate from Definition 4.9 (particularly (4.9)(c)).
The “if” in part (c) is also immediate from Definition 4.9. For the “only if,” suppose
(θ,B) is distinguished in the sense of Definition 4.9, and T is a θ-stable maximal
torus in B. To see that θ is distinguished in the sense of section 2, we must find a
set of simple root vectors {Xα} permuted by θ. Begin with any set {X ′α} of simple
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root vectors. If α is fixed by θ, then the assumption that (θ,B) is distinguished
means that θX ′α = X ′α. For such roots α we define Xα = X ′α. The remaining
simple roots occur in pairs interchanged by θ; by choosing one representative of
each pair, we can list them as {β1, . . . , βr, θβ1, . . . , θβr}. We now define

Xβi = X ′βi , Xθβi = θX ′βi .

Then θ ∈ Aut(G,B, T, {Xα}), as we wished to show. Q.E.D.

Lemma 4.11. Suppose G is a complex connected reductive algebraic group,
and θ is a distinguished involutive holomorphic automorphism of G. Then any two
θ-stable Borel subgroups of G are conjugate by the invariants of θ in G.

Proof. The proof requires a few ideas from the theory of Cartan involutions, and
we only sketch it. Write K for the group of fixed points of θ in G, and K0 for its
identity component. Suppose B and B′ are θ-stable. Choose θ-stable tori T and T ′

in B and B′; then T ∩K0 and T ′ ∩K0 are maximal tori in K0, contained in Borel
subgroups B∩K0 and B′∩K0. By conjugacy of maximal tori and Borel subgroups
in the reductive group K0, we may assume (after replacing B′ by a conjugate under
K0) that they coincide:

T ∩K0 = T ′ ∩K0, B ∩K0 = B′ ∩K0.

Now T ∩K0 contains regular elements of G (for example in the image of the map
χ(2∨ρ)), so the identity component of its centralizer is exactly T . It follows that
T = T ′.

Up until now we have used only the assumption that θ is an involutive auto-
morphism. A root of T in G is B-simple if and only if its restriction to T ∩ K0

is simple for B ∩K0; this is a consequence of the fact that (θ,B) is distinguished
(Definition 4.9 and Lemma 4.10(c)); and similarly for B′. Using this fact, we see
that the simple roots of T in B and in B′ coincide, so B = B′. Q.E.D.

Using these two lemmas, we can formulate a first approximation to our new
definition of E-groups.

Definition 4.12. Suppose G is a complex connected reductive algebraic group.
An E-group for G is a pair (∨GΓ, E), subject to the following conditions.

(a) ∨GΓ is a weak extended group for G (Definition 4.3).
(b) E is a ∨G-conjugacy class of pairs (∨δ, dB), with ∨δ an element of finite order in

∨GΓ − ∨G, and dB a Borel subgroup of ∨G.
(c) Suppose (∨δ, dB) ∈ E . Then conjugation by ∨δ is a distinguished involutive

automorphism of ∨G (see the definition after Proposition 2.11) preserving dB.

To see that Definition 4.12 is equivalent to Definition 4.6, suppose first that
(∨GΓ, E) is an E-group in the sense of Definition 4.12. Set

D = { ∨δ | (∨δ, dB) ∈ E }. (4.13)(a)

Then (∨GΓ,D) is an E-group in the sense of Definition 4.6. Conversely, suppose
(∨GΓ,D) is an E-group in the sense of Definition 4.6. Set

E = { (∨δ, dB) | ∨δ ∈ D, and dB is a ∨δ-invariant Borel subgroup of ∨G }.
(4.13)(b)
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Lemma 4.11 implies that E is a single ∨G-conjugacy class, so (∨GΓ, E) is an E-group
in the sense of Definition 4.12.

It is now a simple matter to pass to our final definition of E-groups.

Definition 4.14 ([AV2], Definition 10.5). Suppose G is a complex connected
reductive algebraic group. An E-group for G is a pair (∨GΓ,S), subject to the
following conditions.

(a) ∨GΓ is a weak extended group for G (Definition 4.3).
(b) S is a ∨G-conjugacy class of pairs (∨δ, dB), with ∨δ an element of finite order in

∨GΓ − ∨G, and dB a Borel subgroup of ∨G.
(c) Suppose (∨δ, dB) ∈ S. Then conjugation by ∨δ defines an involutive automor-

phism θ of ∨G preserving dB. The pair (θ, dB) is large (Definition 4.9).

The invariants of the E-group are the automorphism a attached to ∨GΓ by
Proposition 4.5, and the element

z = z(ρ)∨δ
2
∈ Z(∨G)θZ ;

here (∨δ, dB) is any element of S, and z(ρ) ∈ Z(∨G) is the distinguished element
described in Definition 4.9.

An L-group for G is an E-group whose second invariant is equal to 1. That is,

the elements ∨δ appearing in (b) are required to satisfy ∨δ
2

= z(ρ).

We recall from section 9 of [AV2] the proof that Definitions 4.12 and 4.14 are
equivalent. Suppose that (∨GΓ, E) is an E-group in the sense of Definition 4.12.
Fix (∨δ, dB) ∈ E , and write θ for the automorphism of ∨G defined by conjugation
by ∨δ. Choose a θ-stable maximal torus dT ⊂ dB, and define m(ρ) ∈ dT as in
Definition 4.9. Set

∨δ
′
= m(ρ)−1∨δ; (4.15)(a)

the corresponding automorphism of ∨G is

θ′ = Ad(m(ρ))θ. (4.15)(b)

Changing the choice of dT changes ∨δ
′
only by conjugation by dB; so the conjugacy

class
S = Ad(∨G)(∨δ

′
, dB) (4.15)(c)

is well-defined. By hypothesis, the pair (θ, dB) is distinguished, so by (4.15)(b) and
Lemma 4.10 the pair (θ′, dB) is large. Consequently (∨GΓ,S) is an E-group in the
sense of Definition 4.14. This argument may be reversed without difficulty, proving
the equivalence of the two definitions.

5. Langlands parameters and L-homomorphisms.

The (local) goal of Langlands’ theory of L-groups is the description of represen-
tations of real forms of G in terms of an L-group of G. In this section we begin our
detailed analysis of the parameters that will appear in this description, without as
yet explaining how they are related to representation theory. As is explained in
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[AV2], E-groups play the same rôle with respect to the description of certain pro-
jective representations (corresponding always to linear covering groups) and they
can be treated at the same time without difficulty. (Indeed it is apparent from
Definitions 4.3 and 4.6 that E-groups are in certain respects less complicated than
L-groups.) In any case we will need to have E-groups available when we discuss
endoscopy.

Definition 5.1 ([Langlands], section 2). Suppose ∨HΓ and ∨GΓ are weak E-
groups (Definition 4.3). An L-homomorphism from ∨HΓ to ∨GΓ is a morphism
ǫ : ∨HΓ → ∨GΓ of algebraic groups, with the property that the diagram

∨HΓ ǫ
−→ ∨GΓ

ց ւ
Γ

(cf. Definition 4.3) commutes. (Even when ∨HΓ and ∨GΓ are E-groups, we do
not require that ǫ should respect the distinguished conjugacy classes D, E , or S
of Definitions 4.6, 4.12, and 4.14.) Two such morphisms ǫ and ǫ′ are said to be
equivalent if they are conjugate by the action of ∨G; that is, if there is an element
g ∈ ∨G so that ǫ′ = Ad(g) ◦ ǫ.

A central feature of Langlands’ (local) philosophy is that an equivalence class of
L-homomorphisms should give rise to something like a map (“transfer”) from rep-
resentations of (real forms of) H to representations of G. In particular, any object
we construct from an E-group that is intended to correspond to representations of
G ought to be covariant with respect to L-homomorphisms. The first object of this
kind that we will consider is the set of “Langlands parameters” of Definition 1.5.
To describe these more carefully, we begin by recalling the definition of the Weil
group for R.

Definition 5.2 (see [Langlands], [Borel], or [Tate]). The Weil group of R is the
real Lie group WR generated by C× and a distinguished element j, subject to the
relations

j2 = −1 ∈ C×, jzj−1 = z. (5.2)(∗)

We define a homomorphism from WR to the Galois group Γ of C/R by sending C×

to the identity and j to complex conjugation. (This gives the exact sequence

1 → C× →WR → Γ → 1

of (1.4)(b).) Again we emphasize that the Weil group is not a complex Lie group.
Suppose ∨GΓ is a weak E-group. A quasiadmissible homomorphism (or Langlands

parameter) φ from WR to ∨GΓ is a continuous group homomorphism satisfying

(a) the diagram

WR
φ

−→ ∨GΓ

ց ւ
Γ

is commutative; and
(b) φ(C×) consists of semisimple elements of ∨G.
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Two such homomorphisms are said to be equivalent if they are conjugate by the
action of ∨G. The set of Langlands parameters for ∨GΓ is written

P (∨GΓ) = {φ : WR → ∨GΓ | φ is quasiadmissible }.

We make ∨G act on P (∨GΓ) by conjugation on the range of a homomorphism. The
set of equivalence classes of Langlands parameters — that is, the set of orbits of
∨G on P (∨GΓ) — is written

Φ(∨GΓ) = { ∨G orbits on P (∨GΓ) }.

Definition 5.3 (see [Langlands], [Borel]). Suppose G is a connected complex
reductive algebraic group endowed with an inner class of real forms. If (∨GΓ,D) is
any L-group for G (Definition 4.6), then we write

Φ(G/R) = Φ(∨GΓ).

The omission of ∨GΓ from the notation is justified by Corollary 4.8: if
(
(∨GΓ)′,D′

)

is any other L-group for the same inner class of real forms, then the corollary
provides a canonical bijection from Φ(∨GΓ) to Φ((∨GΓ)′). A little more generally,
if (∨GΓ,D) is an E-group with second invariant z (Definition 4.6), then we write

Φz(G/R) = Φ(∨GΓ).

The set of Langlands parameters behaves well under L-homomorphisms.

Proposition 5.4. Suppose ∨HΓ and ∨GΓ are weak E-groups, and ǫ : ∨HΓ →
∨GΓ is an L-homomorphism. Then composition with ǫ defines a map

P (ǫ) : P (∨HΓ) → P (∨GΓ)

on Langlands parameters, which descends to a map

Φ(ǫ) : Φ(∨HΓ) → Φ(∨GΓ)

on equivalence classes.

This is obvious. We begin now the proof of Proposition 1.6.

Lemma 5.5 Suppose H is a complex Lie group, with Lie algebra h. Then the set
of continuous homomorphisms φ from C× into H is in one-to-one correspondence
with the set of pairs (λ, µ) ∈ h × h, subject to the following conditions:

a) [λ, µ] = 0; and
b) exp(2πi(λ− µ)) = 1.

We omit the elementary proof; essentially the same result may be found in
Lemma 2.8 of [Langlands], or Proposition 2.10 of [AV2]. We will need a formula
for φ, however; it is

φ(et) = exp(tλ+ tµ) (t ∈ C). (5.5)(a)
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This is usually written more succinctly (if perhaps a little less clearly) as

φ(z) = zλzµ (z ∈ C×). (5.5)(b)

We restate Proposition 1.6 in our present slightly more general setting.

Proposition 5.6. Suppose ∨GΓ is a weak E-group (Definition 4.3). The set
P (∨GΓ) of quasiadmissible homomorphisms from WR into ∨GΓ (Definition 5.2)
may be identified with the set of pairs (y, λ) satisfying the following conditions:
a) y ∈ ∨GΓ − ∨G, and λ ∈ ∨g is a semisimple element;
b) y2 = exp(2πiλ); and
c) [λ,Ad(y)λ] = 0.

Proof. Suppose φ is a quasiadmissible homomorphism. By Lemma 5.4, the
restriction of φ to C× determines two commuting elements λ and µ of ∨g such that

φ(z) = zλzµ (z ∈ C×). (5.7)(a)

By Definition 5.2(b), the elements λ and µ are semisimple. Since j acts on C× by
complex conjugation, we have

Ad(φ(j))(λ) = µ. (5.7)(b)

Define
y = exp(πiλ)φ(j) ∈ ∨GΓ − ∨G; (5.7)(c)

the last inclusion is a consequence of Definition 5.2(a). This gives (a) of the Propo-
sition. Since Ad(exp(πiλ)) fixes λ, we have

Ad(y)(λ) = µ. (5.7)(d)

Since λ and µ commute, this gives (c) of the proposition. Now

y2 = exp(πiλ)φ(j)exp(πiλ)φ(j)

= exp(πiλ)φ(j)exp(πiλ)φ(j)−1φ(j2)

= exp(πiλ)exp(πiµ)φ(−1) (by (5.7)(b) and (5.2)(∗))

= exp(πi(λ+ µ))exp(πi(λ− µ)) (by (5.5)(a))

= exp(2πiλ),

as required by (b) of the proposition.
Conversely, suppose we are given y and λ satisfying (a)–(c) of the proposition.

Define µ by (5.7)(d); then λ and µ are commuting semisimple elements of ∨g. By
(b) of the proposition,

exp(2πiλ) = exp(2πiAd(y)(λ)).

So λ and µ satisfy the conditions of Lemma 5.5, and we can define a homomorphism
φ from C× into ∨G by (5.7)(a). We extend this to WR by setting

φ(j) = exp(−πiλ)y. (5.7)(e)
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That the relations (5.2)(∗) are preserved, and that φ is a quasiadmissible homo-
morphism, can be proved by reversing the arguments given for the first half of the
proposition. We leave the details to the reader. Q.E.D.

When y, λ, and φ are related as in Proposition 5.6 — that is, when (5.7)(a)–(e)
hold — we write

φ = φ(y, λ), y = y(φ), λ = λ(φ) (5.8)(a)

It will also be convenient to write (following (1.7)(c))

e(λ) = exp(2πiλ) ∈ H (5.8)(b)

whenever H is a complex Lie group and λ ∈ h.

Corollary 5.9. Suppose ∨GΓ is a weak E-group, φ ∈ P (∨GΓ) is a Langlands
parameter, and y, λ are as in Proposition 5.6. Define

∨G(λ) = centralizer in ∨G of e(λ)

L(λ) = { g ∈ ∨G | Ad(g)λ = λ }

L(λ, y · λ) = { g ∈ ∨G | Ad(g)λ = λ,Ad(g)(y · λ) = y · λ }
∨Gφ = centralizer in ∨G of φ(WR)

K(y) = centralizer in ∨G of y.

a) We have
∨Gφ ⊂ L(λ, y · λ) ⊂ L(λ) ⊂ ∨G(λ).

All four groups are complex reductive algebraic subgroups of ∨G; the middle two
are Levi subgroups of parabolics (and therefore connected).

b) Conjugation by y defines an involutive automorphism θy of ∨G(λ) preserving
L(λ, y · λ).

c) The group of fixed points of θy on ∨G(λ) is K(y). We have

∨Gφ = K(y) ∩ L(λ, y · λ) = K(y) ∩ L(λ).

In particular,
d) ∨Gφ may be described as the set of fixed points of an involutive automorphism

of the connected reductive (Levi) subgroup L(λ, y · λ) of ∨G.

This is immediate from Proposition 5.6.

Recall now from Definition 1.16 the algebraic universal cover ∨G
alg

of ∨G. We
write

1 → π1(
∨G)alg → ∨G

alg
→ ∨G→ 1. (5.10)(a)

(Recall that π1(
∨G)alg is the projective limit of the finite quotient groups of π1(

∨G).)

If H is any subgroup of ∨G, then we write Halg for its inverse image in ∨Galg.
(When we consider H as a subgroup of several different weak E-groups, this nota-

tion is ambiguous; we will write instead Halg,∨G.) This gives an exact sequence

1 → π1(
∨G)alg → Halg → H → 1. (5.10)(b)

We should offer here some justification for the introduction of these covering
groups. One way to eliminate them is to change the definition of strong real form
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(Definition 2.13) to require δ2 = 1. Then many of our principal results (beginning
with Theorem 1.18) hold with no covering groups at all. The problem with this
approach is that not every real form is represented by a strong real form with
δ2 = 1. (For example, the real form SU(2) of SL(2) is eliminated.) For this reason
we believe that the use of some covering groups is unavoidable. It is still of interest
to understand exactly which real forms require which coverings of ∨G, and we will
investigate this carefully in section 10 (Theorem 10.11).

We can now introduce the parameters for the complete Langlands classification
(Theorem 1.18).

Definition 5.11. Suppose ∨GΓ is a weak E-group, and φ ∈ P (∨GΓ). Use the
notation of Corollary 5.9. Define

Alocφ = ∨Gφ/ (∨Gφ)0 ,

the Langlands component group for φ. Similarly, set

Aloc,algφ = ∨G
alg
φ /

(
∨G

alg
φ

)
0
,

the universal component group for φ. (We will occasionally need to write Aloc,algφ,∨G

to avoid ambiguity. When ∨GΓ is an E-group for G, we simplify this to Aloc,algφ,G .)

It is a consequence of Corollary 5.9(d) that Alocφ is a (finite) product of copies of

Z/2Z, and that Aloc,algφ is abelian. This is not entirely obvious; the argument is

given at (12.11)(e) below. By (5.10)(b), there is a right exact sequence

π1(
∨G)alg → Aloc,algφ → Alocφ → 1.

(The kernel of the first map is the intersection of π1(
∨G)alg with the identity com-

ponent of ∨G
alg
φ .) A complete Langlands parameter for ∨GΓ is a pair (φ, τ), with τ

an irreducible representation of Aloc,algφ . Two such parameters are called equivalent

if they are conjugate under the obvious action of ∨G
alg

. We write Ξ(∨GΓ) for the
set of equivalence classes of complete Langlands parameters. As in Definition 5.3,
the case of L-groups merits special attention: if G is a connected complex reductive
group endowed with an inner class of real forms, we write

Ξ(G/R) = { equivalence classes of complete Langlands parameters for the L-group of G }.

(This is not the definition that was given in the introduction, but we will see in
section 7 that it is equivalent.) More generally, if (∨GΓ,D) is an E-group for GΓ

with second invariant z (Definition 4.6) then we write Ξz(G/R) for Ξ(∨GΓ). If
((∨GΓ)′,D′) is another E-group with second invariant z, then Proposition 4.7(b)
provides a canonical bijection from Ξ(∨GΓ) onto Ξ((∨GΓ)′). This justifies the
omission of the E-group from the notation.

Although we will make no use of it, the following proposition may provide a little
motivation for this definition.

Proposition 5.12. Suppose ∨G is a weak E-group. Then there is a natural
one-to-one correspondence between equivalence classes of complete Langlands pa-

rameters for ∨GΓ (Definition 5.11), and irreducible ∨G
alg

-equivariant local systems
on ∨G-orbits on P (∨GΓ) (Definition 5.2).
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This is immediate from the definitions (see also Lemma 7.3 below).
Particularly in connection with endoscopy, we will occasionally need to consider

a slightly different situation. Suppose that Q is any pro-finite group, and that we
have an extension of pro-algebraic groups

1 → Q→ ∨G
Q
→ ∨G→ 1. (5.13)(a)

If ǫ : H → ∨G is any morphism of algebraic groups, we can pull back the extension
(5.13)(a) to

1 → Q → HQ → H → 1
↓ ↓ ǫQ ↓ ǫ

1 → Q → ∨G
Q → ∨G → 1

(5.13)(b)

(The case of (5.10) has Q = π1(
∨G)alg , and ǫ the inclusion of a subgroup. In almost

all the examples we consider, Q will be a quotient of π1(
∨G)alg.) If φ ∈ P (∨GΓ),

we define the Q-component group for φ by

Aloc,Qφ = ∨G
Q
φ /(
∨G

Q
φ )0. (5.13)(c)

If we need to emphasize the group, we write Aloc,Qφ,∨G. There is a right exact sequence

Q→ Aloc,Qφ → Alocφ → 1. (5.13)(d)

A complete Langlands parameter for ∨GΓ of type Q is a pair (φ, τ), with φ a Lang-

lands parameter and τ an irreducible representation of Aloc,Qφ . Two such parameters

are called equivalent if they are conjugate by the action of ∨G
Q

. We write Ξ(∨GΓ)Q

for the set of equivalence classes of complete Langlands parameters of type Q.
Suppose now that we have an L-homomorphism

ǫ : ∨HΓ → ∨GΓ, (5.14)(a)

(Definition 5.1), and that we are given compatible pro-finite extensions

1 → QH → ∨H
QH → ∨H → 1

↓ ↓ ǫ• ↓ ǫ
1 → Q → ∨G

Q → ∨G → 1

(5.14)(b)

(In our examples, ∨G
Q

will usually be the algebraic universal covering of ∨G, and
∨HΓ will be (roughly) the centralizer in ∨GΓ of a semsimple element. We will take

QH = Q, and ∨H
Q

the induced extension (cf. (5.13)(b)). In this case ∨H
Q

will be
a quotient of the algebraic universal cover of ∨H .) Suppose now that φ ∈ P (∨HΓ),
so that ǫ ◦ φ ∈ P (∨GΓ) (Proposition 5.4). Then the map

ǫ• : ∨H
QH → ∨G

Q
(5.14)(c)

carries the centralizer of the image of φ to the centralizer of the image of ǫ ◦ φ; so
we get an induced homomorphism of component groups

Aloc(ǫ) : Aloc,QHφ,∨H → Aloc,Qǫ◦φ,∨G. (5.14)(d)



44

Notice that this map appears to go in the wrong direction from the point of view
of Langlands functoriality principle: a complete Langlands parameter of type QH
for ∨HΓ induces a Langlands parameter for ∨GΓ, but not a representation of the
Q-component group. (The problem is unrelated to our extensions; it occurs even
if Q = QH = {1}.) We will return to this point in section 26, using the ideas of
Langlands and Shelstad.

6. Geometric parameters.

We continue the analysis of the preceding section, turning now to the new geo-
metric parameters defined in the introduction. A calculation illustrating several of
the technical difficulties is outlined in Example 6.22. The reader may wish to refer
to it while reading this section.

Definition 1.7 of the introduction was made as succinctly as possible; we repeat
it here, including some useful auxiliary ideas. Suppose H is a complex reductive
group, with Lie algebra h, and λ ∈ h is a semisimple element. Set

h(λ)n = {µ ∈ h | [λ, µ] = nµ } (n ∈ Z) (6.1)(a)

h(λ) =
∑

n∈Z

h(λ)n (6.1)(b)

l(λ) = h(λ)0 = centralizer of λ in h (6.1)(c)

n(λ) =
∑

n=1,2,...

h(λ)n (6.1)(d)

p(λ) = l(λ) + n(λ) (6.1)(e)

Next, define

e(λ) = exp(2πiλ) ∈ H. (6.2)(a)

H(λ) = centralizer in H of e(λ) (6.2)(b)

L(λ) = centralizer in H of λ (6.2)(c)

N(λ) = connected unipotent subgroup with Lie algebra n(λ) (6.2)(d)

P (λ) = L(λ)N(λ) (6.2)(e)

Lemma 6.3. Suppose H is a complex reductive algebraic group, and λ ∈ h is a
semisimple element. Use the notation of (6.1) and (6.2).

a) H(λ) is a reductive subgroup of H with Lie algebra h(λ).
b) L(λ) is a reductive subgroup of H(λ) with Lie algebra l(λ). It is connected if H

is.
c) N(λ) is a connected unipotent subgroup of H(λ) with Lie algebra n(λ).
d) P (λ) is a parabolic subgroup of H(λ) with Lie algebra p(λ), and Levi decompo-

sition P (λ) = L(λ)N(λ). It is connected if H is.
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e) Ad(P (λ)) · λ = Ad(N(λ)) · λ = λ + n(λ). More precisely, the adjoint action of
N(λ) defines an isomorphism of varieties

N(λ) ≃ λ+ n(λ), n 7→ Ad(n)λ.

This is elementary. (Perhaps the most subtle part is (e). This goes back at least
to [Harish-Chandra], Lemma 8; the hypotheses there are a little more special, but
the proof extends without change. A convenient reference is [Wallach], equation
(4) on page 55.) The affine space in (e) is just the canonical flat of Definition 1.7:

F(λ) = Ad(P (λ)) · λ = Ad(N(λ)) · λ = λ+ n(λ). (6.4)

Proposition 6.5. Suppose H is a complex reductive algebraic group, and λ ∈ h

is a semisimple element. Use the notation of (6.1)–(6.4), and suppose λ′ ∈ F(λ).
Then

a) λ′ is a semisimple element of h, conjugate to λ by Ad(N(λ));
b) e(λ) = e(λ′), H(λ) = H(λ′), N(λ) = N(λ′), P (λ) = P (λ′), F(λ) = F(λ′); and
c) the stabilizer in H of the set F(λ) is P (λ). More precisely, if Ad(h) · F(λ) has

a non-trivial intersection with F(λ), then h ∈ P (λ).

Proof. Part (a) is immediate from (6.4). Write λ′ = Ad(n) · λ, for some n ∈
N(λ) ⊂ H(λ). Obviously Ad(n) carries objects defined in terms of λ to those
defined in terms of λ′. Since e(λ) is central in H(λ), the first claim of (b) follows.
For the next three, use the fact that N(λ) normalizes H(λ), N(λ), and P (λ). For
the last claim of (b), use the fact that F(λ) is already a homogeneous space for
N(λ). For (c), suppose h ∈ H carries λ to another element λ′ of F(λ). By (a),
there is an element n ∈ N(λ) with λ′ = Ad(n) · λ. Since n and h carry λ to the
same element, the element l = n−1h belongs to the stabilizer L(λ) of λ. Hence
h = nl belongs to P (λ), as we wished to show. Q.E.D.

Suppose now that Λ is a canonical flat in h. We define

e(Λ) = e(λ), H(Λ) = H(λ), N(Λ) = N(λ), P (Λ) = P (λ) (6.6)

for any λ ∈ Λ; this is well-defined by Proposition 6.5(b). We write h(Λ), etc., for
the Lie algebras.

Proposition 6.7. Suppose H is a complex reductive algebraic group, and Λ ⊂ h

is a canonical flat. Use the notation of (6.6).

a) Λ is an affine space for the vector space n(Λ), and a homogeneous space for
P (Λ). These structures are compatible (via the adjoint action of P (Λ) on n(Λ)).
We can therefore form the induced bundle

H ×P (Λ) Λ → H/P (Λ),

which is an affine bundle for the vector bundle

H ×P (Λ) n(Λ) → H/P (Λ).

b) The inclusion of Λ in h induces a map

H ×P (Λ) Λ → h, (h, λ) 7→ Ad(h) · λ.
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This map is an isomorphism onto the conjugacy class containing Λ. The fibers
of the bundle structure map to the canonical flats in the conjugacy class.

Proof. (A brief discussion of induced bundles can be found in the appendix of
[Dix]; this result has some overlap with those of section 3 in that paper. Recall
that a point of the induced bundle is an equivalence class of pairs (h, λ), with
h ∈ H and λ ∈ Λ; the equivalence relation is (hp, λ) ∼ (h, p · λ) for p ∈ P (Λ).)
Part (a) and the existence of the map in (b) are formal (cf. Proposition A.2(b)
in [Dix], for example). That the map is an isomorphism follows from Proposition
A.2(d) of [Dix], or a direct calculation: the fiber over λ consists of the equivalence
classes of pairs (h, λ′) with Ad(h) ·λ′ = λ. By (c) of Proposition 6.5, it follows that
h ∈ P (Λ), and thus that (h, λ′) is equivalent to (e, λ). This shows that the map
is bijective. Since the domain and range are homogeneous spaces, it must be an
isomorphism. For the last claim, obviously the fiber of the bundle over the identity
coset eP (Λ) maps to the canonical flat Λ. The general statement then follows from
the H-equivariance of the map. Q.E.D.

Example 6.8. Most semisimple elements (a dense open set) of a reductive Lie
algebra have no integral eigenvalues except zero; and the zero eigenspace is the
unique Cartan subalgebra to which they belong. For such an element λ, we have
P (λ) = L(λ) = T , a Cartan subgroup of H ; F(λ) = {λ}; the unipotent group N(λ)
is trivial; the bundles of Proposition 6.7 are trivial on H/T ; and Proposition 6.7(b)
simply identifies the conjugacy class of λ with H/T .

At the other extreme, suppose λ has all of its eigenvalues integral. Then H(λ)
contains the identity component of H , and P (λ) is a parabolic subgroup of H . The
partition of the Ad(H) orbit of λ into canonical flats can be viewed as a Lagrangian
foliation of a symplectic structure on the orbit; but since this is an adjoint rather
than a coadjoint orbit, the symplectic structure is not canonical and this is not a
particularly good point of view.

Suppose for example that H = SL(2,C). Write {h, e, f} for the standard basis
of the Lie algebra, and choose

λ = 1/2h =

(
1/2 0
0 −1/2

)
(6.8)(a)

Then
h(λ)−1 = Cf, h(λ)0 = Ch, h(λ)1 = Ce (6.8)(b)

h(λ) = h, l(λ) = Ch, n(λ) = Ce, p(λ) = Ch+ Ce (6.8)(c)

e(λ) = −I ∈ SL(2,C), H(λ) = SL(2,C) (6.8)(d)

F(λ) =

{(
1/2 t
0 −1/2

)
| t ∈ C

}
(6.8)(e)

The orbit of λ is the quadric

Ad(H) · λ =

{(
a b
c −a

)
| a2 + bc = 1/4

}
; (6.8)(f)

its partition into the conjugates of the line (6.8)(e) is just one of the two standard
rulings of a quadric surface ([Hartshorne], Exercise I.2.15).
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Definition 6.9. Suppose ∨GΓ is an E-group. A geometric parameter for ∨GΓ

is a pair (y,Λ) satisfying

(a) y ∈ ∨GΓ − ∨G;
(b) Λ ⊂ ∨g is a canonical flat (Definition 1.7); and
(c) y2 = e(Λ) (notation (6.6)).

The set of geometric parameters for ∨GΓ is written X(∨GΓ). We make ∨G act
on X(∨GΓ) by conjugation. Two geometric parameters are called equivalent if they
are conjugate by this action. (We do not introduce a separate notation for the
set of equivalence classes, since this will turn out to be naturally identified with
Φ(∨GΓ).)

If O is a ∨G orbit of semisimple elements in ∨g, then as in Lemma 1.9 we define

X(O, ∨GΓ) = { (y,Λ) ∈ X(∨GΓ) | Λ ⊂ O}.

We begin now our analysis of the spacesX(O, ∨GΓ). Fix a ∨G orbit of semisimple
elements

O ⊂ ∨g, (6.10)(a)

and write F(O) for the set of canonical flats in O. If we fix such a flat Λ, then
Proposition 6.5(c) provides an isomorphism

F(O) ≃ ∨G/P (Λ). (6.10)(b)

We also need to consider the conjugacy class of e(Λ) in ∨G. This is

C(O) = { ge(Λ)g−1 | g ∈ ∨G }. (6.10)(c)

By (6.2)(b), there is an isomorphism

C(O) ≃ ∨G/∨G(Λ). (6.10)(d)

Because e(Λ) is a semisimple element, the conjugacy class C(O) is closed in ∨G.
From the form of Definition 1.8, it is clear that we also need to consider the subva-
riety

I(O) = { y ∈ ∨GΓ − ∨G | y2 ∈ C(O) } (6.10)(e)

It will be convenient also to consider

I(Λ) = { y ∈ ∨GΓ − ∨G | y2 = e(Λ) }. (6.10)(f)

Finally, for y ∈ I(O), we write

K(y) = centralizer of y in ∨G. (6.10)(g)

Now the definition of the map e (cf. (6.2)(a) and (6.6)) on F(O) involves the
exponential map, and so is not algebraic in nature. Nevertheless, we have

Lemma 6.11. In the setting of (6.10), the map

e : F(O) → C(O), Λ 7→ e(Λ)
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is a smooth projective algebraic morphism.

Proof. By (6.10)(b) and (d), the map is just the natural quotient map of algebraic
homogeneous spaces

∨G/P (Λ) → ∨G/∨G(Λ).

Since P (Λ) is parabolic in ∨G(Λ), the map is projective. Q.E.D.
The next lemma will be the key to the finiteness claim of Lemma 1.9.

Lemma 6.12. Suppose H is a complex reductive algebraic group (possibly dis-
connected), and z ∈ H centralizes the identity component H0. Consider the set

I = { y ∈ H | y2 = z }.

Then I is the union of finitely many orbits under the conjugation action of H0.

Proof. The conjugation action of y ∈ I onH0 defines an involutive automorphism
θy. Fix a connected component C of H , and consider the subset I ∩ C of I. Since
H has finitely many components, it suffices to show that I ∩ C has finitely many
H0 orbits. The involutions in the set

Θ(C) = {θy | y ∈ I ∩ C}

all differ by inner automorphisms (since C is a coset of H0). In particular, they have
a common restriction θZ to the center Z(H0), so they are distinguished by their
restrictions to the semisimple commutator subgroup of H0. A complex semisimple
algebraic group admits only finitely many conjugacy classes of involutive auto-
morphisms; indeed Cartan showed that these classes correspond bijectively to the
equivalence classes of real forms. It follows that Θ(C) is a finite union of H0 orbits.
To complete the proof, we must study the fibers of the map

I ∩ C → Θ(C), y 7→ θy.

It is enough to show that each fiber is a finite union of orbits under the conjugation
action of Z(H0). Now the fiber over θy is clearly

{ yw | w ∈ Z(H0), wθZ(w) = e } = yZ1.

On the other hand, the Z(H0) conjugacy class of y is

{ yw | w = vθZ(v)−1, some v ∈ Z(H0) } = yZ2.

The two subgroups of Z(H0) appearing here are algebraic, and Z2 ⊂ Z1. Since they
have the same Lie algebra (namely the −1 eigenspace of the differential of θZ), it
follows that Z2 has finite index in Z1, as we wished to show. Q.E.D.

Proposition 6.13. In the setting (6.10), the orbits of the conjugation action
of ∨G on I(O) are in one-to-one correspondence (by intersection with I(Λ)) with
∨G(Λ) orbits on I(Λ). All of these orbits are closed, and there are finitely many of
them.

Fix a single orbit I1(O) of ∨G on I(O). Then the natural map

I1(O) → C(O), y 7→ y2
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is a smooth algebraic morphism.

Proof. The bijection is formal. That the orbits are closed follows from the
fact that they are finite unions of connected components of semisimple conjugacy
classes in the (disconnected) reductive group ∨GΓ. For the finiteness, we consider
the reductive group

H = centralizer of e(Λ) in ∨GΓ.

Obviously any element y of I(Λ) belongs to H (since y always commutes with y2).
Furthermore z = e(Λ) is central in H . It follows that the set I of Lemma 6.12
contains I(Λ). Since ∨G(Λ) contains the identity component of H , the finiteness
we need follows from Lemma 6.12.

For the last claim, fix an element y1 ∈ I1(O) with y2
1 = e(Λ). Then

I1(O) ≃ ∨G/K(y1), (6.14)(a)

and the morphism in question is just the quotient map

∨G/K(y1) →
∨G/∨G(Λ). (6.14)(b)

Of course this map is smooth. Q.E.D.
Here is the last general ingredient we need to complete our description of the

geometric parameter space.

Lemma 6.15. Suppose G is an algebraic group, H is a closed subgroup of G,
and A and B are closed subgroups of H. Then G/A and G/B both carry natural
maps to G/H, so we can form the fiber product

X = G/A×G/H G/B → G/H.

On the other hand, H acts on H/A and on H/B, so it acts on the product H/A×
H/B. We can therefore form the induced bundle

Y = G×H (H/A×H/B) → G/H.

Finally, A acts on the homogeneous space H/B, so we can form the induced bundle

Z = G×A H/B → G/A→ G/H

(and similarly with A and B exchanged).

a) X, Y , and Z are smooth bundles over G/H.
b) Y is isomorphic toX by the map sending the equivalence class of (g, (h1A, h2B)) ∈

Y to (gh1A, gh2B) ∈ X. This map is a G-equivariant isomorphism of fiber bun-
dles from Y to X.

c) Z is isomorphic to X by the map sending the equivalence class of (g, hB) to
(gA, ghB). This map is a G-equivariant isomorphism of fiber bundles from Y to
X.

d) The isomorphism in (b) induces a natural bijection from the orbits of H on
(H/A×H/B) onto the orbits of G on X.

e) The isomorphism in (c) induces a natural bijection from the orbits of A on H/B
onto the orbits of G on X.
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f) The following four sets are in natural one-to-one correspondence: the orbits of
H on (H/A×H/B); the (A,B) double cosets in H; the orbits of A on H/B;
and the orbits of B on H/A.

Proof. An induced bundle is smooth if and only if the inducing space is smooth;
so the smoothness of Y (respectively Z) is a consequence of the smoothness of
(H/A × H/B) (respectively H/B). As for X , the spaces G/A and G/B are both
smooth over G/H , so their fiber product is smooth over G/H as well ([Hartshorne],
Proposition III.10.1(d)). For (b), the G-equivariant maps from an induced bundle to
a G-space are determined by the H-equivariant maps from the inducing space. The
map in (b) corresponds in this way to the natural inclusion of (H/A×H/B) in the
fiber product X . That this map is a bijection is formal. That it is an isomorphism
can be deduced by computing its differential (because of the smoothness established
in (a)). Part (c) is similar; or one can show directly that Z is isomorphic to Y . For
(d) and (e), the G-orbits on an induced bundle are in natural bijection with the
orbits on the inducing space. Part (f) is elementary group theory. Q.E.D.

Proposition 6.16. Suppose ∨GΓ is a weak E-group. Fix an orbit O of ∨G
on the semisimple elements of ∨g, and use the notation of (6.6) and (6.10). In
particular, we have smooth algebraic maps

F(O) → C(O), I(O) → C(O).

The variety X(O, ∨GΓ) of Definition 6.9 is the fiber product

X(O, ∨GΓ) = F(O) ×C(O) I(O).

A little more explicitly, it has the following structure. List the orbits of ∨G on
I(O) as I1(O), . . . , Ir(O) (Proposition 6.13). Fix a canonical flat Λ ∈ F(O). This
gives a reductive group ∨G(Λ) and a parabolic subgroup P (Λ) (cf. (6.6) and Lemma
6.3). For each i, choose a point

yi ∈ Ii(O), y2
i = e(Λ).

Then conjugation by yi defines an involutive automorphism θi of ∨G(Λ) with fixed
point set Ki = K(yi) (cf. (6.10)(g)). The variety X(O, ∨GΓ) is the disjoint union
of r closed subvarieties

Xi(O,
∨GΓ) = F(O) ×C(O) Ii(O).

The ith subvariety looks like

Xi(O,
∨GΓ) ≃ ∨G×∨G(Λ) (∨G(Λ)/Ki ×

∨G(Λ)/P (Λ))

≃ ∨G×Ki (∨G(Λ)/P (Λ)).

In particular, the orbits of ∨G on Xi(O, ∨GΓ) are in one-to-one correspondence
with the orbits of Ki on the partial flag variety ∨G(Λ)/P (Λ). These orbits are
finite in number. The isotropy group of the action of ∨G at the point x = (y,Λ) is

∨Gx = K(y) ∩ P (Λ).
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We will see later (Proposition 7.14) that the correspondence between Ki orbits
on ∨G(Λ)/P (Λ) and ∨G orbits on Xi(O) not only is a bijection of sets, but also
preserves the closure relations and the nature of the singularities of closures.

Proof. Everything but the last finiteness assertion is immediate from Lemma
6.15 and Proposition 6.13. (The description of X(O, ∨GΓ) as a fiber product is
just a restatement of Definition 1.8.) For the finiteness, we must show that if H is
a reductive group, Z is a partial flag variety for H (that is, a homogeneous space
for which an isotropy group contains a Borel subgroup of H0) and K ⊂ H is the
group of fixed points of an involution, then K has finitely many orbits on Z. After
straightforward reductions, we may assume that H is connected and semisimple,
and that Z is the variety of Borel subgroups. In that case the result is well-known.
(A complete description of the orbits may be found in [Matsuki]; the finiteness
result is even older.) Q.E.D.

With this description of the geometric parameter space, we can consider now its
relationship to the Langlands parameters of section 5.

Proposition 6.17. Suppose ∨GΓ is a weak E-group. Then there is a natural
∨G-equivariant map p from the set of Langlands parameters for ∨GΓ (Definition
5.2) onto the set of geometric parameters for ∨GΓ (Definition 6.9). In terms of the
description of Langlands parameters in Proposition 5.6, this map is

p : P (∨GΓ) → X(∨GΓ), p(φ(y, λ)) = (y,F(λ))

(notation (5.8), (6.4)). The map p induces a bijection from equivalence classes
of Langlands parameters (that is, ∨G orbits on P (∨GΓ)) onto equivalence classes
of geometric parameters (that is, ∨G orbits on X(∨GΓ)). If x = p(φ), then the
isotropy group ∨Gφ (Corollary 5.9) is a Levi subgroup of the isotropy group ∨Gx
(Proposition 6.16). In particular, the fiber p−1(x) is a principal homogeneous space
for the unipotent radical of ∨Gx.

Before embarking on the proof, we need some general facts about parabolic
subgroups and involutions.

Lemma 6.18. Suppose G is a connected complex reductive algebraic group,
P ⊂ G is a parabolic subgroup, and θ is an involutive automorphism of G. (We do
not assume that θ preserves P .) Write K ⊂ G for the group of fixed points of θ.

a) There is a maximal torus T ⊂ P such that θT = T .

¿From now on we fix such a torus. There is a unique Levi decomposition P = LN
with T ⊂ L.

b) The group Lθ = L∩θL is a connected θ-stable reductive subgroup of G containing
T .

c) The group Nθ generated by N ∩θP and P ∩θN is a connected θ-stable unipotent
subgroup of G, normalized by Lθ.

d) The group Pθ = P ∩ θP is a connected algebraic subgroup of G, with θ-stable
Levi decomposition Pθ = LθNθ.

e) We have

L ∩K = Lθ ∩K, P ∩K = Pθ ∩K = (Lθ ∩K)(Nθ ∩K).
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The last formula is a Levi decomposition of the algebraic group P ∩K.

Proof. For (a), we may as well replace P by a Borel subgroup contained in it. In
that case the existence of T is established in [Matsuki]. Now write R = R(G, T ) for
the set of roots. Because θ preserves T , θ acts on R as an automorphism of order
2. Write

R(P, T ) = R(L, T ) ∪R(N,T )

for the corresponding sets of roots. Fix an element λ ∈ t with the property that

α(λ) = 0 (α ∈ R(L, T )), α(λ) > 0 (α ∈ R(N,T )).

Then θλ also belongs to t, and has the corresponding properties for θP . For (b), L
is the centralizer in G of λ, so

L ∩ θL = { g ∈ G | Ad(g)λ = λ,Ad(g)(θλ) = θλ }.

Since λ and θλ are commuting semisimple elements of g, it follows that L ∩ θL is
connected and reductive. The rest of (b) is clear.

For (c) and (d), one computes easily that the roots of T in Lθ and Pθ are

R(Lθ, T ) = {α ∈ R | α(λ) = 0 and α(θλ) = 0 }

R(Pθ, T ) = {α ∈ R | α(λ) ≥ 0 and α(θλ) ≥ 0 }.

The groups N ∩ θP and P ∩ θN are obviously unipotent algebraic, and therefore
connected. The corresponding roots are

R(N ∩ θP, T ) = {α ∈ R | α(λ) > 0 and α(θλ) ≥ 0 }

R(P ∩ θN, T ) = {α ∈ R | α(λ) ≥ 0 and α(θλ) > 0 }.

Now set
R+
θ = R(N ∩ θP, T ) ∪R(P ∩ θN, T ).

Because this set is easily seen to be closed under addition, it is the set of roots of
T in the group Nθ. To prove (c), we must show that Nθ is unipotent. This is a
consequence of the fact that all the roots in R+

θ lie on one side of the hyperplane
defined by λ+ θλ.

For (d), observe first that

R(Pθ, T ) = R(Lθ, T ) ∪R(Nθ, T ),

a disjoint union. It follows from (b) and (c) that LθNθ is a Levi decomposition of
the identity component of Pθ; it remains to show that Pθ is connected. So suppose
p ∈ Pθ; we want to show that p is in the identity component. Now pTp−1 is a
maximal torus in Pθ; so by the conjugacy of maximal tori in connected algebraic
groups, we can find an element p0 in the identity component of Pθ conjugating
pTp−1 to T . After replacing p by p0p, we may therefore assume that p normalizes
T . Now the normalizer of T in P is contained in L; so p ∈ L. Similarly, the
normalizer of T in θP is contained in θL, so p ∈ θL. Therefore p ∈ Lθ, which we
already know is a connected subgroup of Pθ.
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Part (e) is clear: since θ respects the Levi decomposition in Pθ, an element of
Pθ ∩K must have both its Levi components in K. Q.E.D.

Proof of Proposition 6.17. That p is a well-defined ∨G-equivariant map is clear
from Proposition 5.6 and Definition 6.9. The first problem is to show that p is
surjective. So fix x = (y,Λ) ∈ X(∨GΓ). Obviously

p−1(x) = {φ(y, λ) | λ ∈ Λ, [λ, y · λ] = 0 }. (6.19)(a)

Use the notation of (6.6); then P (Λ) is a parabolic subgroup of ∨G(Λ) (Lemma 6.3),
and the conjugation action of y defines an involutive automorphism θ of ∨G(Λ),
with fixed points K(y). Apply Lemma 6.18 to this situation. We conclude first of
all that P (Λ) contains a θ-stable maximal torus T . The semisimple P (Λ)-conjugacy
class Λ ⊂ p(Λ) must meet the Lie algebra t in some element λ. Then λ and y · λ
both belong to t, so they commute; so φ(y, λ) ∈ p−1(x) by (6.19)(a).

To prove that p is a bijection on the level of orbits, we must show that the
isotropy group

Gx = P (Λ) ∩K(y) (6.19)(b)

(cf. Proposition 6.16) acts transitively on the fiber p−1(x). Now any element of Gx
is fixed by θ, so it must also belong to θP (Λ). Consequently

Gx = Pθ(Λ) ∩K(y) = (Lθ(λ) ∩K(y))(Nθ(Λ) ∩K(y)). (6.19)(c)

So suppose φ(y, λ′) is another point in the fiber. By Lemma 6.3(e),

λ′ = Ad(n)λ (6.20)(a)

for a unique n ∈ N(Λ). By (6.19)(a), we have

[n · λ, θ(n · λ)] = 0. (6.20)(b)

Now the centralizer of λ in ∨g is l(λ) ⊂ p(Λ). It follows that the centralizer of
θ(n · λ) is

θ(n · l(λ)) ⊂ θ(n · p(Λ)) = θp(Λ).

¿From this and (6.20)(b), we deduce that

n · λ ∈ p(Λ) ∩ θp(Λ).

The latter Lie algebra is described in Lemma 6.18. In conjunction with (6.3)(e),
this allows us to conclude (using notation from Lemma 6.18) that

n · λ ∈ (λ+ n(Λ)) ∩ (lθ(λ) + nθ(Λ)) = λ+ (n(Λ) ∩ nθ(Λ)).

Now the isomorphism in Lemma 6.3(e) respects T -stable subgroups of N(Λ); so the
conclusion we draw (using the uniqueness in Lemma 6.3(e)) is

n ∈ N(Λ) ∩Nθ(Λ).

We now rewrite (6.20)(b) by applying θ(n−1) to each term in the bracket. The
conclusion is

[(θ(n−1)n) · λ, θλ] = 0. (6.20)(c)
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Since Nθ(Λ) is preserved by θ, the element m = θ(n−1)n belongs to Nθ(Λ). The
discussion of roots in Lemma 6.18 leads to a factorization

Nθ(Λ) = (N(Λ) ∩ θL(λ))(N(Λ) ∩ θN(Λ))(L(λ) ∩ θN(Λ));

write m = m1m2m3 accordingly. Then m3 fixes λ, and m1 fixes θλ, so (6.20)(c)
leads to

[m2 · λ, θλ] = 0.

But Lemma 6.3(e) tells us that the first term here is of the form λ + X2, with
X2 ∈ n(Λ)∩θn(Λ). Such an element commutes with θλ only ifX2 = 0, which implies
that m2 = e. On the other hand, the definition of m shows that θm = m−1, from
which we conclude that m1 = θ(m−1

3 ). Define n′ = nm−1
3 ; then θ((n′)−1)n′ = e.

Assembling all of this, we find

n′ ∈ Nθ(Λ) ∩K(y), n′ · λ = λ′. (6.20)(d)

Clearly n′ · φ(y, λ) = φ(y, λ′). Since n′ belongs to the unipotent radical of Gx (cf.
(6.19)(c)), this completes the proof of Proposition 6.17. Q.E.D.

Corollary 6.21. Suppose ∨HΓ and ∨GΓ are weak E-groups, and ǫ : ∨HΓ → ∨GΓ

is an L-homomorphism (Definition 5.1). Then there is a natural map

X(ǫ) : X(∨HΓ) → X(∨GΓ)

on geometric parameters, compatible with the maps P (ǫ), Φ(ǫ) of Proposition 5.4
via the maps p of Proposition 6.17. Explicitly,

X(ǫ)(y,Λ) = (ǫ(y), ǫ(Λ)).

(Here ǫ(Λ) denotes the unique canonical flat containing dǫ(Λ).)
Fix a ∨H orbit O ⊂ ∨h of semisimple elements, and define ǫ(O) to be the unique

∨G orbit containing dǫ(O). Then X(ǫ) restricts to a morphism of algebraic varieties

X(O, ǫ) : X(O, ∨HΓ) → X(ǫ(O), ∨GΓ).

If ǫ is injective, then X(O, ǫ) is a closed immersion.

Proof. The first point that is not quite obvious is that the image under dǫ of a
canonical flat Λ is contained in a single canonical flat for ∨g. To see this, fix λ ∈ Λ,
and use the notation of (6.1)–(6.4). Write λ′ = dǫ(λ), Λ′ = F(λ′). Clearly

∨h(λ)n = (dǫ)−1∨g(λ′)n

for every n. From this it follows that

Λ = λ+
∑

n>0

∨h(λ)n ⊂ (dǫ)−1(λ′) +
∑

n>0

(dǫ)−1∨g(λ′)n = (dǫ)−1(Λ′).

It follows that dǫ(Λ) ⊂ Λ′, as we wished to show. Notice also that if dǫ is injective,
this containment becomes an equality:

Λ = (dǫ)−1(Λ′).
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For the last assertion, we first verify that X(ǫ) is injective if ǫ is. So suppose

X(ǫ)(y1,Λ1) = X(ǫ)(y2,Λ2) = (y′,Λ′).

This means first of all that ǫ(yi) = y, and therefore that y1 = y2. Next, the last
observation in the preceding paragraph shows that Λi = (dǫ)−1(Λ′), and therefore
that Λ1 = Λ2. This proves that X(ǫ) is injective. Essentially the same argument
proves that X(O, ǫ) is a closed immersion; we leave the remaining details to the
reader. Q.E.D.

Example 6.22. Suppose G = GL(3,C), endowed with the inner class of real
forms including U(2, 1) and U(3). The based root datum of G (Definition 2.10) is
the quadruple

(Z3, {(1,−1, 0), (0, 1,−1)},Z3, {(1,−1, 0), (0, 1,−1)}),

with the standard pairing between the two copies of Z3. The automorphism t of
Proposition 2.12 associated to the inner class of real forms acts on Z3 by t(a, b, c) =
(−c,−b,−a). As a dual group for G we can choose ∨G = GL(3,C). Define an
automorphism θ of ∨G by

θg = Ad




0 0 1
0 1 0
1 0 0


 (tg−1).

Then θ is an involutive automorphism preserving the standard Cartan and Borel
subgroups dT ⊂ dB; the induced automorphism of the based root datum is t. We
can therefore construct a weak E-group ∨GΓ generated by ∨G and an element ∨δ
of order two, subject to the relations

(∨δ)g(∨δ−1) = θg (g ∈ ∨G).

(If we take as the distinguished set S of Definition 4.14 the conjugacy class of
(∨δ, dB), then ∨GΓ is an L-group for G.)

Consider the elements

λ =




1 0 0
0 1 0
0 0 0


 , y = ∨δ, y · λ =




0 0 0
0 −1 0
0 0 −1


 .

Notice that e(λ) = e = y2, and λ commutes with y · λ; so there is a Langlands
parameter φ = φ(y, λ). Since e(λ) = e, ∨G(λ) = ∨G. The corresponding parabolic
P (λ) is the standard parabolic in GL(3) with Levi subgroup GL(2) ×GL(1), and
the canonical flat is

Λ =








1 0 a
0 1 b
0 0 0


 | a, b ∈ C



 .

Of course x = (y,Λ) is a geometric parameter. The Levi subgroup L(λ, y · λ) is the
diagonal subgroup; its intersection with K(y) (which is a form of O(3)) is

∨Gφ =







z 0 0
0 ±1 0
0 0 z−1


 | z ∈ C×



 .
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The Langlands component group Aφ (Definition 5.11) therefore has order 2. The
group Pθ(Λ) of Lemma 6.18 is just the standard Borel subgroup. The isotropy
group of the geometric parameter x has unipotent radical equal to the θ-invariant
upper triangular unipotent matrices; this group is

K(y) ∩Nθ(Λ) =








1 a −a2/2
0 1 −a
0 0 1


 | a ∈ C



 .

The full stabilizer of x in ∨G is the semidirect product of ∨Gφ with this unipotent
group, namely

∨Gx =







z ±a −z−1a2/2
0 ±1 −z−1a
0 0 z−1


 | a ∈ C, z ∈ C×



 .

To conclude this section, we offer a variant of Proposition 6.16. Although the
version presented first seems to be the most natural one, it has the technical dis-
advantage that the group ∨G(Λ) need not be connected. The only subtlety in the
variant is the definition

K(y)0 = K(y) ∩ ∨G(Λ)0 (6.23)(a)

for y ∈ I(Λ) (cf. (6.10)). In the notation of Lemma 6.12, this is the group of fixed
points of the involution θy on the connected group ∨G(Λ)0. We have

K(y)0 ⊂ K(y)0 ⊂ K(y), (6.23)(b)

and both of these inclusions may be proper.

Proposition 6.24. Suppose ∨GΓ is a weak E-group. Fix an orbit O of ∨G on
the semisimple elements of ∨g, and use the notation of (6.6), (6.10), and (6.23).
Fix a canonical flat Λ ⊂ O, and write P0(Λ) for the ∨G(Λ)0 orbit of Λ in the set
of canonical flats. List the orbits of ∨G(Λ)0 on I(Λ) as I0

1 (Λ), . . . , I0
s (Λ) (nota-

tion (6.10)(f) and Lemma 6.12). For each j, choose a point yj ∈ I0
j (Λ). Then

conjugation by yj defines an involutive automorphism θj of ∨G(Λ)0 with fixed point
set K0

j = K(yj)
0 (cf. (6.23)). ¿From the chosen base points Λ and yj we get

isomorphisms

P0(Λ) ≃ ∨G(Λ)0/P (Λ), I0
j (Λ) ≃ ∨G(Λ)0/K

0
j .

The variety X(O, ∨GΓ) is the disjoint union of s closed connected smooth subvari-
eties Xj(O, ∨GΓ). The jth subvariety looks like

Xj(O,
∨GΓ) ≃ ∨G×∨G(Λ)0 (I0

j (Λ) × P0(Λ))

≃ ∨G×∨G(Λ)0 (∨G(Λ)0/K
0
j ×

∨G(Λ)0/P (Λ))

≃ ∨G×K0
j

(∨G(Λ)0/P (Λ)).

In particular, the orbits of ∨G on Xj(O, ∨GΓ) are in one-to-one correspondence
with the orbits of K0

j on the partial flag variety ∨G(Λ)0/P (Λ). These orbits are
finite in number.
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The proof is identical to that given for Proposition 6.16. (It is helpful to keep in
mind that P (Λ) is connected (Lemma 6.3(d)) and therefore contained in ∨G(Λ)0.)
As with Proposition 6.16, we will eventually want the stronger information about
the orbit correspondence contained in Proposition 7.14(c).

7. Complete geometric parameters and perverse sheaves.

In this section we continue our analysis of the geometric parameter spaces de-
scribed in the preceding section. To begin, we recall some terminology from Def-
inition 1.22 in the introduction. This will be applied first of all in the setting of

Definition 6.9, to the action of ∨Galg on X(O, ∨GΓ).

Definition 7.1. Suppose Y is a complex algebraic variety on which the pro-
algebraic group H acts with finitely many orbits. A geometric parameter for H
acting on Y is a (closed) point of Y . Two such parameters are called equivalent if
they differ by the action ofH . The set of equivalence classes of geometric parameters
— that is, the set of orbits of H on Y — is written Φ(Y,H).

Suppose y ∈ Y ; write Hy for the isotropy group of the action at y. The (local)
equivariant fundamental group at y is

Alocy = Hy/(Hy)0, (7.1)(a)

the (pro-finite) group of connected components of Hy. If y′ is equivalent to y (that
is, if it belongs to the same H orbit) then we can find h ∈ H with h · y = y′.
It follows that conjugation by h carries Hy isomorphically onto Hy′ , so we get an
isomorphism

Alocy ≃ Alocy′ . (7.1)(b)

The coset hHy is uniquely determined, so this isomorphism is unique up to inner
automorphisms.

Suppose S ∈ Φ(Y,H) is an orbit of H on Y . The equivariant fundamental group
of S is the pro-finite group

AlocS = Alocy (y ∈ S). (7.1)(c)

The isomorphisms in (7.1)(b) show that AlocS is well-defined up to inner automor-
phism. This means that we can safely discuss conjugacy classes in AlocS , or equiva-
lence classes of representations, but it is dangerous to speak of particular elements
as well-defined entities.

A (local) complete geometric parameter for H acting on Y is a pair (y, τ) with

y ∈ Y and τ ∈ Âlocy an irreducible representation. Two such parameters (y, τ) and
(y′, τ ′) are called equivalent if there is an element of H carrying y to y′ so that
the induced isomorphism (7.1)(b) carries τ to τ ′. The set of equivalence classes of
(local) complete geometric parameters is written Ξ(Y,H).

A complete geometric parameter for H acting on Y is a pair (S,V), with S ∈
Φ(Y,H) an orbit of H on Y and V an irreducible H-equivariant local system on
S. (By a “local system” we will understand a vector bundle with a flat connection;
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perhaps this is not the most reasonable definition, but we are considering only
smooth varieties and complex coefficients).

Of course the terminology “geometric parameter” for a point is a little ridiculous,
but we include it to maintain consistency with the case of Definition 6.9.

We should make a few remarks about the “pro-algebraic” condition. This means
that H is the limit of an inverse system {Hi | i ∈ I} of algebraic groups indexed by
a directed set I. It is harmless and convenient to assume that all the morphisms

hji : Hi → Hj (i ≥ j) (7.2)(a)

in the inverse system are surjective. (In our examples, the Hi will all be certain
finite coverings of a fixed group H1.) Then the limit morphisms

hj : H → Hj (7.2)(b)

are surjective as well. The identity component of H is by definition the inverse
limit of the identity components of the Hi. To say that H acts on Y means that
for a cofinal set IY ⊂ I, the various {Hi | i ∈ IY } act compatibly on Y ; we may as
well assume (by shrinking I) that they all do (as will be the case in our examples).
Each Hi will have an algebraic isotropy subgroup Hi,y at a point y. These groups
again form an inverse system of algebraic groups, whose limit is what we called Hy.
It is easy to check that Alocy (defined as a quotient of inverse limits) is naturally
isomorphic to the inverse limit of the quotients:

Alocy ≃ lim
←−

Hi,y/(Hi,y)0. (7.2)(c)

Again we have surjective maps

ai : Alocy → Hi,y/(Hi,y)0. (7.2)(d)

By a (finite-dimensional) representation of Alocy we understand a representation
that factors through one of the maps ai (and therefore automatically through all
aj with j ≥ i). For our purposes this can be taken as a definition; but if Alocy is
given the inverse limit topology, then it is a theorem that any continuous irreducible
representation has this property.

Here are some standard and elementary facts.

Lemma 7.3. In the setting of Definition 7.1, suppose y ∈ Y . Write S = H · y
for the orbit of y.

a) If H is algebraic, connected, and simply connected, then the local equivariant
fundamental group Alocy is canonically isomorphic to the topological fundamental
group π1(S; y) of homotopy classes of loops in S based at y.

b) More generally, there is always a natural map

π1(S; y) → Alocy .

This map is surjective whenever H is connected algebraic, and injective whenever
H is simply connected algebraic. In particular, any representation of Alocy gives
rise to a representation of π1(S; y).
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c) Suppose (τ, V ) is a representation of Alocy . Regard τ as a representation of Hy

trivial on the identity component. Then the induced bundle

V = H ×Hy V → S

carries an H-invariant flat connection.
d) Suppose V is an H-equivariant vector bundle on S carrying an H-invariant flat

connection. Write V for the fiber of V at y, and τ for the isotropy action of Hy

on V . Then τ is trivial on (Hy)0, and so factors to a representation of Alocy .
e) The constructions of (c) and (d) establish a natural bijection between the equiva-

lence classes of local complete geometric parameters for H acting on Y , and the
complete geometric parameters.

We will use Lemma 7.3(e) to identify the set Ξ(Y,H) of equivalence classes of local
complete geometric parameters. Thus if ξ ∈ Ξ(Y,H), we will write

ξ = (S,V) = (Sξ,Vξ), (7.4)

and say that a pair (y, τ) in the equivalence class “represents ξ.” The assertions
about fundamental groups are included to explain how H-equivariant local systems
are related to arbitrary local systems.

Proof. We begin by defining the map in (b). Suppose

γ : [0, 1] → S, γ(0) = γ(1) = y

is a loop. Identify S with the quotient H/Hy; then γ can be lifted to a continuous
map

γ̃ : [0, 1] → H, γ̃(0) = e.

The element h = γ̃(1) must map to y, so h ∈ Hy. Any two liftings γ̃ differ by a
continuous map from [0, 1] into Hy starting at e. Such a map must take values in

(Hy)0, so the class of h ∈ Alocy is independent of the lifting. Similarly, a homotopy

of the loop γ does not affect h; so we get the map in (b). To see that the map is
surjective when H is connected algebraic, fix h ∈ Hy. A path connecting e to h

descends to a loop in H/Hy that is the required preimage of h. For the injectivity
when H is simply connected algebraic, suppose γ is a loop at y mapping to the
class of e. This means that the lifting γ̃ satisfies γ̃(1) = h ∈ (Hy)0. Choose a
path connecting h to the identity in (Hy)0; modifying γ̃ by this path gives a new
lifting γ̃′ satisfying γ̃′(1) = e. This new lifting is therefore a loop. Since H is
simply connected, γ̃′ is homotopic to a trivial map. This homotopy descends to a
homotopy from γ to a point in H/Hy. This proves (b), and (a) follows.

We omit the elementary arguments for (c) and (d), but a few remarks on the
definitions in the pro-algebraic case may be helpful. For part (c), recall that τ is
really a representation of some component group Hi,y/(Hi,y)0 (cf. (7.2)). Then the
algebraic vector bundle

V = Hi ×Hi,y V → S

carries an action of Hi, and thus compatible actions of all Hj with j ≥ i. Therefore
it is an “H-equivariant vector bundle.” Conversely, to say that V is H-equivariant
means that it carries an action of some Hi. Consequently the isotropy action on V
factors to Hi,y. Part (e) is immediate from (c) and (d). Q.E.D.
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Lemma 7.5. Suppose ∨GΓ is a weak E-group, φ ∈ P (∨GΓ) is a Langlands
parameter, and x = p(φ) ∈ X(∨GΓ) is a geometric parameter (cf. Proposition
6.17). Then the natural inclusion of isotropy groups

∨Gφ →֒ ∨Gx

induces an isomorphism of component groups

∨Gφ/(
∨Gφ)0 ≃ ∨Gx/(

∨Gx)0.

If we consider isotropy groups in the algebraic universal cover ∨G
alg

(Definition
1.16 and (5.10)), we get

∨G
alg
φ /(∨G

alg
φ )0 ≃ ∨G

alg
x /(∨G

alg
x )0.

Similarly, in the setting (5.13),

∨G
Q
φ /(
∨G

Q
φ )0 ≃ ∨G

Q
x /(
∨G

Q
x )0.

Proof. The inclusion of isotropy groups comes from the equivariance of the map
p. By Proposition 6.17, ∨Gx is the semidirect product of ∨Gφ and a connected
unipotent group Ux. It follows that (∨Gx)0 must be the semidirect product of
(∨Gφ)0 and Ux. The first claim follows. The the second is a special case of the
third, so we consider the third. The identity component (UQx )0 is a covering group
of Ux. Now a unipotent algebraic group is simply connected, so (UQx )0 must map
isomorphically onto Ux, and we identify them henceforth. It follows easily that
∨G

Q
x must be the semidirect product of ∨G

Q
φ and Ux. Now we can argue as for the

first claim to get the isomorphism of component groups. Q.E.D.

Definition 7.6. Suppose ∨GΓ is a weak E-group, and X(∨GΓ) is the corre-
sponding set of geometric parameters (Definition 6.9). In order to place ourselves
precisely in the setting of Definition 7.1, we can implicitly restrict attention to a
single variety X(O, ∨GΓ) (see Proposition 6.16). For x ∈ X(∨GΓ), we consider the

(local) equivariant fundamental groups for the actions of ∨G and ∨G
alg

,

Alocx = ∨Gx/(
∨Gx)0, Aloc,algx = ∨G

alg
x /(∨G

alg
x )0.

By Lemma 7.5, there are natural isomorphisms

Alocx ≃ Alocφ , Aloc,algx ≃ Aloc,algφ

for any Langlands parameter φ ∈ p−1(x) (cf. Definition 5.11). We therefore refer to
these groups as the Langlands component group for x and the universal component
group for x. If S is an orbit on X(∨GΓ), we write following Definition 7.1

AlocS = Alocx , Aloc,algS = Aloc,algx (x ∈ S);

again these groups are defined up to inner automorphism.
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A (local) complete geometric parameter for ∨GΓ is a pair (x, τ) with x ∈ X(∨GΓ)

and τ ∈ \
Aloc,algx an irreducible representation. Two such parameters are called

equivalent if they are conjugate by ∨G
alg

. Lemma 7.5 provides a natural map from
complete Langlands parameters for ∨GΓ onto (local) complete geometric parame-
ters, inducing a bijection on equivalence classes. We may therefore write Ξ(∨GΓ)
for the set of equivalence classes (cf. Definition 5.11).

As in (7.4), we identify Ξ(∨GΓ) with the set of pairs (S,V), with S an orbit on

X(∨GΓ) and V an irreducible ∨G
alg

-equivariant local system on S; we call such a
pair a complete geometric parameter for X(∨GΓ). If ξ ∈ Ξ(∨GΓ), we write

ξ = (Sξ,Vξ)

as in (7.4). A (local) complete geometric parameter (x, τ) in the corresponding
equivalence class will sometimes be called a representative of ξ.

All of this discussion can be extended to the setting (5.13). We write

Aloc,Qx = ∨G
Q
x /(
∨G

Q
x )0,

the Q-component group for x. The set of complete geometric parameters for ∨GQ

acting on X(∨GΓ) is written Ξ(∨GΓ)Q; we call these complete geometric parameters
of type Q.

We return now to the general context of Definition 7.1, and expand on the
discussion in Definition 1.22.

Definition 7.7. Suppose Y is a smooth complex algebraic variety on which the
pro-algebraic group H acts with finitely many orbits. Write DY for the sheaf of
algebraic differential operators on Y ([BorelD], VI.1). Define

C(Y,H) = category of H-equivariant constructible sheaves of complex vector spaces on Y .

A definition of constructible sheaves may be found in [BorelIC], V.3.
Next, set

P(Y,H) = category of H-equivariant perverse sheaves of complex vector spaces on Y .

The definition of perverse sheaves is discussed in [BBD] (see especially the intro-
duction.) Again it is most convenient to take the analytic topology on Y , but the
equivariance condition implies that one can work algebraically. (See [BBD], section
6. The main point is that all the local systems involved, which are described by
Lemma 7.3, arise from representations of π1 factoring through finite quotients.)
This will be crucial for our eventual application of the results of [LV].

Finally, we will consider

D(Y,H) = category of H-equivariant regular holonomic sheaves of DY -modules on Y .

In this case it is most convenient to work in the Zariski topology; then [BorelD] is
a convenient reference. For an (algebraic) definition of regular holonomic, we refer
to [BorelD], section VII.11. (By [BorelD], Theorem VII.12.11, any H-equivariant
coherent sheaf of DY -modules on Y is automatically regular holonomic.)
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Each of these three categories is abelian, and every object has finite length. The
corresponding Grothendieck groups are written

KC(Y,H), KP(Y,H), KD(Y,H).

Each is a free abelian group with a basis corresponding to the (finite) set of irre-
ducible objects in the corresponding category.

The next two results recall the the most important relationships among these
three categories. The first is essentially obvious from the definitions. (It is the
definitions that are deep.)

Lemma 7.8 ([BBD].) In the setting of Definition 7.7, suppose P is an H-
equivariant perverse sheaf on Y . Then the cohomology sheaves HiP are H-equivariant
constructible sheaves on Y . A short exact sequence of perverse sheaves gives rise
to a long exact sequence of cohomology sheaves, so there is an additive map

χ : ObP(Y,H) → KC(Y,H), χ(P ) =
∑

(−1)iHiP.

The map χ induces an isomorphism

χ : KP(Y,H) → KC(Y,H)

of Grothendieck groups.

Theorem 7.9 (the Riemann-Hilbert correspondence — see [BorelD], Theorem
VIII.14.4). In the setting of Definition 7.7, there is an equivalence of categories
(the “de Rham functor”)

DR : D(Y,H) → P(Y,H).

This induces an isomorphism

DR : KD(Y,H) → KP(Y,H)

of Grothendieck groups.

We will use the isomorphisms of Lemma 7.8 and Theorem 7.9 to identify the
three Grothendieck groups, writing simply

K(Y,H) ≃ KC(Y,H) ≃ KP(Y,H) ≃ KD(Y,H) (7.10)(a)

We will also need notation for the irreducible objects in the three categories. These
irreducible objects are in each case parametrized by the set Ξ(Y,H) of complete
geometric parameters (Definition 7.1). Fix ξ = (S,V) ∈ Ξ. We need a little notation
from [BBD], section 1.4. Write

j = jS : S → S, i = iS : S → Y (7.10)(b)

for the inclusion of S in its closure, and the inclusion of the closure in Y . Write
d = d(S) = d(ξ) for the dimension of S. Regard the local system V as a constructible
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sheaf on S. Applying to this first the functor j! of extension by zero, and then the
direct image i∗, we get a complex

µ(ξ) = i∗j!V ∈ Ob C(Y,H), (7.10)(c)

the extension of ξ by zero. Its irreducibility, and the fact that every irreducible
has this form, are consequences of the adjunction formulas relating i∗ and j! with
the restriction functors i∗ and j∗ ([BBD], 1.4.1). Next, consider the complex V [−d]
consisting of the single sheaf V in degree −d. This is anH-equivariant perverse sheaf
on S. Applying to it the “intermediate extension functor” j!∗ ([BBD], Definition
1.4.22) followed by the direct image i∗, we get a perverse sheaf on Y :

P (ξ) = i∗j!∗V [−d] ∈ ObP(Y,H), (7.10)(d)

the perverse extension of ξ. Its irreducibility, and the fact that every irreducible
has this form, are consequences of Théorème 4.3.1 of [BBD]. Finally, we define

D(ξ) = DR−1(P (ξ)) ∈ ObD(Y,H). (7.10)(e)

It is a consequence of Theorem 7.9 that every irreducible H-equivariant DY -module
on Y is of this form. (Of course one can define D(ξ) somewhat more directly as
a DY -module. The starting point is the sheaf M of germs of sections of V on
S. Since V has an H-equivariant flat connection, M has the structure of a an
H-equivariant DS-module ([BorelD], section VI.1.6). One now applies the (subtle)
notion of direct image for D-modules to get a DY -module. The first complication is
that the inclusion j need not be affine, so there are higher direct images to consider.
The second is that (even if j is affine) the direct image will not be irreducible; one
has to pass to an appropriate subquotient. None of this is particularly difficult,
given the machinery of [BorelD], but it is easier simply to quote Theorem 7.9.)

The sets {µ(ξ) | ξ ∈ Ξ}, {P (ξ) | ξ ∈ Ξ}, and {D(ξ) | ξ ∈ Ξ} are all bases of the
Grothendieck group K(Y,H). By Theorem 7.9 and the definitions of (7.10), the
last two bases are exactly the same. However, the first two are not identified by
the isomorphism of Lemma 7.8. As in Definition 1.22, we can write in K(Y,H)

µ(ξ) = (−1)d(ξ)
∑

γ∈Ξ(Y,H)

mg(γ, ξ)P (γ) (7.11)(a)

with mg(γ, ξ) an integer. The matrix mg is called the geometric multiplicity matrix.
It follows easily from the definitions that

mg(ξ, ξ) = 1, mg(γ, ξ) 6= 0 only if Sγ ⊂
(
Sξ − Sξ

)
(γ 6= ξ). (7.11)(b)

It is also useful to consider the inverse matrix cg = m−1
g , the geometric character

matrix. By its definition, cg satisfies

P (γ) =
∑

ξ∈Ξ(Y,H)

(−1)d(ξ)cg(ξ, γ)µ(ξ). (7.11)(c)

Because of the form of the isomorphism in Lemma 7.8, we have

cg(ξ, γ) = (−1)d(ξ)
∑

i

(−1)i(multiplicity of Vξ in HiP (γ)|Sξ). (7.11)(d)
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This says that the entries of cg are essentially local Euler characteristics for inter-
section cohomology. As a consequence of (7.11)(d) (or of (7.11)(b)),

cg(γ, γ) = 1, cg(ξ, γ) 6= 0 only if Sξ ⊂
(
Sγ − Sγ

)
(ξ 6= γ). (7.11)(e)

Because of (7.11)(b), we can define the Bruhat order on Ξ(Y,H) as the smallest
partial order with the property that

mg(γ, ξ) 6= 0 only if γ ≤ ξ. (7.11)(f)

This refines the partial preorder induced by the closure relation on the underlying
orbits. Because the inverse of an upper triangular matrix is upper triangular, we
get the same order using cg in place of mg.

To understand why we call mg a multiplicity matrix, suppose for a moment
that the orbit Sξ is affinely embedded in its closure. (For Y = X(O, ∨GΓ) as in
Definition 6.9, this turns out to be automatic if the orbit O consists of regular
elements.) Regarded as an element of the derived category concentrated in degree
−d, the constructible sheaf µ(ξ)[−d] is then perverse ([BBD], Corollary 4.1.3), and
the map of Lemma 7.8 is

χ(µ(ξ)[−d]) = (−1)dµ(ξ).

On the other hand, as a perverse sheaf µ(ξ)[−d] must have a finite composition
series. The integer mg(γ, ξ) is just the multiplicity of the irreducible perverse sheaf
P (γ) in this composition series. In particular, it is non-negative. One can give a
parallel discussion in terms of D-modules.

We will be forced occasionally to refer to certain derived categories (which are of
course central to the basic theory developed in [BBD] and [BorelIC]). In general an
object in one of these derived categories will be a complex S• of sheaves on Y ; we will
write Hi(S•) for the ith cohomology sheaf. The notion of H-equivariance in such
categories is quite subtle, and we will simply not consider it (although a complete
treatment of some of the “obvious” assertions we make requires confronting this
issue). Write

Db(C(Y )) (7.12)(a)

for the bounded derived category of sheaves of complex vector spaces on Y (analytic
topology) having cohomology sheaves constructible with respect to an algebraic
stratification of Y (cf. [BBD], section 2.2, and [BorelIC], section 6.3). Perverse
sheaves on Y live in this derived category. Finally, write

Db
rh(D(Y )) (7.12)(b)

for the bounded derived category of sheaves of quasicoherent DY -modules having
regular holonomic cohomology sheaves (cf. [BorelD], Corollary VII.12.8).

Definition 7.13. Suppose ∨GΓ is a weak E-group, and X(∨GΓ) is the corre-
sponding set of geometric parameters (Definition 6.9). Define

C(X(∨GΓ), ∨G
alg

)
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to be the direct sum over semisimple orbitsO ⊂ ∨g of the categories C(X(O, ∨GΓ), ∨G
alg

)

of Definition 7.7. We call the objects of this category ∨G
alg

-equivariant constructible
sheaves on X(∨GΓ). Similarly we define

P(X(∨GΓ), ∨G
alg

), D(X(∨GΓ), ∨G
alg

),

the ∨G
alg

-equivariant perverse sheaves and the ∨G
alg

-equivariant coherent D-modules
onX(∨GΓ). These are still abelian categories in which every object has finite length,
and we have analogues of Lemma 7.8 and Theorem 7.9. In particular, we can write
KX(∨GΓ) for the common Grothendieck group of the three categories. The irre-
ducible objects in each category are parametrized by the set Ξ(∨GΓ) of complete
geometric parameters (Definition 7.6); we write µ(ξ), P (ξ), and D(ξ) as in (7.10).
We get matrices mg and cg satisfying (7.11), the geometric multiplicity matrix and
the geometric character matrix for ∨GΓ.

In the setting (5.13), we introduce a superscript Q in this notation. Thus for ex-

ample KX(∨GΓ)Q is the Grothendieck group of ∨G
Q

-equivariant perverse sheaves
(or constructible sheaves, or coherent D-modules) on X(∨GΓ).

We want to use structure theorems like Proposition 6.16 to study the geometric
multiplicity matrix. To do that, we must first understand the behavior of the
categories of Definition 7.7 under some simple constructions.

Proposition 7.14. Suppose Y is a smooth complex algebraic variety on which
the pro-algebraic group H acts with finitely many orbits. Suppose G is a pro-
algebraic group containing H. Consider the induced bundle

X = G×H Y.

a) The inclusion

i : Y → X, i(y) = equivalence class of (e, y)

induces a bijection

Φ(Y,H) → Φ(X,G), S 7→ G · i(S)

from H-orbits on Y to G-orbits on X.
b) If y ∈ Y , then the isotropy group of the G action on X at i(y) is Hy. In

particular, the local equivariant fundamental groups satisfy

Alocy = Aloci(y)

(notation as in Definition 7.1). Consequently there is an isomorphism

AlocS ≃ AlocΦ(i)(S),

canonically defined up to inner automorphisms.
c) The maps of (a) and (b) combine to give a natural bijection

i : Ξ(Y,H) → Ξ(X,G).
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In the language of (7.4), the H-equivariant local system V on S corresponds to

i(V) = G×H V

on G · i(S).
d) There are natural equivalences of categories

C(Y,H) ≃ C(X,G), P(Y,H) ≃ P(X,G), D(Y,H) ≃ D(X,G).

These equivalences are compatible with the parametrizations of irreducibles by
Ξ(Y,H) ≃ Ξ(X,H) ((7.10) and (c) above) and with the isomorphisms of Grothen-
dieck groups coming from Lemma 7.8 and Theorem 7.9.

e) The geometric multiplicity and character matrices of (7.11) for (Y,H) and (X,G)
coincide (under the bijection of (c) above for the index sets).

Proof. Parts (a), (b), and (c) are formal; in fact similar ideas appeared already
in Lemma 6.15. The equivalences of categories are in some sense “obvious” once
the categories are understood, and we will just offer some hints. We discuss only
the perverse case; the constructible case is similar but more elementary, and the D-
module case is handled by Theorem 7.9. It is helpful to introduce the intermediate
space

Z = G× Y,

on which the group G×H acts by

(g, h) · (g′, y) = (gg′h−1, h · y).

It is easy to see that Ξ(Z,G×H) is in one-to-one correspondence with Ξ(Y,H). The
groups G and H each act freely on Z (although the product need not). Dividing
by the G action gives a smooth quotient morphism

fG : Z → Y

(projection on the second factor) that respects the action of H . Dividing by the H
action gives a smooth quotient morphism

fH : Z → X

(the definition of the induced bundle) that respects the action of G. We can there-
fore apply Proposition 4.2.5 of [BBD] to conclude that f∗G[dimG] (respectively
f∗H [dimH ]) is a fully faithful exact functor from P(Y,H) (respectively P(X,G))
into P(Z,G×H). That the irreducible objects behave properly under these func-
tors is contained in the discussion at the bottom of page 110 in [BBD]. We leave
the rest of the argument to the reader. Part (e) is a formal consequence of (d).
Q.E.D.

Proposition 7.15. Suppose X and Y are smooth algebraic varieties on which
the pro-algebraic group H acts with finitely many orbits, and

f : X → Y



67

is a surjective smooth equivariant morphism having connected geometric fibers of
dimension d.

a) There is a natural inclusion

f∗ : Ξ(Y,H) →֒ Ξ(X,H)

from complete geometric parameters for H acting on Y to complete geometric
parameters for H acting on X.

b) The functor f∗[d] is a fully faithful exact functor from P(Y,H) into P(X,H),
carrying the irreducible P (ξ) to P (f∗ξ) (notation (7.10)(d)).

c) The inclusion of (a) respects the geometric character matrix of (7.11):

cg(f
∗ξ, f∗γ) = cg(ξ, γ) (ξ, γ ∈ Ξ(Y,H).

Proof. We begin by describing the map f∗ on geometric parameters. If S is an
orbit of H on Y , of dimension d(S), then f−1S is a smooth H-invariant subset of
X , of dimension d(S) + d. Since H has only finitely many orbits on X , there is an
open orbit f∗S of H on f−1S. Since f has connected fibers, f∗S is unique, and is
dense in f−1S. This defines an injection on the sets of orbits

f∗ : Φ(Y,H) → Φ(X,H). (7.16)(a)

The image of f∗ consists of orbits S′ ⊂ X satisfying any of the three equivalent
properties

S′ is open in f−1(f(S′)), dim f(S′) = dimS′−d, dimHf(x) = dimHx+d (x ∈ S′).
(7.16)(b)

Suppose S′ satisfies these conditions. A typical fiber of the map S′ → f(S′) is
dense in the corresponding fiber of f , and is therefore connected. Consequently

Hf(x)/Hx is connected (x ∈ S′ ∈ f∗(Φ(Y,H)). (7.16)(c)

For the natural map on component groups, it follows that

Alocx → Alocf(x) is surjective (x ∈ S′ ∈ f∗(Φ(Y,H)). (7.16)(d)

Consequently every irreducible representation of Alocf(x) defines by composition an

irreducible representation of Alocx . This construction clearly provides the inclusion
of (a) on the level of equivalence classes of local complete geometric parameters.
The image of f∗ consists of equivalence classes of pairs (x, τ) for which x and its
orbit S′ satisfy (7.16)(b), and the representation τ is trivial on the kernel of the
map (7.16)(d). On the level of local systems, the map f∗ sends (S,V) to (S′,V ′),
with

S′ open in f−1S,V ′ = (f∗V) |S′ . (7.16)(e)

For the rest of the argument, we refer to [BBD], Proposition 4.2.5. Q.E.D.
It is not true that the inclusion f∗ respects the geometric multiplicity matrix in

general. The matrix cg for Y can be regarded as an upper left corner block of cg
for X , but such a relationship between two matrices is not preserved by inverting
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them. (One might hope for help from the fact, implicit in (7.11)(e), that cg is
upper triangular. Unfortunately, the ordering of the basis needed to get upper
triangular matrices is incompatible with the ordering needed to make the matrix
for Y a corner of the one for X .)

We conclude this section with a more general (and correspondingly weaker) func-
torial relationship between different geometric parameters. We begin with two pairs
(X,G) and (Y,H) as in Definition 7.7. That is, X and Y are smooth algebraic va-
rieties, on which the pro-algebraic groups G and H act with finitely many orbits.
We suppose given in addition a morphism

ǫ : (Y,H) → (X,G). (7.17)(a)

This means that ǫ : Y → X is a morphism of varieties, ǫ : H → G is a morphism of
pro-algebraic groups, and

ǫ(h) · ǫ(y) = ǫ(h · y) (h ∈ H, y ∈ Y ). (7.17)(b)

It follows immediately that ǫ induces a map from the set of orbits of H on Y to
the set of orbits of G on X :

Φ(ǫ) : Φ(Y,H) → Φ(X,G), Φ(ǫ)(H · y) = G · ǫ(y) (7.17)(c)

(cf. Definition 7.1). Evidently ǫ carries the isotropy group Hy into Gǫ(y), so we get
a homomorphism on the level of equivariant fundamental groups

Aloc(ǫ) : Alocy → Alocǫ(y) (7.17)(d)

(Definition 7.1).

Proposition 7.18. In the setting of (7.17), there is an exact functor

ǫ∗ : C(X,G) → C(Y,H).

The stalk (ǫ∗C)y at a point y ∈ Y is naturally identified with Cǫ(y). In particular,

the representation of Alocy on this stalk is obtained from the representation of Alocǫ(y)
on Cǫ(y) by composition with the homomorphism Aloc(ǫ) of (7.17)(d).

The functor ǫ∗ induces a homomorphism of Grothendieck groups

ǫ∗ : K(X,G) → K(Y,H)

(notation (7.10)(a)).

This is obvious: the functor ǫ∗ is just the usual inverse image for constructible
sheaves. This functor behaves very well on the derived category Db(C(X)), but not
on the abelian subcategory of perverse sheaves. If P is a G-equivariant perverse
sheaf on X , then ǫ∗P will be only an H-equivariant constructible complex on Y ; its
ordinary cohomology sheaves and its perverse cohomology sheaves will both live in
several different degrees. Proposition 7.18 computes the homomorphism ǫ∗ in the
basis of irreducible constructible sheaves. We will make this explicit in Proposition
23.7.
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Here is an example. Suppose we are in the setting of (5.14). That is, we have

an L-homomorphism ǫ : ∨HΓ → ∨GΓ, and compatible pro-finite extensions ∨HQH

and ∨GQ. The maps X(ǫ) of Corollary 6.21 and ǫ• of (5.14)(c) give

ǫ = (X(ǫ), ǫ•) : (X(∨HΓ), ∨H
QH )) → (X(∨GΓ), ∨G

Q
) (7.19)(a)

as in (7.17). In particular, we have the correspondence of orbits

Φ(ǫ) : Φ(∨HΓ) → Φ(∨GΓ) (7.19)(b)

and the homomorphisms of equivariant fundamental groups

Aloc(ǫ) : Aloc,QHy → Aloc,Qǫ(y) (7.19)(c)

given by (7.17). These are clearly identified (via Proposition 6.17 and Lemma 7.5)
with the ones constructed in Proposition 5.4 and (5.14)(d). Finally, we have from
Proposition 7.18 a natural homomorphism

ǫ∗ : KX(∨GΓ)Q → KX(∨HΓ)QH . (7.19)(d)

We will see in section 26 that this last homomorphism provides the formal part of
the “Langlands functoriality” associated to the L-homomorphism ǫ.

8. Perverse sheaves on the geometric parameter space.

In this section we begin to study in detail the categories of Definition 7.13.
Specifically, we want to be able to compute the geometric multiplicity and character
matrices of (7.11). After the formalities of Propositions 7.14 and 7.15, our main
tools will be the results of [BB], [BorBIII], and [LV]. We begin by recalling the first
of these.

Suppose Y is a smooth complex algebraic variety. Recall from Definition 7.7 the
sheaf DY of algebraic differential operators on Y . We write

DY = ΓDY (8.1)(a)

for the algebra of global sections of DY , the algebra of global differential operators
on Y . If G is an algebraic group acting on Y , then every element of the Lie algebra
of G defines a global vector field on Y ; that is, a first order differential operator
(without constant term). This mapping extends to an algebra homomorphism

ψY : U(g) → DY (8.1)(b)

called the operator representation of U(g) (see for example [BorBI], section 3.1).
The kernel of ψY is a two-sided ideal

IY = kerψY ⊂ U(g). (8.1)(c)
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If M is any sheaf of DY -modules, then the vector space M = ΓM is in a natural
way a DY -module, and therefore (via ψY ) a module for U(g)/IY . The functor
sending M to the U(g)/IY -module M is called the global sections functor. In the
other direction, if M is any module for U(g)/IY , then we may form the tensor
product

M = DY ⊗ψY (U(g)/IY ) M. (8.1)(d)

This is a sheaf of DY -modules on Y . The functor sending M to M is called
localization. For formal reasons, there is an adjoint relationship

HomDY (DY ⊗M,N ) ≃ HomU(g)/IY (M,ΓN ). (8.1)(e)

We need to recall a little algebraic representation theory at this point.

Definition 8.2. A compatible pair (g, H) consists of a Lie algebra g and a
pro-algebraic group H , endowed with an algebraic action

Ad : H → Aut(g),

and an injective Lie algebra homomorphism

i : h → g

compatible with the differential of Ad. A compatible (g, H)-module is a g-module
M endowed with an algebraic representation π of H , satisfying the compatibility
conditions

π(h)(X ·m) = (Ad(h)(X)) · π(h) ·m

and
dπ(Z) ·m = i(Z) ·m

for h ∈ H , X ∈ g, m ∈ M , and Z ∈ h. We allow M to be infinite-dimensional;
to say that the representation of H is algebraic means that each vector belongs
to a finite-dimensional H-invariant subspace on which H acts algebraically in the
obvious sense. Fix an ideal I ⊂ U(g). The category of finite length compatible
(g, H)-modules annihilated by I is denoted

F(g, H, I).

This idea is essentially due to Harish-Chandra; the definition was formalized by
Lepowsky.

Theorem 8.3 (Beilinson-Bernstein localization theorem — see [BB], [BorBI],
Theorem 3.8, and [BorBIII], Theorem 1.9). Suppose G is a complex connected
algebraic group, and Y is a complete homogeneous space for G.

a) The operator representation ψY : U(g) → DY of (8.1)(b) is surjective.
b) The global section and localization functors provide an equivalence of categories

between quasicoherent sheaves of DY -modules on Y and modules for U(g)/IY .
c) Suppose (g, H) is a compatible pair (Definition 8.2), and that H acts (compatibly)

with finitely many orbits on Y . Then the functors in (b) provide an equivalence
of categories between D(Y,H) (Definition 7.7) and F(g, H, IY ) (Definition 8.2).
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To understand this result, one should keep in mind that the complete homo-
geneous spaces for an algebraic group G are precisely the quotients G/P , with P
a parabolic subgroup. The unipotent radical of G must act trivially on such a
homogeneous space, so there is essentially no loss of generality in assuming G to
be reductive. In part (b), what is being established is an analogue of the rela-
tionship between modules and quasicoherent sheaves on affine algebraic varieties
([Hartshorne], Corollary II.5.5). The case of projective space (with G equal to
GL(n)) is treated in [BorelD], VII.9. Once (b) is proved, part (c) is nearly formal;
the only point is to show that an H-equivariant coherent DY -module is automati-
cally regular holonomic ([BorelD], Theorem VII.12.11).

For the rest of this section, we will fix

∨GΓ, O ⊂ ∨g (8.4)(a)

a weak E-group and a semisimple orbit in its Lie algebra. Fix a canonical flat
Λ ⊂ O, and define

e(Λ) ∈ ∨G, P (Λ) ⊂ ∨G(Λ) (8.4)(b)

as in (6.6). Recall (Lemma 6.3) that P (Λ) is a connected parabolic subgroup of the
reductive group ∨G(Λ). As in Proposition 6.24, write

P0(Λ) = ∨G(Λ)0 · Λ ⊂ O (8.4)(c)

for the indicated orbit of Λ in the variety of all canonical flats in O. Proposition
6.5 identifies P0(Λ) naturally with the variety of conjugates of P (Λ) in ∨G(Λ)0 (by
sending each flat in P0(Λ) to its stabilizer). In particular,

P0(Λ) ≃ ∨G(Λ)0/P (Λ). (8.4)(d)

This space is a complete homogeneous space for ∨G(Λ)0, and we will apply Theorem
8.3 to it. Recall the orbit decomposition

I(Λ) = I0
1 (Λ) ∪ . . . ∪ I0

s (Λ) (8.4)(e)

of Proposition 6.24, and choose a representative yj ∈ I0
j (Λ) for each orbit. Define

K0
j as in Proposition 6.24, so that

I0
j (Λ) ≃ ∨G(Λ)0/K

0
j . (8.4)(f)

Recall from (5.10) that we write K0,alg
j for the preimage of K0

j in ∨G
alg

Theorem 8.5. Suppose ∨GΓ is a weak E-group and O ⊂ ∨g a semisimple

orbit in its Lie algebra. Use the notation of (8.4). Then the category of ∨G
alg

-

equivariant perverse sheaves on X(O, ∨Galg) (Definitions 6.9, 7.7, and 7.13) is

equivalent to the direct sum of the categories F(∨g(Λ),K0,alg
j , IP0(Λ)) (Definition

8.2) of compatible modules of finite length annihilated by the kernel IP0(Λ) of the

operator representation on P0(Λ) (see (8.1)).

This is an immediate consequence of Proposition 6.24, Proposition 7.14, Theorem
7.9, and Theorem 8.3.
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Next, we want to reduce (that is, to reduce the calculation of the geometric
multiplicity and character matrices) to the case of regular Λ. For that we need a
kind of “translation functor” for these categories.

Definition 8.6. In the setting of (8.5), suppose O′ is another orbit of semisimple
elements. A translation datum from O to O′ is a ∨G-conjugacy class T of pairs
(Λ1,Λ

′
1), subject to the following conditions.

(a) Λ1 ⊂ O and Λ′1 ⊂ O′ are canonical flats.
(b) P (Λ′1) ⊂ P (Λ1), and e(Λ1) = e(Λ′1).

There are several other ways of specifying the same data. If we fix a canonical
flat Λ ⊂ O, then it is equivalent to specify a single canonical flat Λ′ ⊂ O′, subject
to the conditions

(c) P (Λ′) ⊂ P (Λ), and e(Λ) = e(Λ′).

(Necessarily Λ′ will be contained in p(Λ).) In this case two canonical flats define
the same translation datum if and only if they are conjugate by P (Λ).

If we fix a point λ ∈ O, then it is equivalent to specify another point λ′ ∈ O′,
subject to

(d) P (λ′) ⊂ P (λ), L(λ′) ⊂ L(λ), and e(λ) = e(λ′).

(Necessarily λ′ will belong to l(λ).) In this case two points λ′1, λ
′
2 define the same

translation family if and only if they are conjugate by L(λ).
Finally, we could fix a pair (λ, T ), with T a maximal torus and λ ∈ O ∩ t. Then

the translation datum is determined by the choice of another point λ′ ∈ O′ ∩ t,
subject to

(e) For every root α of T in ∨G,

α(λ) ∈ N − {0} ⇒ α(λ′) ∈ N − {0},

and

λ− λ′ ∈ X∗(T ).

(Of course the lattice on the right here is the kernel of the normalized exponential
mapping e on t.) Two such points λ′1, λ

′
2 determine the same translation datum if

and only if they are conjugate by the Weyl group of T in L(λ).)

Lemma 8.7. Suppose ∨GΓ is a weak E-group and O ⊂ ∨g a semisimple orbit in
its Lie algebra. Then there is a regular semisimple orbit O′ ⊂ ∨g and a translation
datum T from O to O′ (Definition 8.6)

Proof. We can use the last description (e) of translation data in Definition 8.6.
With that notation, choose a set R+ of positive roots for T in ∨G containing the
roots of T in N(λ) (notation (6.1) and (6.2)). Let µ be any element of X∗(T ) on
which the positive roots take strictly positive values; for example, the sum of the
positive coroots. Then λ′ = λ + µ is a regular semisimple element satisfying the
conditions of Definition 8.6(e), so the corresponding conjugacy class

T = ∨G · (F(λ),F(λ′))

is the translation datum we need. Q.E.D.
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Proposition 8.8. Suppose ∨GΓ is a weak E-group, O, O′ are semisimple orbits
in its Lie algebra, and T is a translation datum from O to O′.

a) The set T is the graph of a ∨G-equivariant smooth proper morphism

fT : F(O′) → F(O)

(notation (6.10)).
b) The morphism in (a) induces an equivariant smooth proper morphism

fT : X(O′, ∨GΓ) → X(O, ∨GΓ).

Consequently (Proposition 7.15) the category of ∨G
alg

-equivariant perverse sheaves

on X(O, ∨GΓ) is equivalent to a full subcategory of ∨G
alg

-equivariant perverse
sheaves on X(O′, ∨GΓ). This inclusion respects the geometric character matrix.

Fix a pair (Λ,Λ′) ∈ T .

c) The objects of (8.4) for Λ and Λ′ are related by

e(Λ) = e(Λ′), ∨G(Λ)0 = ∨G(Λ′)0, I(Λ) = I(Λ′).

The morphism of (a) restricts to a smooth ∨G(Λ)0-equivariant proper morphism

fT : P0(Λ′) → P0(Λ).

d) The kernel IP0(Λ) of the operator representation of U(∨g(Λ)) contains the kernel

IP0(Λ′). Consequently (for any y ∈ I(Λ)) the category F(∨g(Λ),K0,alg(y), IP0(Λ))

(Definition 8.2) is a full subcategory of F(∨g(Λ′),K0,alg(y), IP0(Λ′)).
e) The inclusions of categories in (b) and (d) correspond under the equivalences of

Theorem 8.5.

Proof. Part (a) is a consequence of Definition 8.6(b) and (6.10)(b). (That the
morphism is projective follows from the fact that P (Λ′) is parabolic in ∨G(Λ)
(Lemma 6.3), and therefore also in P (Λ) ⊂ ∨G(Λ).) The second condition in
Definition 8.6(b) implies that C(O) = C(O′) (notation 6.10(c)). Now (b) follows
from the description of the spaces as fiber products in Proposition 6.16. Part (c) is
immediate from the definitions; the last statement is just (a) applied to the group
∨G(Λ)0. Part (d) is just the obvious statement that the kernel of the operator
representation on a homogeneous space grows as the isotropy group grows. (It
is instructive to find a description of the kernel in terms of the isotropy subgroup.
Halfway through this exercise you will no longer believe that the preceding assertion
is obvious, but in the end you will see that it is after all.) Notice that the inclusion
of categories in (d) is really that: an object of the smaller category is by definition
an object of the larger one as well. Part (e) is an immediate consequence of the
dense thicket of definitions from [BBD] and [BorelD] that it conceals; we will not
attempt even to sketch an argument. Q.E.D.

Lemma 8.7 and Proposition 8.8 reduce the calculation of the geometric character
matrix — and therefore also its inverse, the multiplicity matrix — to the case of a
regular orbit. We recall now very briefly how that case is treated in [LV]. Suppose
we are in the setting (8.4). Write Ξ(O, ∨GΓ) for the corresponding set of complete
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geometric parameters (Definition 7.6). By Propositions 6.24 and 7.14, there is a
natural one-to-one correspondence

Ξ(O, ∨GΓ) =
∐

j

Ξ(P0(Λ),K0,alg
j ). (8.9)(a)

This decomposition respects the geometric multiplicity and character matrices.
(In particular, if ξ and ξ′ correspond to different values of j on the right, then
mg(ξ, ξ

′) = cg(ξ, ξ
′) = 0.)

Suppose now that O is regular. Then the groups L(λ) of Lemma 6.3 are all
maximal tori, so P (Λ) is a Borel subgroup of ∨G(Λ)0, and the variety P0(Λ) may
be identified with the variety B of Borel subgroups of ∨G(Λ)0. The parameter set
corresponding to j on the right in (8.9)(a) is now

Dj = Ξ(B,K0,alg
j ). (8.9)(b)

This is almost precisely the setting of Definition 1.1 in [LV]. (The only difference,

aside from a harmless change of ground field, is that our group K0,alg
j is a covering

of the fixed point group of an involution, rather than the fixed point group itself.
The arguments of [LV] carry over to this setting unchanged.) For every pair (ξ, ξ′)
of elements of Dj , Theorem 1.11 of [LV] provides a polynomial

Pg(ξ, ξ
′) ∈ Z[u], (8.9)(c)

the Kazhdan-Lusztig polynomial. The algorithm of [LV] for computing this poly-
nomial involves an action of the Hecke algebra associated to the Weyl group of
∨G(Λ)0 on the free Z[u, u−1]-module with basis Dj . Theorem 1.12 of [LV] asserts
that these polynomials compute the geometric character matrix:

cg(ξ, ξ
′) = (−1)d(ξ)−d(ξ

′)Pg(ξ, ξ
′)(1). (8.9)(d)

To be a little more precise: (7.11)(d) says that cg(ξ, ξ
′) is an Euler characteristic.

The theorem in [LV] says that the cohomology groups in the Euler characteristic
vanish in every other degree, and that the dimensions of the remaining ones are
given by the coefficients of Pg(ξ, ξ

′). We will recall some additional details in section
16, in connection with the proof of Theorem 1.24.

9. The Langlands classification for tori.

In this section we establish Theorem 1.18 (the bijection between irreducible rep-
resentations of strong real forms and complete geometric parameters on an L-group)
in the special case of a torus. We will treat the general case of Theorem 1.18 by
reduction to this special case. (Of course such an approach seems unlikely to suc-
ceed for groups over other local fields, where not all representations are constructed
from characters of tori.)

So suppose that T is an algebraic torus; that is, a connected complex reductive
abelian algebraic group. As in Definition 2.10, we write

X∗(T ) = Homalg(C
×, T ), (9.1)(a)
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the lattice of (rational) one-parameter subgroups of T . We can use the exponential
map to identify the Lie algebra of C× with C. A one-parameter subgroup is deter-
mined by its differential, which is a complex-linear map from C to t. Such a map
is in turn determined by its value at 1 ∈ C; so X∗(T ) is identified with a lattice in
t. As is well-known ([AV2], Proposition 2.2)

X∗(T ) ≃ (1/2πi) ker(exp) = ker(e) ⊂ t. (9.1)(b)

Here exp refers to the exponential mapping in T , and e is as in (6.2)(a). We can
recover T from X∗(T ) by the natural isomorphism

X∗(T ) ⊗Z C× ≃ T, φ⊗ z 7→ φ(z). (9.1)(c)

On the level of Lie algebras, this gives

X∗(T ) ⊗Z C ≃ t, φ⊗ z 7→ dφ(z) (9.1)(d)

t∗ ≃ HomZ(X∗(T ),C), λ 7→ (φ 7→ λ(dφ(1))). (9.1)(e)

Dually, write
X∗(T ) = Homalg(T,C

×), (9.2)(a)

the lattice of (rational) characters of T . A character is determined by its differential,
which is a linear functional on t∗; the resulting lattice may be identified as

X∗(T ) = {λ ∈ t∗ | λ(X∗(T )) ⊂ Z }. (9.2)(b)

This exhibits the natural pairing between X∗(T ) and X∗(T ) as the restriction of
the pairing between t and t∗. The analogue of (9.1)(c) is

T ≃ HomZ(X∗(T ),C×), t 7→ (τ 7→ τ(t)). (9.2)(c)

Similarly,
t ≃ HomZ(X∗(T ),C), X 7→ (τ 7→ dτ(X)) (9.2)(d)

X∗(T ) ⊗Z C ≃ t∗, τ ⊗ z 7→ (X 7→ zdτ(X)). (9.2)(e)

By the remark after Definition 4.2, a dual group ∨T for T is determined up to
unique isomorphism. Explicitly, the formulas in (9.1)(c) and (9.2)(c) show that we
may choose

∨T = X∗(T ) ⊗Z C× or ∨T = HomZ(X∗(T ),C×). (9.3)(a)

In any case Definition 4.2, (9.1)(d)–(e), and (9.2)(d)–(e) provide natural isomor-
phisms

∨t ≃ t∗, ∨t
∗
≃ t. (9.3)(b)

Proposition 9.4 (Langlands — see [Langlands], Lemma 2.8, or [AV2], Theorem
4.4.) Suppose T is an algebraic torus defined over R. Fix an L-group (∨T Γ,D) for
T (Definition 4.6). Then there is a natural bijection

φ→ π(φ)
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from the set Φ(T/R) = Φ(∨T Γ) of equivalence classes of Langlands parameters
(Definitions 5.2 and 5.3) onto the set Π(T (R)) of equivalence classes of irreducible
representations (that is, continuous homomorphisms into C×) of T (R). In this
bijection, the differential dπ(φ) (an element of t∗) is identified by (9.3)(b) with the
parameter λ(φ) ∈ ∨t (cf. (5.8)(a)). The trivial character of T (R) is attached to
the parameters φ(∨δ, 0) with ∨δ ∈ D (notation (5.8)(a)); these constitute a single
equivalence class.

Notice that the last assertion shows clearly the dependence of the classification on
the L-group structure (and not just the weak E-group).

This beautiful result is not as it stands a special case of Theorem 1.18, for it
mentions neither strong real forms of T (R) nor complete geometric parameters. We
will analyze each of these ideas in turn and compare them to get that result. Our
main tool is the following elementary version of Pontriagin duality.

Lemma 9.5. Suppose T is an algebraic torus; use the notation of (9.2). There
is a natural inclusion-reversing bijection between algebraic subgroups of T and sub-
lattices (by which we mean simply subgroups) of X∗(T ). To an algebraic subgroup
S ⊂ T corresponds the sublattice

L = { τ ∈ X∗(T ) | τ(s) = 1, all s ∈ S }. (a)

Dually, to a sublattice L corresponds the algebraic subgroup

S = { s ∈ T | τ(s) = 1, all τ ∈ L }. (b)

Suppose the subgroups S1 ⊂ S2 correspond to sublattices L1 ⊃ L2. Then restric-
tion of characters from T to S1 defines a natural isomorphism

Homalg(S1/S2,C
×) ≃ L2/L1. (c)

Suppose the subgroup S corresponds to the sublattice L. Then the identity com-
ponent S0 ⊂ S corresponds to the lattice

L0 = { τ ∈ X∗(T ) | nτ ∈ L for some positive integer n } ⊃ L. (d)

Suppose θ is an algebraic automorphism of T , and a is the transpose automor-
phism of X∗(T ) (so that τ(θt) = (aτ)(t) for all τ ∈ X∗(T ) and t ∈ T ). Then the
algebraic subgroup T θ of fixed points of θ corresponds to the sublattice

(1 − a)X∗(T ) = { τ − aτ | τ ∈ X∗(T ) }. (e)

Dually, the sublattice X∗(T )a of fixed points of a corresponds to the (connected)
subgroup

(1 − θ)T = { t(θt)−1 | t ∈ T }. (f)

This is well-known and elementary; we omit the proof.
We turn now to the description of complete geometric parameters for tori.

Proposition 9.6. Suppose ∨T Γ is a weak E-group for the algebraic torus T .
Write a for the corresponding automorphism of the based root datum (Proposition
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4.4) and θ for the automorphism of ∨T defined by any element of ∨T Γ−∨T . Suppose
x ∈ X(∨T Γ) is a geometric parameter (Definition 6.9).

a) The stabilizer ∨T x of x for the action of ∨T on geometric parameters is the group
∨T

θ
of fixed points of θ.

b) The Langlands component group Alocx is

∨T
θ
/∨T

θ
0 = ∨T

θ
/(1 + θ)∨T

.
c) The group of characters of the Langlands component group is given by a natural

isomorphism

Âlocx ≃ X∗(T )−a/(1 − a)X∗(T ).

Since T is a torus, geometric parameters are in one-to-one correspondence with
Langlands parameters (even before passing to equivalence classes) by Proposition
6.17.

Proof. Part (a) is immediate from Proposition 6.16 (or from Corollary 5.9, or
from the definitions directly). Part (b) follows from (a). Part (c) follows from (b)
using Lemma 9.5(c), (e) and (f). Q.E.D.

We now extend this result to algebraic coverings. Suppose ∨̃T is a finite covering

of an algebraic torus ∨T . The lattice of rational characters of ∨̃T must contain
X∗(∨T ) as a sublattice of finite index:

X∗(∨T ) ⊂ X∗(∨̃T ). (9.7)(a)

We may therefore regard X∗(∨̃T ) as a lattice in the rational vector space generated
by X∗(∨T ):

X∗(∨̃T ) ⊂ X∗(∨T ) ⊗Z Q. (9.7)(b)

Conversely, any lattice in this vector space containingX∗(∨T ) as a subgroup of finite
index is the character lattice of a finite covering of ∨T . It follows that the group
on the right (which is no longer finitely generated, and so not really a “lattice”) is

the group of rational characters of the pro-algebraic group ∨T
alg

. Extending the
notation of (9.2), we write

X∗(∨T
alg

) = X∗(∨T ) ⊗Z Q. (9.7)(c)

Equivalently,

X∗(∨T
alg

) = X∗(T ) ⊗Z Q. (9.7)(d)

Proposition 9.8. Suppose we are in the setting of Proposition 9.6; use the

notation there and in (9.7). Write as usual ∨T algx for the preimage of ∨T x in
∨T

alg
, and (∨T

alg
x )0 for its identity component.

a) The group of rational characters of ∨T
alg

trivial on ∨T
alg
x is identified via (9.7)(d)

with (1 − a)X∗(T ).

b) The group of rational characters of ∨T
alg

trivial on (∨T
alg
x )0 is identified via

(9.7)(d) with (X∗(T ) ⊗Z Q)−a.
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c) The group of characters of the universal component group (Definition 7.6) is
given by a natural isomorphism

Âloc,algx ≃ (X∗(T ) ⊗Z Q)−a/(1 − a)X∗(T ).

The proof is parallel to that of Proposition 9.6, so we omit it. (For (c) we
are using the fact that any rational character of a pro-algebraic subgroup of a
reductive abelian pro-algebraic group extends to the whole group. This is a formal
consequence of the corresponding fact for algebraic groups.)

Next, we consider the notion of strong real form in the case of tori. We make
use of the following elementary result, which is in some sense dual to Lemma 9.5.

Lemma 9.9. Suppose T is an algebraic torus; use the notation (9.1). Write
T fin for the subgroup of T consisting of elements of finite order. Define

tQ = X∗(T ) ⊗Z Q ⊂ t

(cf. (9.1)(d)).

a) The normalized exponential mapping e, given by e(τ) = exp(2πiτ) (cf. (6.2)(a))
defines an isomorphism

t/X∗(T ) ≃ T.

b) The preimage of T fin under the isomorphism in (a) is precisely tQ, so we have
a natural isomorphism

tQ/X∗(T ) ≃ T fin.

c) Suppose σ is an antiholomorphic automorphism of T . Then the isomorphism of
(a) carries −dσ to σ:

e(−dσ(τ)) = σ(e(τ)).

d) In the setting of (c), write a for the automorphism of X∗(T ) induced by σ (Propo-
sition 2.12). Write a also for the corresponding (Q-linear) automorphism of tQ.
Then the isomorphism of (b) carries −a to σ:

e(−a(τ)) = σ(e(τ)).

In particular, a = dσ on tQ.

Proof. Part (a) is immediate from (9.1)(b). Part (b) follows from (a). Part (c)
is clear. For (d), one must examine the definition of a in the proof of Proposition
2.12, and use the fact that if z ∈ C× has finite order, then z = z−1. Q.E.D.

Proposition 9.10. Suppose T Γ is a weak extended group for T (Definition
2.13). Write σ for the antiholomorphic involution on T defined by conjugation by
any element of T Γ − T . Consider the three subgroups

T−σ,fin = { t ∈ T | tσ(t) has finite order }

T−σ = { t ∈ T | tσ(t) = 1 }

T−σ0 = identity component of T−σ = { sσ(s−1) | s ∈ T }.

a) Left multiplication defines a natural simply transitive action of T−σ,fin on the
set of strong real forms of T Γ (Definition 2.13).
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b) Two strong real forms are equivalent precisely when they lie in the same coset
of T−σ0 . Consequently there is a natural simply transitive action of the quotient
T−σ,fin/T−σ0 on the set of equivalence classes of strong real forms.

c) The mapping τ 7→ e(τ/2) (cf. Lemma 9.9) maps the −1 eigenspace t−aQ into

T−σ,fin. The preimage of the subgroup T−σ is the lattice X∗(T )−a. The preimage
of the subgroup T−σ0 is the lattice (1 − a)X∗(T ).

d) After composition with the quotient, the map of (c) becomes a surjection onto
T−σ,fin/T−σ0 .

e) There are natural isomorphisms

t−aQ /(1 − a)X∗(T ) ≃ T−σ,fin/T−σ0

X∗(T )−a/(1 − a)X∗(T ) ≃ T−σ/T−σ0 .

Proof. The first thing to prove is the equivalence of the two definitions of T−σ0 .
The Lie algebra of {sσ(s−1)} is {τ −dσ(τ)}. Since σ has order two, this is equal to
the −1-eigenspace of dσ, which in turn is the Lie algebra of T−σ. Since {sσ(s−1)}
is clearly connected, the claim follows.

Now consider (a). Suppose t ∈ T , and δ is a strong real form. Then

(tδ)2 = t(δtδ−1)δ2 = tσ(t)δ2.

Since δ2 is assumed to have finite order, it follows that tδ is a strong real form if
and only if t ∈ T−σ,fin. A similar calculation shows that

s(tδ)s−1 = t(sσ(s−1))δ,

from which (b) follows.
For (c), suppose that τ ∈ t−aQ . Then

e(τ/2)σ(e(τ/2)) = e(τ/2)e(−aτ/2) = e(τ/2)e(τ/2) = e(τ).

Here we use successively Lemma 9.9(d) and the assumption on τ . Now the first
two claims of (c) are clear.

For the rest of the argument, we will need to use the fact that

T = T−σ0 T σ0 . (9.11)

(The two factors may have a non-trivial intersection; the claim is simply that every
element of T is a product.) This follows from the corresponding assertion on the
Lie algebra, which in turn follows from the fact that σ has order 2.

For the third part of (c), suppose that τ ∈ t−aQ and that e(τ/2) = sσ(s−1).

Because of (9.11), we may as well assume that s ∈ T−σ0 . By Lemma 9.9(c), s = e(β),
with β in the +1-eigenspace of dσ. The assumption on s says (in light of Lemma
9.9(a) and (c)) that for some γ ∈ X∗(T ),

τ/2 = β/2 + dσ(β/2) + γ = β + γ.

The first conclusion is that β ∈ tQ. By Lemma 9.9(c), β is in the +1-eigenspace of
a. Consequently τ/2 is the projection of γ on the −1-eigenspace of a. That is,

τ/2 = (γ − aγ)/2,



80

which gives the third part of (c).
For (d), (9.11) and Lemma 9.9(c) imply that every coset in T−σ,fin/T−σ0 has a

representative t = e(τ/2) with τ in the −1-eigenspace of dσ. As in (a) we compute
tσ(t) = e(τ); so τ must actually belong to the −1-eigenspace of dσ on tQ. By
Lemma 9.9(d), τ belongs to t−aQ , as we wished to show.

Part (e) is an immediate consequence of (c) and (d). Q.E.D.

Corollary 9.12. Suppose ∨T Γ is a weak E-group for the algebraic torus T
(Definition 4.3), and T Γ is a weak extended group for the corresponding real form
(Definition 2.13). Suppose x ∈ X(∨T Γ) is a geometric parameter (Definition 6.9).

Then there is a natural simply transitive action of the group Âloc,alg (of characters
of the universal component group) on the set of equivalence classes of strong real
forms of T Γ.

Proof. Combine Proposition 9.8(c) with Proposition 9.10(d). Q.E.D.
Proof of Theorem 1.18 for tori. The extra datum W needed to make an extended

group for a torus from a weak extended group is precisely an equivalence class of
strong real forms (cf. Definition 1.12). The action of Corollary 9.12 therefore
gives a natural bijection between strong real forms and characters of the universal
component group (sending the distinguished class of strong real forms to the trivial
character). In conjunction with Proposition 9.4, this gives Theorem 1.18 for tori.
Q.E.D.

10. Covering groups and projective representations.

In order to deduce Theorem 1.18 from the special case established in the last
section, we will need to exploit a relationship between characters of tori in G and
representations of G. This relationship is most natural when it is formulated in
terms of certain coverings of the tori related to “ρ-shifts” for G (see for example
Theorem 1.37 or Theorem 6.8 in [Orange]). We will therefore need for tori a version
of Theorem 1.18 that describes representations of such coverings. It is just as easy
to treat coverings of general groups; in any case this will be necessary when we
discuss endoscopy.

Definition 10.1. Suppose GΓ is a weak extended group for G (Definition 2.13).
A connected finite covering group

1 → F → G̃→ G→ 1

is said to be distinguished if the following two conditions are satisfied.

(a) For every x ∈ GΓ −G, the conjugation action σx of x on G lifts to an automor-

phism σ̃x of G̃.

It is equivalent to require this condition for a single x. As x varies, σ̃x changes by

inner automorphisms; so its restriction σ̃Z to Z(G̃) is independent of the choice of

x. Necessarily σ̃Z preserves the subgroup F of Z(G̃). We can now formulate the

second condition on G̃.

(b) The automorphism σ̃Z sends every element of F to its inverse.
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Write Gsc for the simply-connected covering group of G, and π1(G) for the kernel of
the covering map. This covering automatically satisfies the condition analogous to
(a) above, so that we can define an involutive automorphism σscZ of Z(Gsc), which
preserves the subgroup π1(G). We may regard F as a quotient of π1(G):

1 → K → π1(G) → F → 1.

Then condition (a) amounts to the requirement that K should be preserved by σscZ ,
and condition (b) to

K ⊃ { y · σscZ (y) | y ∈ π1(G) }.

The canonical covering Gcan is the projective limit of all the distinguished cov-
erings of G. This is a pro-algebraic group, of which each finite-dimensional repre-
sentation factors to some distinguished finite cover of G. We write (in analogy with
(5.10))

1 → π1(G)can → Gcan → G→ 1.

The group π1(G)can depends on the inner class of real forms under consideration.
It is a pro-finite abelian group, the inverse limit of certain finite quotients of π1(G).

Lemma 10.2. Suppose G is a connected complex reductive algebraic group, and
∨G is a dual group (Definition 4.2).

a) The group of complex characters of π1(G) is naturally isomorphic to the center
of ∨G:

Z(∨G) ≃ Hom(π1(G),C×).

Write this isomorphism as z 7→ χz.

Suppose G is endowed with an inner class of real forms. Write σscZ for the induced
action of any of these real forms on π1(G). Dually, write a for the automorphism
of the based root datum of G defined by the inner class of real forms (Definition
2.12), and θZ for the automorphism of Z(∨G) induced by any automorphism of ∨G
corresponding to a (cf. Proposition 4.4).

b) The automorphisms σscZ and θZ composed with inversion are transposes of each
other with respect to the isomorphism in (a). That is, if z ∈ Z(∨G) and p ∈
π1(G), then

χz(p) = χθZ(z)−1(σscZ (p)).

c) The character χz is trivial on the subgroup {pσscZ (p)} of π1(G) if and only if
θZ(z) = z.

d) The group of continuous characters of π1(G)can (Definition 10.1) is naturally
isomorphic to the group of elements of finite order in Z(∨G)θZ .

Proof. Part (a) is well-known and elementary (see for example [AV2], Proposition
10.1). Part (b) is immediate from the definitions, and (c) follows from (b). Part (d)
is a consequence of (c) and the description of π1(G)can in Definition 10.1. (Recall
that a continuous character of a pro-finite group factors through any large enough
finite quotient.) Q.E.D.

Definition 10.3 (cf. Definition 2.13). Suppose GΓ is a weak extended group
for G; use the notation of Definition 10.1 and Proposition 10.2. If δ is a strong real
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form of GΓ (Definition 2.13), write G(R, δ)can for the preimage of G(R, δ) in Gcan.
There is a short exact sequence

1 → π1(G)can → G(R, δ)can → G(R, δ) → 1.

A canonical projective representation of a strong real form of GΓ is a pair (π, δ),
subject to

(a) δ is a strong real form of GΓ; and
(b) π is an admissible representation of G(R, δ)can.

Equivalence is defined as in Definition 2.13. Suppose z ∈ Z(∨G)θZ . We say that
(π, δ) is of type z if the restriction of π to π1(G)can is a multiple of χz (Proposition
10.2(a)). (Notice that every irreducible canonical projective representation has a
unique type.) Finally, define

Πz(GΓ) = Πz(G/R)

to be the set of infinitesimal equivalence classes of irreducible canonical projective
representations of type z.

With this definition, we can formulate a mild generalization of Theorem 1.18.
(It is important to remember that the coverings appearing in Definition 10.3 are
all linear. Extending the Langlands classification to non-linear coverings is a much
more difficult and interesting problem.)

Theorem 10.4. Suppose (GΓ,W) is an extended group for G (Definition 1.12),
and (∨GΓ,D) is an E-group for the corresponding inner class of real forms (Defini-
tion 4.6). Write z for the second invariant of the E-group (Definition 4.6). Then
there is a natural bijection between the set Πz(G/R) of equivalence classes of ir-
reducible canonical projective representations of strong real forms of G of type z
(Definition 10.3), and the set Ξz(G/R) of complete geometric parameters for ∨GΓ

(Definition 7.6 and Definition 5.11).

We will give the proof in the next four sections. For the moment, we record only
the corresponding generalization of Proposition 9.4. It is helpful first to describe
the rational characters of the pro-algebraic group T can when T is an algebraic torus
defined over R. A calculation analogous to (9.7) gives

X∗(T can) = {λ ∈ X∗(
∨T ) ⊗Z Q | λ− θλ ∈ X∗(

∨T )}. (10.5)(a)

Following Lemma 9.9, we write

∨tQ = X∗(
∨T ) ⊗Z Q. (10.5)(b)

Now Lemma 9.9(b) says that the normalized exponential mapping e provides an
isomorphism

∨tQ/X∗(
∨T ) ≃ ∨T

fin
. (10.5)(c)

Clearly X∗(T can) is precisely the inverse image of the θ-fixed elements ∨T
fin

under
this map; so

X∗(T can)/X∗(T ) ≃ (∨T
fin

)θ. (10.5)(d)
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Of course the group on the left may be identified with the characters of π1(T )can,
and we recover the isomorphism in Lemma 10.2(d).

Proposition 10.6 ([AV2], Theorem 5.11.) Suppose T is an algebraic torus
defined over R. Fix an E-group (∨T Γ,W) for T with second invariant z (Definition
4.6). Then there is a natural bijection

φ→ π(φ)

from the set Φ(∨T Γ) of equivalence classes of Langlands parameters (Definition
5.2) onto the set Πz(T (R)) of equivalence classes of irreducible canonical projective
representations of T (R) of type z (Definition 10.3). In this bijection, the differential
dπ(φ) (an element of t∗) is identified by (9.3)(b) with the parameter λ(φ) ∈ ∨t (cf.
(5.8)(a)).

Suppose λ ∈ ∨tQ satisfies e(λ) = z. By (10.5), λ may be identified with a rational
character of T can of type z. By restriction to T (R)can, λ defines an irreducible
canonical projective representation of T (R) of type z. Its Langlands parameters
are the various φ(∨δ, λ) (notation (5.8)(a)) with ∨δ ∈ D; these constitute a single
equivalence class.

As in Proposition 9.4, the last assertion is included primarily to show how the
classification theorem forces the choice of the class D in addition to the weak E-
group structure.

Corollary 10.7. Theorem 10.4 is true if G is an algebraic torus.

Just as in the argument at the end of section 9, we need only apply Corollary
9.12 and Proposition 10.6.

We record some notation based on Theorem 10.4, extending (1.19) in the intro-
duction.

Definition 10.8. In the setting of Theorem 10.4, suppose ξ ∈ Ξz(G/R) is a
complete geometric parameter. A representative for the corresponding equivalence
class of representation and strong real form will be written as

(π(ξ), δ(ξ)) ∈ Πz(G/R)

(Definition 10.3). If we regard ξ as represented by a complete Langlands parameter
(φ, τ) (Definition 5.11), we may write instead (π(φ, τ), δ(φ, τ)).

Conversely, suppose (π, δ) ∈ Πz(G/R). The corresponding complete geometric
parameter ξ will be written as

ξ(π, δ) = (S(π, δ),V(π, δ)).

Here S is an orbit of ∨G on the geometric parameter space, and V is a ∨G
alg

-
equivariant local system on S. A representative for the corresponding equivalence
class of complete Langlands parameters is (φ(π, δ), τ(π, δ)) (Definition 5.11). More
generally, we may use invariants previously attached to complete geometric param-
eters as if they were attached directly to representations. For example, we write
d(π) or d(π, δ) for the dimension of the orbit S(π, δ) (cf. (7.10)), and e(π) or e(π, δ)
for the Kottwitz sign attached to ξ(π, δ) (Definition 15.8 below).
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Suppose now that φ ∈ Φz(G/R) (Definition 5.3), and let Sφ ⊂ X(∨GΓ) be the
corresponding orbit (Proposition 6.17). The L-packet attached to φ is the set of
irreducible (canonical projective) representations of strong real forms parametrized
by complete geometric parameters supported on S:

Πz(G/R)φ = { (π(ξ), δ(ξ)) | ξ = (Sφ,V) }

= { (π, δ) | φ(π, δ) is equivalent to φ }.

Perhaps the least satisfactory aspect of Theorem 10.4 is the appearance of the

algebraic universal covering ∨Galg. (We can avoid coverings ofG, at least in the final
result, by using the L-group instead of another E-group.) It is therefore of interest
to understand exactly what coverings are needed to classify what representations.
This information will be important in our treatment of endoscopy in section 26 as
well.

Lemma 10.9. Suppose we are in the setting of Lemma 10.2.

a) The group of continuous characters of π1(
∨G)alg is naturally isomorphic to the

group Z(G)fin of elements of finite order in Z(G). Write χz for the character
corresponding to z.

b) In the setting of Theorem 10.4, write z0 ∈ Z(G)fin for the second invariant of
the extended group (GΓ,W) (cf. (3.5)). Suppose that the complete geometric
parameter ξ corresponds to the irreducible canonical projective representation
(π(ξ), δ(ξ)). Set z1 = δ2 ∈ Z(G)fin. Then π1(

∨G)alg acts on ξ by the character
χz0z1 .

Proof. Part (a) is almost identical to Lemma 10.2. For (b), the definitions
underlying Theorem 10.4 (see particularly section 13) reduce it to the case of a
torus, where it follows by inspection of the proof of Corollary 9.12. We omit the
details.

Here is an important case of the situation considered in (5.13).

Definition 10.10. Suppose ∨GΓ is a weak E-group, and Q is any quotient of
π1(
∨G)alg:

1 → KQ → π1(
∨G)alg → Q→ 1 (10.10)(a)

(We assume that KQ is closed; equivalently, that Q is the inverse limit of its finite
quotients.) Define

∨G
Q

= ∨G
alg
/KQ, (10.10)(b)

a pro-finite covering of ∨G:

1 → Q→ ∨G
Q
→ ∨G→ 1. (10.10)(c)

(Notice in particular that ∨G
π1(

∨G)alg
is just ∨G

alg
.) Recall from Definition 7.6

the notion of a complete geometric parameter of type Q; this may be regarded as
a complete geometric parameter (S,V) with the property that KQ acts trivially on
V , so

Ξ(∨GΓ)Q ⊂ Ξ(∨GΓ). (10.10)(c)

In the setting of Theorem 10.4, we may write Ξz(G/R)Q for Ξ(∨GΓ)Q.
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Suppose (GΓ,W) is an extended group with second invariant z0 (cf. (3.5)), and
J ⊂ Z(G)fin is any subgroup. A strong real form of G of type J is an element
δ ∈ GΓ −G such that δ2 ∈ z0J . (The shift by z0 guarantees that the real forms in
W are of type J for every J .) We write

Π(G/R)J = { (π, δ) ∈ Π(G/R) | δ2 ∈ z0J }

for the set of equivalence classes of irreducible representations of strong real forms
of G of type J , and extend other notation analogously.

Theorem 10.11. In the setting of Theorem 10.4, suppose Q is the quotient of
π1(
∨G)alg by a closed subgroup KQ ⊂ π1(

∨G)alg. Define J ⊂ Z(G)fin to consist
of all those elements for which the corresponding character (Lemma 10.9)(a)) is
trivial on KQ:

J = { z ∈ Z(G)fin | χz(k) = 1, all k ∈ KQ }.

Then the bijection of Theorem 10.4 restricts to a bijection

Ξz(G/R)Q ↔ Πz(G/R)J .

This is immediate from Theorem 10.4 and Lemma 10.9. Notice that Lemma
10.9(a) provides a natural identification of J with the group Q̂ of characters of Q,
and conversely. The conclusion of Theorem 10.11 may therefore be written as

Ξz(G/R)Q ↔ Πz(G/R)
Q̂
, (10.12)(a)

or as

Πz(G/R)J ↔ Ξz(G/R)Ĵ . (10.12)(b)

11. The Langlands classification without L-groups.

In this section we recall the “elementary” version of the Langlands classification
of representations, in which L-groups do not appear (Theorem 11.14 below). Be-
cause some of the groups we consider (such as G(R)can) are not precisely groups
of real points of connected algebraic groups, we need to formulate this result in a
slightly more general setting. With possible generalizations in mind, we allow even
nonlinear groups. The class of groups we consider is essentially the one in section
5 of [Springer]. (The only difference is that Springer allows G to be disconnected,
and imposes an additional technical hypothesis that is empty if G is connected.)
We refer the reader to [Springer] for basic structural facts and further references.

We will be quoting a number of technical results, particularly from [Green].
Unfortunately our hypotheses in this section are weaker than those of [Green],
where it is assumed that GR is linear. We offer two possible responses to this
problem. The first is that we will quote only results that can be extended routinely
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to the present setting. The second is that all of the groups considered elsewhere in
this paper are linear.

So suppose G is a connected reductive complex algebraic group defined over R;
and suppose GR is a real Lie group endowed with a homomorphism

GR → G(R) (11.1)(a)

having finite kernel and cokernel. We use the homomorphism to identify the Lie
algebra gR with g(R), and its complexification with g. A Cartan subgroup of GR is
by definition the centralizer in GR of a Cartan subalgebra of gR. (Such a subgroup
TR is the preimage of the real points T (R) of a unique maximal torus defined over
R:

TR → T (R). (11.1)(b)

(We should remark that TR may be non-abelian under these hypotheses, although
this does not happen inside our canonical coverings.) Using such homomorphisms,
we can pull extensions of G(R) and its subgroups back to GR, getting for example
a central extension

1 → π1(G)can → GcanR → GR → 1. (11.1)(c)

We may therefore speak of a “canonical projective representation of GR of type z”
as in Definition 10.3, and we write

Πz(GR) = { infinitesimal equivalence classes of such irreducible representations }.
(11.1)(d)

(Here z is an element of finite order in Z(∨G)θZ if we have a dual group ∨G available;
otherwise we can just think of z directly as a character of π1(G)can as in Lemma

10.2(d).) If HR is a subgroup of GR, we write Hcan
R or Hcan,G

R for its preimage in
GcanR . This is a central extension

1 → π1(G)can → Hcan,G
R → HR → 1. (11.1)(e)

Definition 11.2 (cf. [Under], Definition 2.6, and [AV2], Definition 8.18). In
the setting of (11.1), suppose TR is a Cartan subgroup of GR. Fix an element
z ∈ Z(∨G)θZ of finite order. We may choose as a dual group for T a maximal torus
∨T ⊂ ∨G; then

Z(∨G)θZ ⊂ ∨T
θZ ,

and this embedding is independent of all choices. It therefore makes sense to regard

z as an element of finite order in ∨T
θZ . Recall the element z(ρ) ∈ ∨T θZ constructed

in Definition 4.9. (Actually z(ρ) even belongs to Z(∨G)θZ , but this fact is a bit of an

accident in the present context, and is better ignored.) In any case zz(ρ) ∈ ∨T θZ

is an element of finite order, so it makes sense to speak of canonical projective
representations of TR of type zz(ρ).

A GR-limit character of TR of type z is a triple Λ = (Λcan, R+
iR, R

+
R ) subject

to the following conditions. The first term is an irreducible canonical projective
representation

Λcan ∈ Πzz(ρ)(TR). (11.2)(a)
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This means that Λcan is an irreducible representation of T can,TR and that the re-
striction of Λcan to π1(T )can is a multiple of χTzz(ρ). Write

λ = dΛcan ∈ t∗. (11.2)(b)

Next,
R+

R , R+
iR (11.2)(c)

are positive root systems for the real and imaginary roots of T in G. Finally, we
assume that

〈α, λ〉 ≥ 0, (α ∈ R+
iR). (11.2)(d)

If these inequalities are strict (for example if λ is regular), the choice of R+
iR is

forced by (11.2)(d), and we may sometimes omit it in writing the limit character.
The limit character is called G-regular if 〈α, λ〉 6= 0 for any root α of T in G.
Attached to each limit character Λ there is a standard limit representation M(Λ),

defined by a procedure outlined in section 8 of [AV2] or section 2 of [Under]. We
define our standard limit representations as in [Langlands] (using for example real
parabolic induction with non-negative continuous parameter), so that the Lang-
lands subquotients appear as quotients. Thus we define

π(Λ) = largest completely reducible quotient of M(Λ), (11.2)(e)

the Langlands quotient of M(Λ). Occasionally we will need the standard represen-
tation having a Langlands subrepresentation; this is written

M̃(Λ) ⊃ π(Λ). (11.2)(f)

This representation has exactly the same composition factors and multiplicities as
M(Λ).

The infinitesimal character of M(Λ) or π(Λ) is given in the Harish-Chandra
parametrization (see for example [Green], Corollary 0.2.10, or [Hump], p. 130) by
the weight λ = dΛcan ∈ t∗. In particular, the infinitesimal character is regular if
and only if the limit character is G-regular.

The definition of limit character given here looks somewhat different from the
one in [Under], so we will explain briefly their relationship. It is convenient to fix a
maximal compact subgroup KR of GR so that the corresponding Cartan involution
preserves TR. This gives rise to a direct product decomposition

TR = (TR ∩KR)(AR) (11.3)(a)

with the second factor a vector group. This decomposition in turn leads to

T canR = (TR ∩KR)can(AR). (11.3)(b)

The first step is to choose a positive root system R+ for T in G containing the
systems of positive real and imaginary roots already fixed. We may assume that
the set of non-imaginary roots in R+ is preserved by complex conjugation; then

ρ(R+) = ρ(R+
iR) on the Lie algebra of TR ∩KR. (11.3)(c)
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Now it follows from (10.5) that ρ(R+) may be regarded as a rational character of
T can,T of type z(ρ). Consequently

Λcan ⊗ ρ(R+) ∈ Πz(T (R)) (11.3)(d)

may be regarded as a character of T can,TR of type z. Since the type is in Z(∨G)θZ ,

we can now replace T can,TR by T can,GR . After tensoring with the sum of the negative
compact imaginary roots and an appropriate character of the vector group AR, we
therefore get a character Λ̃ ∈ Πz(T (R)) satisfying

dΛ̃ = λ+ ρ(R+
iR) − 2ρ(R+

iR,compact) (11.3)(e)

It is not difficult to show that Λ̃ is independent of the choice of R+; the argument
is contained in Lemma 11.5 below. The pair (Λ̃, λ) is what is called (Γ, γ) in
Definition 2.4 of [Under]. Write LR for the centralizer of AR in GR. The standard
representation M(Λ) may be constructed by parabolic induction from a limit of
discrete series representation on LcanR having lowest LR ∩KR-type of highest weight

Λ̃.
As is explained in [AV2], the dependence of M(Λ) on R+

R is very mild. We recall

the result. Suppose (R+
R )′ is another set of positive real roots for T in G. Define

n(R+
R , (R

+
R )′) = span(Xα | α ∈ R+

R − (R+
R )′). (11.4)(a)

The Cartan subgroup TR acts on n(R+
R , (R

+
R )′), and the determinant of this action

is a real-valued character of TR. We may therefore define a character τ(R+
R , (R

+
R )′)

taking values in {±1} by

τ(R+
R , (R

+
R )′)(t) = sgn

(
det(Ad(t) on n(R+

R , (R
+
R )′)

)
. (11.4)(b)

Lemma 11.5 ([AV2], Lemma 8.24). Suppose Λ = (Λcan, R+
iR, R

+
R ) is a limit

character of TR (Definition 11.2) and (R+
R )′ is another set of positive real roots of

T in G. Choose sets of positive roots R+ ⊃ R+
iR, R

+
R and (R+)′ ⊃ R+

iR, (R
+
R )′ for T

in G as in (11.3), and use them to construct characters Λ̃ and Λ̃′.

a) ρ(R+) = ρ((R+)′) ⊗ τ(R+
R , (R

+
R )′) on (TR ∩KR)can,T .

b) Λ̃ = Λ̃′ ⊗ τ(R+
R , (R

+
R )′).

c) Write
Λ′ = (Λcan ⊗ τ(R+

R , (R
+
R )′), R+

iR, (R
+
R )′).

Then there is an isomorphism of standard limit representations M(Λ) ≃M(Λ′).

Proof. With notation analogous to (11.4), it is easy to check that (as rational
characters of T can,T )

ρ(R+) = ρ((R+)′) ⊗ (det(Ad on n(R+, (R+)′))).

That is,

ρ(R+)(t) = ρ((R+)′)(t)
∏

α∈R+

α/∈(R+)′

α(t).
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Assume now that t ∈ (TR ∩ KR)can,T . The roots (like all characters of TR) have
absolute value 1 on the compact group TR∩KR; so the real roots contribute exactly
τ(R+

R , (R
+
R )′)(t) to the product. Therefore

ρ(R+)(t) = ρ((R+)′)(t)τ(R+
R , (R

+
R )′)(t)

∏

α∈R+ complex

α/∈(R+)′

α(t).

The roots in this last product occur in complex conjugate pairs, since the non-
imaginary roots in R+ and (R+)′ were assumed to be stable under complex conju-
gation. Such a pair contributes |α(t)|2 = 1 to the product. This proves (a). Part

(b) is immediate from (a) and the definition of Λ̃. For (c), part (b) shows that the
two limit characters correspond to exactly the same limit character in the sense of
[Under], so they define the same representation. Q.E.D.

Definition 11.6. In the setting of (11.1) and Definition 11.2, suppose (Λcan, R+
iR, R

+
R )

is a limit character of TR, and ((Λcan)′, (R+
iR)′, (R+

R )′) is a limit character of T ′R. We
say that these limit characters are equivalent if there is a g ∈ GR that conjugates
T ′R to TR and (R+

iR)′ to R+
iR, and has the following additional property. Write

(R+
R )′′ = Ad(g)(R+

R )′ (a set of positive real roots for T in G), and

(Λcan)′′ = Ad(g)(Λcan)′,

a canonical projective representation of TR. Then our final requirement is

(Λcan)′′ = Λcan ⊗ τ(R+
R , (R

+
R )′′).

Because of Lemma 11.5(c), equivalent limit characters define equivalent standard
limit representations.

With this (rather subtle) notion of equivalence in hand, we can formulate an
important special case of the Langlands classification.

Theorem 11.7 ([Langlands]) Suppose GR is a real reductive group as in (11.1).
Then the infinitesimal equivalence classes of irreducible admissible representations
of GR with regular infinitesimal character are in one-to-one correspondence with
the equivalence classes of G-regular limit characters, as follows.

a) Suppose Λ is a G-regular limit character of a Cartan subgroup TR (Definition
11.2). Then the corresponding standard representation M(Λ) is non-zero, and
has a unique irreducible quotient. In particular, the Langlands quotient repre-
sentation π(Λ) is irreducible.

b) Suppose π is an irreducible canonical projective representation of GR of type z
(Definition 11.2), having regular infinitesimal character. Then there is a G-
regular limit character Λ of type z with the property that π is infinitesimally
equivalent to π(Λ).

c) Suppose Λ and Λ′ are G-regular limit characters, and that π(Λ) is infinitesimally
equivalent to π(Λ′). Then Λ is equivalent to Λ′ (Definition 11.6).

This formulation of Langlands’ result incorporates the work of several other
people. We mention in particular Harish-Chandra’s result on the irreducibility of
tempered induction at regular infinitesimal character, and Miličić’ observation that
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the Langlands quotient (originally defined as the image of an intertwining operator)
is simply a unique irreducible quotient.

Of course we need a result for singular infinitesimal character as well. Before
beginning the technical preliminaries to its formulation, let us consider what goes
wrong with Theorem 11.7 when we drop the regularity hypotheses. First, the
standard limit representation M(Λ) may be zero. The simplest example occurs
with GR = SU(2), and TR a compact torus. In that case z(ρ) = 1 (since half the
sum of the positive roots is already a rational character of the algebraic torus T ), so
all the coverings under consideration are trivial. We can take Λcan to be the trivial
character of TR, and R+

iR arbitrary. (There are no real roots.) The corresponding
standard representation must have infinitesimal character zero by Definition 11.2;
but no representation of SU(2) has infinitesimal character zero. (Harish-Chandra’s
parametrization assigns the infinitesimal character ρ to the trivial representation.)

Next, the standard representation may be non-zero, but it may have several
distinct irreducible quotients. The first example occurs with GR = SL(2,R), and
TR ≃ R× the diagonal subgroup. Again all the coverings are trivial. We take Λcan

to be the trivial character of TR, and R+
R . Because the restriction to TR∩KR = {±1}

of the rational character ρ is non-trivial, we find that the character Λ̃ of (11.3) is

the signum character of R×. The standard representation is induced from Λ̃, and is
therefore equal to the reducible unitary principal series representation of SL(2,R):
a direct sum of two limits of discrete series. The Langlands quotient is therefore
also equal to this direct sum.

We will see that part (b) of Theorem 11.7 remains valid for singular infinitesimal
characters. This already provides a kind of counterexample to (c): in the pre-
ceding example, the two constituents of the Langlands quotient must themselves
be (irreducible) Langlands quotients of some other standard limit representations.
In fact the situation is even a little worse: there can be two non-zero standard
limit representations having isomorphic and irreducible Langlands quotients, with
inequivalent limit characters. The simplest example occurs with GR = GL(2,R),
TR = split Cartan subgroup, and (TR)′ = fundamental Cartan subgroup. The
standard representation we want is an irreducible unitary principal series whose
restriction to SL(2,R) is reducible; this representation is also a limit of (relative)
discrete series. We will write down one of the limit characters, just as an example
of the coverings involved. A dual group is GL(2,C), and the element z(ρ) is −I.
The complex torus T consists of diagonal matrices in GL(2,C), so

T ≃ { (z1, z2) | zi ∈ C× } (11.8)(a)

The T -canonical covering of T (Definition 10.1) turns out to be the projective limit
of all the finite covers, since T is split. A character of type z(ρ) factors through the
double cover

T̃ = { (z1, z2, w) | zi, w ∈ C×, w2 = z1z
−1
2 }. (11.8)(b)

(This is the “square root of ρ double cover” considered in Definition 1.33 of [Orange],
or Definition 8.3.11 of [AV2].) Its pullback to TR is

T̃R = { (x1, x2, w) | xi ∈ R×, w ∈ C×, w2 = x1x
−1
2 }. (11.8)(c)

We take Λcan to be the character

Λcan(x1, x2, w) = |w|sgn(x1)/w, (11.8)(d)
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which takes values in {±1,±i}. Let R+
R be the positive root corresponding to the

upper triangular matrices. Then the rational character ρ on T̃ is ρ(z1, z2, w) = w.

The character Λ̃ of (11.3) from which we induce is now easily computed to be

Λ̃(x1, x2) = sgn(x1). (11.8)(e)

Now it is clear that M(Λ) is an irreducible unitary principal series whose restriction
to SL(2,R) is the reducible principal series of the preceding example. We leave to
the reader the construction of the corresponding limit character on (TR)′.

In order to extend Theorem 11.7 to singular infinitesimal character, we need
to restrict the class of limit characters in order to avoid such phenomena. It is a
remarkable fact (related to the simple nature of the Galois group of C/R) that noth-
ing essentially more complicated than these examples can happen. The problem of
vanishing is particularly simple.

Proposition 11.9. In the setting of Definition 11.2, suppose Λ = (Λcan, R+
iR, R

+
R )

is a limit character. Then M(Λ) = 0 if and only if there is a simple root α ∈ R+
iR

such that α is compact, and 〈α, λ〉 = 0.

(Notice that the first condition provides a subgroup of GR locally isomorphic to
SU(2), and the second says that, along that subgroup, our limit character looks
like the one in the first example after Theorem 11.7.)

Proof. The standard limit representation may be constructed by induction from
a parabolic subgroup PR = LRNR, so it will be zero if and only if the inducing
representation is zero. This provides a reduction to the case LR = GR; that is, to
the case of (relative) limits of discrete series. That the condition in the proposition
implies that the standard limit representation is zero is easy. For example, it is im-
mediate from one of the two character identities established in [Schmid]. Another
approach (cf. [Green], Proposition 8.4.3) is to construct the standard limit repre-
sentation using cohomological parabolic induction. Then an induction by stages
argument reduces one to the case of SU(2).

The converse is not quite so easy. The argument is a special case of the one
we will give for Theorem 11.14 below, and the reader may refer to that for some
additional details. We are still assuming that LR = GR; that is, that R+

iR is a full
set of positive roots of T in G. Fix a dominant regular rational character µ of T ,
and consider the limit character

(Λcan ⊗ µ,R+
iR, R

+
R ).

We denote this by the symbol Λ + µ. The corresponding weight is λ+ dµ, which is
dominant regular by (11.2)(d) and the choice of µ. Then M(Λ + µ) is a (non-zero
irreducible) discrete series representation. The standard limit representation M(Λ)
is obtained from M(Λ + µ) by applying a Jantzen-Zuckerman translation functor
(namely the one denoted ψλλ+µ in [Green]). By [Green], Corollary 7.3.23, it follows

that M(Λ) = 0 if and only if there is a root α in τ(M(Λ + µ)) (the Borho-Jantzen-
Duflo τ -invariant) satisfying 〈α, λ〉 = 0. Now the τ -invariant is a subset of the set
of simple roots for the system of λ-integral roots. By (11.2)(d), a simple λ-integral
singular root α must be simple in all of R+. By hypothesis, α must be noncompact.
By [Green], Corollary 8.4.7, α does not lie in the τ -invariant; so M(Λ) 6= 0, as we
wished to show. Q.E.D.
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We want now a condition analogous to the one in Proposition 11.9 that will rule
out the other bad examples given after Theorem 11.7. In each example, there was
a real root α orthogonal to λ. Assuming that such roots do not exist certainly
eliminates these phenomena, but it also eliminates limit characters that are needed
for the classification. The prototypical example is the spherical representation π′

of SL(2,R) of infinitesimal character zero. In the notation of the second example
after Theorem 11.7, π′ is the unique Langlands quotient of — in fact is equal to
— the standard limit representation M(Λ′), with (Λ′)can the signum character of
TR. Furthermore π′ occurs in no other standard limit representation. To get a
good classification theorem, we need to keep the limit character Λ′ but discard Λ.
What distinguishes these two limit characters is their behavior on the non-identity
component of TR. The appropriate generalization of this is provided by the “parity
condition.”

Definition 11.10 ([IC1], Proposition 4.5, or [Green], Definition 8.3.11). Suppose
GR is as in (11.1), TR is a Cartan subgroup, and α is a real root of T in G. Choose
a root subgroup homomorphism

φα : SL(2) → G (11.10)(a)

defined over R, so that φα(diagonal matrices) ⊂ T . Since SL(2) is simply con-
nected, this lifts to

φcanα : SL(2) → Gcan. (11.10)(b)

Since SL(2,R) is connected, this map restricts to

φcanα : SL(2,R) → image of GcanR ⊂ G(R)can. (11.10)(c)

The mapping (11.1)(a) therefore induces an extension of SL(2,R). Passing to its
identity component, we get

φ̃canα : S̃L(2,R) → GcanR , (11.10)(d)

with
S̃L(2,R) → SL(2,R) (11.10)(e)

a connected cover. Define

m̃ = exp

(
0 π
−π 0

)
∈ S̃L(2,R), m̃α = φ̃canα (m̃) ∈ GcanR . (11.10)(f)

(If GR is linear, then S̃L(2,R) = SL(2,R), and m̃ = −I. In general m̃ is a generator

for Z(S̃L(2,R)), and it may have any (finite) order.) The homomorphism φα is not
quite uniquely determined by the conditions we have imposed on it. It is easy to
check that changing the choice replaces m̃α by m̃±1

α .
Suppose Λ = (Λcan, R+

iR, R
+
R ) is a limit character of TR. Choose any set R+

of positive roots for T in G. As in (11.3), regard Λcan ⊗ ρ as a representation of

T can,GR . It may then be applied to the element m̃α defined above. We say that α
satisfies the parity condition for Λ if the eigenvalues of the operator (Λcan⊗ρ)(m̃α)
are contained in the set

− exp
(
±iπ〈α∨, λ+ ρ− ρ(R+

R )〉
)
. (11.10)(g)
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(Because of the ± in the exponent, this condition is unchanged if we replace m̃α by
m̃−1
α .) Here it is important to understand that ρ(R+

R ) refers to the set of positive
real roots fixed in Λ, but that ρ refers to the arbitrary set R+ of positive roots. We
do not assume that R+

R is contained in R+. If GR is linear (so that m̃α is a central

element of order 2 in T can,GR ) this condition amounts to

〈α∨, λ+ ρ− ρ(R+
R )〉 = n ∈ Z, and (Λcan ⊗ ρ)(m̃α) = (−1)n+1. (11.10)(h)

Since the notion of limit character we are using is a little different from that
in [IC1] and [Green], we need to check that this definition of the parity condition
agrees with the (more complicated) one there. The first thing to notice is that
our condition (11.10)(g) does not depend on the choice of positive root system R+.
The reason is this. Write α∨ ∈ X∗(T ) for the coroot corresponding to α. By a
calculation in SL(2), the image of m̃α in G is

mα = α∨(−1) ∈ T. (11.11)(a)

It follows that if γ is any rational character of T , then

γ(mα) = (−1)〈α
∨,γ〉. (11.11)(b)

In particular, if R+ and (R+)′ are two systems of positive roots,

(
ρ(R+) ⊗ ρ((R+)′)−1

)
(mα) = (−1)〈α

∨,ρ(R+)−ρ((R+)′)〉. (11.11)(c)

This equality shows that the condition at (11.10)(g) does not depend on R+. (A
similar argument shows that the parity condition behaves well under equivalence
of limit characters.) To complete the comparison with [IC1] or [Green], one can
use the prescription in (11.3) for translating limit characters from one form to the
other. The argument is not trivial, but it is straightforward and dull, so we omit
it.

Here is an analogue of Proposition 11.9.

Proposition 11.12 (The Hecht-Schmid character identity — see [Schmid] and
[IC1], Proposition 4.5.) In the setting of Definition 11.2, suppose there is a real root
α such that α satisfies the parity condition for Λ (Definition 11.10), and 〈α, λ〉 = 0.
Then the standard limit representation M(Λ) is isomorphic to a direct sum of one or
two standard limit representations attached to limit characters on a Cartan subgroup
(TR)′ having a strictly smaller split part.

Definition 11.13 ([Under], Definition 2.6.) In the setting of Definition 11.2,
the limit character Λ = (Λcan, R+

iR, R
+
R ) is called final if it satisfies the following

two conditions.

(a) Suppose α is a simple root in R+
iR, and 〈α, λ〉 = 0. Then α is noncompact.

(b) Suppose α is a real root, and 〈α, λ〉 = 0. Then α does not satisfy the parity
condition for Λ (Definition 11.10).

We write

Lz(GR) = { equivalence classes of final limit characters of type z }.
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The standard limit representations attached to final limit characters are called final
standard limit representations.

Theorem 11.14 ([KZ]; see [Under], Theorem 2.6). Suppose GR is a real reduc-
tive group as in (11.1). Then the set Πz(GR) of infinitesimal equivalence classes of
irreducible admissible representations of GR is in one-to-one correspondence with
the set Lz(GR) of equivalence classes of final limit characters, as follows.

a) Suppose Λ is a final limit character of a Cartan subgroup TR (Definition 11.13).
Then the corresponding standard representation M(Λ) is non-zero, and has a
unique irreducible quotient. In particular, the Langlands quotient representation
π(Λ) is irreducible.

b) Suppose π is an irreducible canonical projective representation of GR of type z
(Definition 11.2). Then there is a final limit character Λ of type z with the
property that π is infinitesimally equivalent to π(Λ).

c) Suppose Λ and Λ′ are final limit characters, and that π(Λ) is infinitesimally
equivalent to π(Λ′). Then the limit characters are equivalent (Definition 11.6).

Any standard limit representation of GR (Definition 11.2) is isomorphic to a
direct sum of final standard limit representations.

Proof. (The result in [KZ] is for linear groups, and is in any case formulated in
a very different way. Since [Under] contains no proof, we outline the argument.)
The last claim is clear from Propositions 11.9 and 11.12. For the rest, one can
use the Jantzen-Zuckerman translation principle just as it is used in the proof
of Proposition 11.9. Here is a sketch. (Another development of the translation
principle, emphasizing the connection with the geometric version in section 8, may
be found in section 16.) Fix a maximal torus Ta of G and a weight

λa ∈ t∗a. (11.15)(a)

We study representations of infinitesimal character λa. Fix also a system of positive
roots R+

a for Ta in G, chosen so that

〈α, λa〉 > 0 ⇒ α ∈ R+
a . (11.15)(b)

Fix a regular dominant rational character µa ∈ X∗(Ta). By (11.15)(b),

λ′a = λa + µa (11.15)(c)

is a G-regular weight, and satisfies the analogue of (11.15)(b). As in the proof of
Proposition 11.9, we consider the translation functor

ψ = ψλaλa+µa (11.15)(d)

from modules with the (regular) infinitesimal character λa + µa to modules with
infinitesimal character λa. (The functor is defined by tensor product with the
finite-dimensional representation of lowest weight −µa, followed by projection on
the infinitesimal character λa.) Finally, define

∆0
a = simple roots for R+

a orthogonal to λa. (11.15)(e)
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Any irreducible representation π′ of infinitesimal character λ′a has a Borho-Jantzen-
Duflo τ -invariant, τ(π′) which is a subset of the simple roots for the positive λ′a-
integral roots (cf. [Green], Definition 7.3.8.) This set of simple roots includes ∆0

a,
so we can define

τ0(π′) = τ(π′) ∩ ∆0
a. (11.15)(f)

Here are the general facts we need from the translation principle.

Proposition 11.16 ([Green], Corollary 7.3.23; cf. also [Dix], Proposition 7.7).
Suppose GR is a real reductive group as in (11.1), and suppose we are in the setting
(11.15). Then the translation functor ψ of (11.15)(d) is an exact functor from
canonical projective representations of GR of type z and infinitesimal character λ′a
to canonical projective representations of type z and infinitesimal character λa. It
has the following additional properties.

a) Suppose π′ is an irreducible representation of infinitesimal character λ′a. Then
ψ(π′) is irreducible or zero. The first possibility occurs if and only if τ0(π′) (cf.
(11.15)(f)) is empty.

b) Suppose π is an irreducible representation of infinitesimal character λa. Then
there is a unique irreducible representation π′ with ψ(π′) ≃ π.

In order to use this result to reduce Theorem 11.14 to the special case of The-
orem 11.7, we need to know two more specific things: how the translation functor
affects standard limit representations, and how to compute τ0(π′) in terms of the
classification of Theorem 11.7. Suppose then that Λ′ = ((Λ′)can, R+

iR, R
+
R ) is a GR-

limit character of TR of infinitesimal character λ′a. Write λ′ for the differential of
Λ′. Since λ′ and λ′a are regular and define the same infinitesimal character, there
is a unique isomorphism

i(λ′a, λ
′) : Ta → T (11.17)(a)

induced by an element of G and carrying λ′a to λ′. We also write i(λ′a, λ
′) for the

induced isomorphism from the root system of Ta in G to that of T , and so on. Put

R+ = i(λ′a, λ
′)(R+

a ), (11.17)(b)

a system of positive roots for T in G. Because of (11.15)(b) and (11.2)(d), we have

R+ ⊃ R+
iR. (11.17)(c)

Similarly, define
µ = i(λ′a, λ

′)(µa) ∈ X∗(T ). (11.17)(d)

Then we can define

Λ′ − µ = ((Λ′)can ⊗ µ−1, R+
iR, R

+
R ). (11.17)(e)

Because of (11.15)(b) and (11.17)(c), this is a GR-limit character of TR of infinites-
imal character λa.

Proposition 11.18 Suppose we are in the setting of (11.15), and Λ′ is a GR-
limit character of infinitesimal character λ′a. Use the notation of (11.17).

a) The translation functor ψ satisfies

ψ(M(Λ′)) ≃M(Λ′ − µ).
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b) Write ∆0 for the image of ∆0
a under the bijection i(λ′a, λ

′). Then the τ invariant
τ0(π(Λ′)) corresponds to the subset of roots in ∆0 satisfying one of the following
three conditions:
i) α is compact imaginary;
ii) α is complex, and its complex conjugate α is positive; or
iii) α is real and satisfies the parity condition (Definition 11.10).

c) Suppose τ0(π(Λ′)) is empty. Then ψ(π(Λ′)) is the unique irreducible quotient of
M(Λ′ − µ). That is,

ψ(π(Λ′)) = π(Λ′ − µ).

Proof. Part (a) is proved for linear groups in [Green], Proposition 7.4.1; the
argument is unchanged in general. For (b), the τ -invariant depends only on the
restriction of a representation to the identity component (in fact only on its anni-
hilator in the enveloping algebra); so we may assume GR is connected. Then the
result is proved in [IC1], Theorem 4.12. (For linear groups, this is [Green], Theorem
8.5.18.)

For (c), suppose that π1 is an irreducible quotient of M(Λ). By Proposition
11.16, there is an irreducible representation π′1 of infinitesimal character λ′a with
ψ(π′1) ≃ π1. The translation functor ψ has a two-sided adjoint

φ = ψλa+µaλa
(11.19)(a)

([Green], Proposition 4.5.8). Consequently

Hom(M(Λ′ − µ), π1) ≃ Hom(ψ(M(Λ′)), ψ(π′1)) ≃ Hom(M(Λ′), φψ(π′1)).
(11.19)(b)

(The Hom spaces are infinitesimal homomorphisms; that is, (g,KR)-module maps
for an appropriate maximal compact KR.) Now it is a formal consequence of the
adjointness of φ and ψ that any irreducible subrepresentation π′2 of φψ(π′1) must
be a preimage of π1 under ψ. By Proposition 11.16(b),

Hom(π′2, φψ(π′1)) =

{
C, ifπ′2 ≃ π′1

0 otherwise.
(11.19)(c)

On the other hand, (11.19)(b) implies that the unique irreducible quotient π′ of
M(Λ′) must be a composition factor of φψ(π′1). But the only composition factor
of φψ(π′1) having τ0 empty is π′1 itself ([Green], Proposition 7.3.2(b) and Corollary
7.3.21). Consequently π′1 ≃ π′, and π1 ≃ ψ(π′). The last group in (11.19)(b) is
therefore

Hom(M(Λ′), φψ(π′)). (11.19)(d)

The image P ′ of a non-zero map in this space must have π′ as its unique irreducible
quotient (since P ′ is a quotient of M(Λ′)) and as its unique irreducible subrepresen-
tation (by (11.19)(c)). But π′ occurs only once as a composition factor of M(Λ′),
so it follows that P ′ = π′. Consequently

Hom(M(Λ′), φψ(π′)) ≃ Hom(π′, φψ(π′)) ≃ C. (11.19)(e)

In conjunction with (11.19)(b), this shows that ψ(π′) occurs exactly once as a
quotient of M(Λ), as we wished to show. Q.E.D.
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Propositions 11.16 and 11.18 explain rather explicitly how to describe represen-
tations of infinitesimal character λa in terms of representations of (regular) infin-
itesimal character λ′a. The proof of Theorem 11.14 now comes down to checking
that these constructions are compatible with the parametrization in terms of final
limit characters. Here is the result we need.

Proposition 11.20. In the setting (11.15), there is a bijection from the set

{equivalence classes of limit characters Λ′ of infinitesimal character λ′a with τ0(π(Λ′)) empty }

onto the set

{equivalence classes of final limit characters Λ of infinitesimal character λa}.

In the notation of (11.17), this bijection sends the class of Λ′ to the class of
Λ′ − µ.

Proof. Suppose first that τ0(π(Λ′)) is empty; we want to show that Λ = Λ′ − µ
is final (Definition 11.13). First, Proposition 11.18 guarantees that M(Λ) 6= 0. By
Proposition 11.9, it follows that Λ satisfies condition (11.13)(a). To verify condition
(11.13)(b), we need to understand a little about the root system

R0 = {α ∈ R(G, T ) | 〈α, λ〉 = 0 }. (11.21)(a)

First, it has (R0)+ = R+ ∩R0 (notation (11.17)(c)) as a set of positive roots, with
∆0 the corresponding simple roots. Define

∆0
R = ∆0 ∩RR, R0

R = R0 ∩RR. (11.21)(b)

What we need to show is that

∆0
R is a set of simple roots for R0

R. (11.21)(c)

Assume for a moment that we have established this. From Definition 11.10 one can
check that

if α and β in R0
R do not satisfy the parity condition, then neither does sα(β).

(11.21)(d)
(For linear groups one can say even more: because of (11.11)(a), the set of coroots
for roots in R0

R not satisfying the parity condition is closed under addition (cf.
[Green], Lemma 8.6.3). In the non-linear case, one can reduce immediately to the
case of split simple groups of rank 2. These can be treated by hand; the calculation
is very easy except in type B2.) By Proposition 11.18(b)(iii) and the hypothesis on
Λ′, the roots in ∆0

R do not satisfy the parity condition. By (11.21)(c) and (d), it
follows that no root in R0

R satisfies the parity condition. This is (11.13)(b).
To prove (11.21)(c), observe first that

if α ∈ (R0)+, then 〈−α, λ〉 ≥ 0. (11.22)(a)
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For it is enough to prove this for α ∈ ∆0. If α is real or imaginary, the inner product
is zero. If α is complex, then the hypothesis on Λ′ and Proposition 11.18(b)(ii)
guarantee that −α ∈ R+; so the inequality follows from (11.15)(b) (and (11.17)).
Now define

R00 = {α ∈ R0 | −α ∈ R0 }

= {α ∈ R | 〈α, λ〉 = 〈−α, λ〉 = 0 }. (11.22)(b)

This is a root system; we define

(R00)+ = R00 ∩R+, ∆00 = ∆0 ∩R00. (11.22)(c)

Because of (11.22)(a),

∆00 is a set of simple roots for (R00)+. (11.22)(d)

Now α 7→ −α is an involutive automorphism of R00, so we can apply to it Lemma
8.6.1 of [Green]. Suppose α is a complex simple root for (R00)+. By (11.22)(d),
α ∈ ∆0; so by Proposition 11.18(b)(ii) and the hypothesis on Λ′, −α ∈ (R00)+.
Lemma 8.6.1 of [Green] therefore implies that

the set of non-real roots in (R00)+ is stable under α 7→ −α. (11.22)(e)

Now (11.21)(c) is precisely the conclusion of Lemma 8.6.2 of [Green].
We have therefore shown that the map in Proposition 11.20 is well-defined. To

see that it is surjective, assume that

Λ = (Λcan, R+
iR, R

+
R ) is a final limit character of TR of infinitesimal character λa.

(11.23)(a)
Write R for the set of roots of T in G. Define

R0 = {α ∈ R | 〈α, λ〉 = 0 }, (11.23)(b)

R00 = {α ∈ R0 | −α ∈ R0 }. (11.23)(c)

Choose a set of positive roots (R00)+ for R00 with the property that

the set of non-real roots in (R00)+ is stable under α 7→ −α. (11.23)(d)

(This is certainly possible.) Possibly after modifying this system by reflections in
imaginary roots, we may assume that

R+
iR ∩R00 ⊂ (R00)+. (11.23)(e)

Now define a positive root system for R0 by

(R0)+ = (R00)+ ∪ {α ∈ R0 | 〈−α, λ〉 > 0 }. (11.23)(f)

Write
∆0 = simple roots for (R0)+. (11.23)(g)
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Since λ and λa define the same infinitesimal character, there is a unique isomor-
phism

i(λa, λ; ∆
0
a,∆

0) : Ta → T (11.24)(a)

induced by an element of G, carrying λa to λ and ∆0
a to ∆0. Just as in (11.17), we

now define
R+ = i(λa, λ; ∆

0
a,∆

0)(R+
a ), (11.24)(b)

a system of positive roots for T in G. Because of (11.23)(e) and (f), and (11.2)(d),
we have

R+ ⊃ R+
iR. (11.24)(c)

Put
µ = i(λa, λ; ∆

0
a,∆

0)(µa) ∈ X∗(T ). (11.24)(d)

Then we can define
Λ′ = (Λcan ⊗ µ,R+

iR, R
+
R ). (11.24)(e)

Because of (11.23)(f) and (11.24)(c), this is a GR-limit character of TR of infinites-
imal character λ′a. We are again in the situation (11.17), and Λ = Λ′−µ. We need
to check that τ0(π(Λ′)) is empty. So fix a root α ∈ ∆0. If α is imaginary, then
(11.24)(c) implies that it is simple in R+

iR; so since Λ is final, α is noncompact. If
α is complex, then (11.23)(d) and (f) imply that −α is positive. If α is real, then
since Λ is final, α does not satisfy the parity condition. By Proposition 11.18(b),
α is not in the τ -invariant. This proves the surjectivity of the map in Proposition
11.20.

For the injectivity, suppose Λ′1 and Λ′2 both map to the equivalence class of Λ.
By Proposition 11.18(c),

ψ(π(Λ′1)) ≃ π(Λ) ≃ ψ(π(Λ′2)).

By Proposition 11.16(b), it follows that π(Λ′1) ≃ π(Λ′1). By Theorem 11.7(c), Λ′1 is
equivalent to Λ′2. Q.E.D.

Theorem 11.14 is a formal consequence of Proposition 11.16, Proposition 11.18,
Proposition 11.20, and Theorem 11.7 (applied to the infinitesimal character λ′a in
the setting (11.15)). Q.E.D.

12. Langlands parameters and Cartan subgroups.

In this section we show how to reformulate Theorem 10.4 in terms of Cartan
subgroups of extended groups and E-groups. We begin by recasting Theorem 11.14
in the language of extended groups.

Definition 12.1. Suppose GΓ is a weak extended group for G, ∨G is a dual
group for G, and z ∈ Z(∨G)θZ (cf. Definition 10.3). A Cartan subgroup of GΓ

is a weak extended group T Γ ⊂ GΓ with identity component a maximal torus
T ⊂ G. The conjugation action of any element δ ∈ T Γ − T on T is a real form of
T , independent of the choice of δ; we write T (R) for the group of real points.

A G-limit character of T Γ of type z is a pair (δ,Λ) subject to the following
conditions. First,

δ ∈ T Γ − T is a strong real form of G (12.1)(a)
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(Definition 2.13). Thus T (R) is a Cartan subgroup of G(R, δ). We can therefore
impose the second requirement

Λ is a G(R, δ)-limit character of T (R) of type z (12.1)(b)

(Definition 11.2). We say that (δ,Λ) is final if Λ is (Definition 11.13). We say that
(δ,Λ) is equivalent to the G-limit character (δ′,Λ′) of (T ′)Γ if there is an element
g ∈ G that conjugates δ′ to δ, so that g ·Λ′ and Λ are equivalent as limit characters
of G(R, δ) (Definition 11.6). Write

Lz(G/R) = { equivalence classes of final limit characters (δ,Λ) of type z }.
(12.1)(c)

This definition can be formulated a little more directly, by incorporating some
of the earlier definitions to which it refers. We can say that a limit character of T Γ

of type z is a quadruple
(δ,Λcan, R+

iR, R
+
R ), (12.2)(a)

subject to the conditions below. First,

δ ∈ T Γ − T , and δ2 ∈ Z(G). (12.2)(b)

Write T can,T for the corresponding canonical cover (Definition 10.1), and T can,T (R)
for the preimage of T (R) in this cover (Definition 10.3):

1 → π1(T )can → T (R)can,T → T (R) → 1. (12.2)(c)

Then zz(ρ) ∈ ∨T θZ (Definition 11.2) defines a character χTzz(ρ) of π1(T )can. The

second condition is

Λcan is a character of T (R)can,T , and Λcan|π1(T )can = χTzz(ρ). (12.2)(d)

(Notice that this condition does not involve δ.) Write RiR for the set of roots
assuming imaginary values on t(R), and RR for those assuming real values. Then

R+
iR is a set of positive roots for RiR, and R+

R for RR. (12.2)(e)

Finally, write λ = dΛcan ∈ t∗. Then we require

〈α, λ〉 ≥ 0, (α ∈ R+
iR). (12.2)(f)

We leave to the reader the straightforward task of formulating similarly explicit
descriptions of the notion of final and the equivalence relation on limit characters.

Theorem 12.3. Suppose GΓ is a weak extended group for G (Definition 2.13).
Then there is a natural bijection between the set Πz(G/R) of equivalence classes of
irreducible canonical projective representations of type z of strong real forms of G
(Definition 10.3) and the set Lz(G/R) of equivalence classes of final limit characters
of type z of Cartan subgroups in GΓ (Definition 12.1).

This is just a reformulation of Theorem 11.14.
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We would like a parallel description of the Langlands parameters, in terms of
tori in the dual group.

Definition 12.4. Suppose ∨GΓ is a weak E-group (Definition 4.3). A Cartan

subgroup of ∨GΓ is a weak E-group dT
Γ
⊂ ∨GΓ such that the identity component dT

is a maximal torus in ∨G, and the inclusion of dT
Γ

in ∨GΓ is an L-homomorphism

(Definition 5.1). Conjugation by any element y of dT
Γ
− dT defines an involutive

automorphism θ of dT , which is independent of y. Write

A(dT
Γ
) = dT

θ
/(dT

θ
)0 (12.4)(a)

for the group of connected components of the fixed points of θ. We call this group

the Langlands component group for dT
Γ
. As in (5.10) we can form such groups as

dT
alg,∨G

(which is a quotient of the algebraic universal covering dT
alg,dT

). Define

A(dT
Γ
)alg,

∨G = (dT
θ
)alg,

∨G/((dT
θ
)alg,

∨G)0, (12.4)(b)

the universal component group for dT
Γ

with respect to ∨GΓ.

Since dT
Γ

is a weak E-group in its own right, we can speak of Langlands param-

eters for dT
Γ

(Definition 5.2). A Langlands parameter φ is said to be ∨G-regular if
for every root α of dT in ∨G, we have

α(λ(φ)) 6= 0 (12.4)(c)

(notation (5.8)). In general the roots that fail to satisfy (12.4)(c) are called λ(φ)-
singular or φ-singular.

A complete Langlands parameter for dT
Γ

with respect to ∨GΓ is a pair (φ, τ1)

with φ a Langlands parameter for dT
Γ
, and τ1 an irreducible representation of

A(dT
Γ
)alg,

∨G (cf. Definition 5.12). Such a parameter is said to be equivalent to a

complete parameter (φ′, τ ′1) for (dT
Γ
)′ if the triple (dT

Γ
, φ, τ1) is conjugate by ∨G

to ((dT
Γ
)′, φ′, τ ′1).

To formulate a definition analogous to that of “final,” we need a little preliminary
notation. Suppose we are in the setting of Definition 12.4. Since θ extends (although
not uniquely) to an automorphism of ∨G, it must permute the roots and coroots of
dT in ∨G. We write

dR = R(∨G, dT ) (12.5)(a)

dRR = {α ∈ dR | θα = −α } (12.5)(b)

dRiR = {α ∈ dR | θα = α }, (12.5)(c)

the real and imaginary roots of dT
Γ
. Suppose now that α is a real root. The

corresponding coroot α∨ is a homomorphism from C× to dT (or even into dT
alg,∨G

).
Since α is real, it satisfies

θ(α∨(z)) = α∨(z−1). (12.6)(a)

In particular, we get a distinguished element of order two

mα = α∨(−1) ∈ dT
θ
. (12.6)(b)
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Similarly, we write

malg
α = α∨(−1) ∈ (dT

θ
)alg,

∨G. (12.6)(c)

These elements define elements of order two in the component groups of Definition
12.4, which we write as

malg
α ∈ A(dT

Γ
)alg,

∨G (α ∈ dRR). (12.6)(d)

Next, suppose α is an imaginary root, and y ∈ dT
Γ
− dT . Choose root vectors

X±α ∈ ∨g. Since θ fixes α, Ad(y) must send each root vector to a multiple of itself:

Ad(y)X±α = z±αXα. (12.7)(a)

The bracket of these two root vectors is a multiple of the derivative of the coroot
α∨, and is therefore fixed by θ = Ad(y). It follows that

zα = (z−α)−1. (12.7)(b)

Similarly, if α, β and α+ β are all imaginary roots,

zα+β = zαzβ . (12.7)(c)

Now y2 belongs to dT , so α(y2) is defined. Clearly

(zα)2 = α(y2). (12.7)(d)

We say that α is y-compact if zα = 1, and y-noncompact if zα = −1. As a conse-
quence of (12.7)(d), every imaginary root in the centralizer of y2 is either compact
or noncompact.

Definition 12.8. Suppose φ is a Langlands parameter for dT
Γ
. As in (5.8), we

associate to φ elements y = y(φ) ∈ dT
Γ
− dT and λ = λ(φ) ∈ dt. An imaginary root

α is called φ-compact (respectively φ-noncompact) if it is y(φ)-compact (respectively
y(φ)-noncompact) in the sense of (12.7). By Proposition 5.6(b) and (12.7)(d), every
φ-singular imaginary root is either φ-compact or φ-noncompact.

Suppose next that (φ, τ1) is a complete Langlands parameter for dT
Γ

with respect
to ∨GΓ (Definition 12.4). We say that the pair (φ, τ1) is final if it satisfies the
following two conditions.

(a) Every φ-singular imaginary root of dT in ∨G is φ-compact.

(b) If α is a φ-singular real root of dT
Γ

in ∨GΓ, then

τ1(m
alg
α ) = 1

(notation 12.6)(c).)

Theorem 12.9. Suppose ∨GΓ is a weak E-group (Definition 4.3). Then there
is a one-to-one correspondence between the set Ξ(∨GΓ) of equivalence classes of
complete Langlands parameters for ∨GΓ (Definition 5.11) and the set of equiva-
lence classes of final complete Langlands parameters for Cartan subgroups of ∨GΓ

(Definition 12.8).



103

Proof. Suppose (φ, τ) is a complete Langlands parameter for ∨GΓ. We want to

construct a Cartan subgroup dT
Γ

containing the image of φ. To do this, use the
notation of Corollary 5.9. There we defined a Levi subgroup L(λ, y · λ) of ∨G, on
which conjugation by y acts as an involutive automorphism θy. We apply to this
subgroup the following well-known facts. (The slightly awkward hypotheses on K
will allow us to apply the result to coverings.)

Lemma 12.10 Suppose G is a connected complex reductive algebraic group, and
θ is an involutive automorphism of G. Suppose K is an algebraic subgroup of
G having the same identity component as the group of fixed points of θ, with the
property that the automorphisms of G in Ad(K) all commute with θ. Then there
is a θ-stable maximal torus T ⊂ G, determined up to conjugation by K0 by either
of the following properties. Write a for the −1 eigenspace of θ on t, and M for the
centralizer of a in G.

a) The Lie algebra a is a maximal semisimple abelian subalgebra in the −1 eigenspace
of θ on g.

b) Every root of T in M is compact (cf. (12.7); the roots in M are precisely the
imaginary roots of T in G).

In addition, T has the following properties.

c) T ∩ K meets every connected component of K. That is, the natural map (T ∩
K)/(T ∩K)0 → K/K0 is surjective.

d) The kernel T ∩K0 of the map in (c) is generated by (T ∩K)0 and the elements
mα ∈ T attached to real roots α (cf. (12.6)).

In particular, the characters of the component group K/K0 are in one-to-one
correspondence with the characters of (T ∩K)/(T ∩K)0 trivial on all the elements
mα (for α real).

A torus with the properties in the lemma will be called a maximally θ-split torus
for G. We postpone a discussion of the proof for a moment, and continue with the
proof of Theorem 12.9. So choose a maximally θy-split torus

dT ⊂ L(λ, y · λ). (12.11)(a)

Since L(λ, y · λ) is a Levi subgroup of ∨G, it follows that dT is a maximal torus in
∨G. Furthermore the Lie algebra dt must contain the central elements λ and y · λ
of l(λ, y · λ), so

φ|C× : C× → dT .

Define
dT

Γ
= group generated by y and dT , (12.11)(b)

so that
φ : WR → dT

Γ
. (12.11)(c)

Since θy preserves dT , the element y normalizes dT . Since y2 belongs to dT (cf.

Proposition 5.6(b)), it follows that dT has index two in dT
Γ
. It follows easily that

dT is a weak E-group, and so a Cartan subgroup of ∨GΓ (Definition 12.4).
A real or imaginary root is λ-singular if and only if it is y · λ-singular. It follows

that the real or imaginary φ-singular roots are exactly the real or imaginary roots
of dT in L(λ, y · λ). By Lemma 12.10(b), this means that

every φ-singular imaginary root of dT in ∨G is φ-compact. (12.11)(d)
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As in Corollary 5.9, write K(y) for the centralizer of y in ∨G. The component
group of which the datum τ is a character is

Aloc,algφ = [K(y) ∩ L(λ, y · λ)]alg/
(
[K(y) ∩ L(λ, y · λ)]alg

)
0

(Corollary 5.9(c)). Lemma 12.10(c) (applied to the group L(λ, y ·λ)alg,
∨G) provides

a surjective map

A(dT
Γ
)alg,

∨G → Aloc,algφ . (12.11)(e)

We use this map to pull τ back to a character τ1 of A(dT
Γ
)alg,

∨G. By Lemma
12.10(d),

τ1(m
alg
α ) = 1 (α real and φ-singular). (12.11)(f)

By (12.11)(d) and (12.11)(f), the pair (φ, τ1) is a final complete Langlands pa-

rameter for dT
Γ

with respect to ∨GΓ. The only choice involved is that of the
maximal torus T , and Lemma 12.10 guarantees that T is unique up to conjugation
by the centralizer of φ in ∨G. It follows easily that the map from parameters for
∨GΓ to parameters for Cartan subgroups is well-defined on equivalence classes.

This argument can be reversed without difficulty, to recover a unique complete
parameter for ∨GΓ from a complete final parameter for a Cartan subgroup. It
follows that the correspondence is bijective. Q.E.D.

Sketch of proof of Lemma 12.10. That conditions (a) and (b) are equivalent
is fairly easy; the main point is the uniqueness of T up to K0-conjugacy . This is
proved in [KR], Theorem 1 (or [Vust], p.323). Part (c) is [KR], Proposition 1 (or
[Vust], Proposition 7).

For (d), consider the Levi subgroup

L = centralizer of (T ∩K)0 in G.

As the centralizer of a torus, L is connected. The roots of T in L are precisely the
real roots of T in G. Since (T ∩K)0 is also a torus in K0, it follows that L∩K0 is
also connected. It follows that

T ∩K0 = T ∩ (L ∩K0) = T ∩ (L ∩K)0.

It therefore suffices to prove (d) for the subgroup L instead of for all of G; that is,
under the assumption that all roots are real. It is enough to prove (d) for a finite
cover of G, and then for each factor of a θ-stable direct product decomposition.
After such reductions, we may assume that G is simple and simply connected, and
that θ acts by −1 on t. Then T θ consists precisely of the elements of order 2 in
T . Since G is simply connected, X∗(T ) is generated by the coroot lattice. Now it
follows from Lemma 9.9 and the definitions that the elements mα generate the full
group of elements of order 2 in T . Consequently

T ∩K0 ⊂ T θ = group generated by the mα.

The other containment (that is, that mα ∈ K0) follows from a standard calculation
in SL(2). Q.E.D.
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13. Pairings between Cartan subgroups and the proof of Theorem 10.4.

Theorem 12.3 describes representations in terms of Cartan subgroups of GΓ,
and Theorem 12.9 describes Langlands parameters in terms of Cartan subgroups of
∨GΓ. To complete the proof of Theorem 10.4, we need to relate Cartan subgroups
of GΓ and ∨GΓ. We begin by doing this for maximal tori. The following lemma
more or less restates the definition of dual group; we leave its proof to the reader.

Lemma 13.1. Suppose G is a complex connected reductive algebraic group, and
∨G is a dual group for G (Definition 4.2). Fix maximal tori T ⊂ G and dT ⊂ ∨G.
Write ∨T for a dual torus to T (cf. (9.3)). Suppose ∆ ⊂ X∗(T ) is a set of simple
roots for T in G, and d∆ ⊂ X∗(dT ) a set of simple roots for dT in ∨G. Write

∆∨ ⊂ X∗(T ) and d∆
∨
⊂ X∗(

dT ) for the corresponding sets of simple coroots.

a) There is a natural isomorphism

ζ(∆, d∆) : ∨T → dT .

b) The induced map on one-parameter subgroup lattices

ζ∗(∆,
d∆) : (X∗(

∨T ) = X∗(T )) → X∗(
dT )

carries ∆ onto d∆
∨
.

c) The induced map (in the other direction) on character lattices

ζ∗(∆, d∆) : X∗(dT ) → (X∗(∨T ) = X∗(T ))

carries d∆ onto ∆∨.
d) If sets of simple roots are not fixed, we obtain a finite family of natural isomor-

phisms
ζ : ∨T → dT .

Any two of these isomorphisms differ by composition with the action of a unique
element of the Weyl group of dT in ∨G.

The characteristic property of the isomorphism ζ(∆, d∆) is that the induced maps
described in (b) and (c) implement the natural isomorphism from the dual

∨Ψ0(G) = (X∗(T ),∆∨, X∗(T ),∆)

of the based root datum for G, onto the based root datum

Ψ0(
∨G) = (X∗(dT ), d∆, X∗(

dT ), d∆
∨
).

With the rôles of G and ∨G reversed, (a) provides also an isomorphism

ζ(d∆,∆) : ∨dT → T.

It coincides with the one obtained from ζ(∆, d∆) by applying the dual torus functor
(cf. (9.3)). Using that functor, we can also think of the various natural isomor-
phisms of (d) as differing by elements of the Weyl group of T in G.
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Definition 13.2 (cf. [AV2], Definition 9.11). Suppose GΓ is a weak extended
group, and ∨GΓ is a weak E-group for GΓ (Definition 4.3). Fix Cartan subgroups

T Γ ⊂ GΓ and dT
Γ
⊂ ∨GΓ (Definitions 12.1 and 12.4). Write σ for the real form of

T defined by any element of T Γ − T , and θ for the involutive automorphism of dT

defined by any element of dT
Γ
− dT . By Proposition 2.12, σ defines an involutive

automorphism
aT ∈ Aut(Ψ0(T )) = Aut(X∗(T ), X∗(T )).

That is, aT gives an automorphism of each of the lattices X∗(T ) and X∗(T ), re-
specting the pairing into Z. Similarly (Proposition 2.11 or Proposition 4.4) the
involution θ defines an involutive automorphism

adT ∈ Aut(∨Ψ0(
dT )) = Aut(X∗(

dT ), X∗(dT )).

A weak pairing between T Γ and dT
Γ

is an identification of dT
Γ

with a weak E-
group for T Γ, subject to one additional condition that we now describe. According
to Definition 4.3, the identification in question amounts to an isomorphism

ζ : ∨T → dT (13.2)(a)

of the dual torus ∨T for T (cf. (9.3)) with dT . Such an identification is just an
isomorphism

ζ : (X∗(T ), X∗(T )) → (X∗(
dT ), X∗(dT )) (13.2)(b)

In order to make dT
Γ

an E-group for T Γ, this isomorphism must satisfy

ζ carries aT to adT . (13.2)(c)

The additional requirement that we impose for a weak pairing is

ζ is one of the natural isomorphisms of Lemma 13.1(d). (13.2)(d)

This condition brings the groups GΓ and ∨G
Γ

into the definition.

Lemma 13.3. Suppose we are in the setting of Definition 13.2; use the notation
there.

a) The isomorphism ζ induces an identification of Weyl groups

ζ : W (G, T ) →W (∨G, dT ).

b) The isomorphism of (a) carries the action of the involution σ on W (G, T ) to the
action of θ on W (∨G, dT ). In particular, we have an isomorphism

ζ : W (G, T )σ →W (∨G, dT )θ.

c) Suppose ζ′ is another isomorphism from ∨T to dT (Lemma 13.1(d)). Then ζ′ is
a weak pairing between the Cartan subgroups if and only if ζ′ = w ◦ ζ for some
w ∈ W (∨G, dT )θ.

This is obvious.
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Proposition 13.4 ([AV2], Lemma 9.16). Suppose GΓ is a weak extended group,
and ∨GΓ is a weak E-group for GΓ (Definition 4.3).

a) Suppose T Γ is a Cartan subgroup of GΓ (Definition 12.1). Then there is a Cartan

subgroup dT
Γ

of ∨GΓ and a weak pairing between T Γ and dT
Γ

(Definition 13.2).

The Cartan subgroup dT
Γ

is unique up to conjugation by ∨G.

b) Suppose dT
Γ

is a Cartan subgroup of ∨GΓ (Definition 12.4). Then there is a

Cartan subgroup T Γ of GΓ and a weak pairing between T Γ and dT
Γ

(Definition
13.2). The Cartan subgroup T Γ is unique up to conjugation by G.

Proof. For (a), let dT be any maximal torus in ∨G, and y an element of ∨GΓ−∨G
normalizing dT . (To find such an element y, start with any y0 in ∨GΓ − ∨G,
and modify it by an element of ∨G conjugating Ad(y0)(

dT ) back to dT .) Then
conjugation by y defines an automorphism θy of dT , and so an automorphism ay
of ∨Ψ0(

dT ).
Fix one of the natural isomorphisms ζ from ∨T to dT (Lemma 13.1). This

isomorphism carries the automorphism aT to an involutive automorphism adT of
∨Ψ0(

dT ). Since ∨GΓ is an E-group for GΓ, it follows from Definition 4.3 that ay
and adT must differ by the action of an element w ∈ W (∨G, dT ):

adT = w ◦ ay.

Now let n ∈ ∨G be any representative of w, and set y′ = ny. Then y′ ∈ ∨GΓ −
∨G still normalizes dT , and the conjugation action of y′ defines the involutive

automorphism θ of dT corresponding to adT . The group dT
Γ

generated by y′ and
dT is therefore a Cartan subgroup of ∨GΓ paired with T Γ.

For the uniqueness, suppose (dT
Γ
1 )′ is another Cartan subgroup paired by ζ1

with T Γ. After conjugating by ∨G, we may assume that dT 1 = dT and that ζ1 = ζ.

Then the automorphism of dT defined by any element y of dT
Γ
− dT coincides

with the automorphism defined by any element y′ of (dT
Γ
)′ − dT . It follows that

ydT = y′dT , so that dT
Γ

= (dT
Γ
)′ as we wished to show.

The proof of (b) is formally identical, and we omit it. Q.E.D.
Our next goal is to reduce the ambiguity in the notion of weak pairing described

in Lemma 13.3(c).

Definition 13.5. Suppose (GΓ,W) is an extended group for G (Definition 1.12).
A based Cartan subgroup of (GΓ,W) is a quadruple T Γ = (T Γ,W(T Γ), R+

iR, R
+
R ),

subject to the following conditions.

(a) T Γ is a Cartan subgroup of GΓ (Definition 12.1).
(b) W(T Γ) is an extended group structure on T Γ (Definition 1.12). That is, W(T Γ)

is a T -conjugacy class of elements δ ∈ T Γ − T , with the property that δ2 has
finite order.

(c) W(T Γ) is a subset of W , in the sense that for every δ ∈ W(T Γ) there are N and
χ so that (δ,N, χ) ∈ W .

(d) R+
iR is a set of positive imaginary roots of T in G, and R+

R is a set of positive
real roots.

(e) The extended group structure and the positive imaginary roots are compatible in
the following sense. Fix δ ∈ W(T Γ), and N and χ so that (δ,N, χ) ∈ W . Write
G(R) = G(R, δ) for the corresponding (quasisplit) real form of G. Suppose Λcan
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is an irreducible canonical projective representation of T (R)can,T of type zz(ρ),
and that

Λ = (Λcan, R+
iR, R

+
R ))

is a G(R)-limit character of type z (Definition 11.2). Then what we require is
that the corresponding standard limit representation M(Λ) admit a Whittaker
model of type χ (Definition 3.1).

Two based Cartan subgroups are called equivalent if they are conjugate by G.

Proposition 13.6. Suppose T Γ is a Cartan subgroup of the extended group
(GΓ,W), and (R+

iR, R
+
R ) are systems of imaginary and real positive roots. Then

there is a unique extended group structure W(T Γ) on T Γ making the quadruple
(T Γ,W(T Γ), R+

iR, R
+
R ) a based Cartan subgroup.

The proof is fairly long, so we postpone it to the next section.
There is an analogue of Definition 13.5 for E-groups. The key to it is the notion

of “special” systems of positive imaginary roots formulated in section 6 of [AV2].

Definition 13.7. Suppose (∨GΓ,S) is an E-group for G (Definition 4.14). A

based Cartan subgroup of (∨GΓ,S) is a quadruple dT Γ = (dT
Γ
,S(dT

Γ
), dR

+
iR,

dR
+
R ),

subject to the following conditions.

(a) dT
Γ

is a Cartan subgroup of ∨GΓ (Definition 12.4).

(b) S(dT
Γ
) is an E-group structure on dT

Γ
(Definition 4.14). That is, S(dT

Γ
) is a

dT -conjugacy class of elements ∨δ ∈ T Γ − T , with the property that ∨δ
2

has
finite order.

(c) S(dT
Γ
) is a subset of S, in the sense that for every ∨δ ∈ S(dT

Γ
) there is a Borel

subgroup dB so that (∨δ, dB) ∈ S.

(d) dR
+
iR is a set of positive imaginary roots of dT in ∨G, and dR

+
R is a set of positive

real roots (cf. (12.5)).
(e) The E-group structure and the positive imaginary roots are compatible in the

following sense. Fix ∨δ ∈ S(dT
Γ
), and define dB to be the set of Borel subgroups

dB so that (∨δ, dB) ∈ S). (The set dB is a single orbit under the action of the

centralizer K of ∨δ in ∨G.) Then what we require is that dR
+
iR be special with

respect to dB ([AV2], Definition 6.29).

Two based Cartan subgroups are called equivalent if they are conjugate by ∨G.

It is possible to give a more geometric definition of “special” than the one in
[AV2], and in fact this is crucial for the proof given there of some technical results
we will use.

Here is the analogue of Proposition 13.6.

Proposition 13.8. Suppose dT
Γ

is a Cartan subgroup of the E-group (∨GΓ,S),

and (dR
+
iR,

dR
+
R ) are systems of imaginary and real positive roots. Then there is a

unique E-group structure S(dT
Γ
) on dT

Γ
making the quadruple (dT

Γ
,W(dT

Γ
), R+

iR, R
+
R )

a based Cartan subgroup.

Again we postpone the proof until the next section.

Definition 13.9. Suppose (GΓ,W) is an extended group for G (Definition
1.12), and (∨GΓ,S) is a corresponding E-group (Definition 4.14). Fix based Cartan
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subgroups T Γ for GΓ (Definition 13.5) and dT
Γ

for ∨GΓ (Definition 13.7). A pairing

between T Γ and dT
Γ

is a weak pairing

ζ : ∨T → dT (13.9)(a)

(Definition 13.2), subject to the additional conditions

ζ carries the positive imaginary roots R+
iR onto the positive real coroots dR

∨,+
R

(13.9)(b)
(cf. Lemma 13.1(b)), and

ζ carries the positive real roots R+
R onto the positive imaginary coroots dR

∨,+
iR .

(13.9)(c)

In particular, this identifies (dT
Γ
,S(dT

Γ
)) as an E-group of (T Γ,W(T Γ)).

Proposition 13.10. Suppose (GΓ,W) is an extended group for G (Definition
1.12), and (∨GΓ,S) is a corresponding E-group (Definition 4.14).

a) Suppose T Γ is a based Cartan subgroup for GΓ (Definition 13.5). Then there is
a based Cartan subgroup dT Γ for ∨GΓ and a pairing between them (Definition
13.9). dT Γ is uniquely determined up to conjugation by ∨GΓ.

b) Suppose dT Γ is a based Cartan subgroup of ∨GΓ (Definition 13.7). Then there
is a based Cartan subgroup T Γ for GΓ and a pairing between them. T Γ is unique
up to conjugation by G.

c) Suppose ζ is a pairing between based Cartan subgroups as above. If ζ′ is another
isomorphism from ∨T to dT , then ζ′ is a pairing if and only if ζ′ = w ◦ ζ for

some w ∈W (∨G, dT )θ preserving dR
+
iR and dR

+
R .

d) Suppose w is as in (c), and use the isomorphism of Lemma 13.3(b) to identify
w with an element of W (G, T )σ. If σ′ is any real form of G extending σ on T ,
then w has a representative in G(R, σ′).

Proof. For (a), use Proposition 13.4(a) to find a Cartan subgroup dT
Γ

of ∨GΓ and
a weak pairing ζ between it and T Γ. By (13.2)(c), ζ carries the positive imaginary

roots R+
iR onto some set dR

∨,+
R of positive real coroots for dT ; and similarly for

real roots. Proposition 13.8 then guarantees that we can use these sets of positive
roots to construct a based Cartan subgroup dT Γ. The uniqueness of its equivalence
class follows from the uniqueness in Proposition 13.4(a), Lemma 13.3(c), and the
uniqueness in Proposition 13.8. Part (b) is proved in exactly the same way. Part
(c) is clear from Lemma 13.3(c) and Definition 13.9. Part (d) follows from the
description of real Weyl groups in [IC4], Proposition 4.16. Q.E.D.

We are near the end of the maze leading to Theorem 10.4 now. Before we pull
all the pieces together, we need one more definition.

Definition 13.11. Suppose T Γ is a based Cartan subgroup of an extended
group (GΓ,W) (Definition 3.5). A G-limit character of T Γ (Definition 12.1) is said
to be compatible with T Γ if the corresponding systems of positive real and imaginary
roots agree.

Suppose dT Γ is a based Cartan subgroup of the E-group (∨GΓ,S) (Definition

13.7). A complete Langlands parameter for dT
Γ

(Definition 12.4) is said to be
compatible with dT Γ if

〈α, λ〉 ≥ 0 (α ∈ dR
+

R ). (13.11)
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Here λ is constructed from the Langlands parameter as in (5.8). We do not assume
any relationship between λ and the positive imaginary roots.

Proposition 13.12. Suppose T Γ is a based Cartan subgroup for an extended
group (GΓ,W), dT Γ is a based Cartan subgroup for an E-group (∨GΓ,S), and ζ is
a pairing between them (Definition 13.9). Write z for the second invariant of the
E-group (Definition 4.14). Use ζ to identify (dT Γ,S(dT Γ)) as an E-group for T Γ

(of second invariant zz(ρ)). Then the correspondence of Corollary 10.7 induces a
bijection between the set of limit characters of T Γ compatible with T Γ and the set
of complete Langlands parameters for dT Γ compatible with dT Γ (Definition 13.11).
This bijection identifies final limit characters with final limit parameters.

A little more precisely, each Langlands parameter φ for dT Γ gives rise to a canon-
ical projective character Λcan(φ) of T (R) of type zz(ρ) (Proposition 10.6). Each ir-
reducible representation τ1 of A(dT Γ)alg gives rise to a T -conjugacy class in T Γ−T ,
say with a representative δ(τ1) (Corollary 9.12). We have

a) The element δ(τ1) defines a strong real form of G — that is, δ(τ1)
2 belongs to

Z(G) — if and only if τ1 factors through the quotient group A(dT Γ)alg,
∨G.

b) The positivity requirement (12.2)(f) on Λcan(φ) is equivalent to the compatibility
requirement (13.11).

c) A simple imaginary root α for T is noncompact with respect to δ(τ1) if and only
the corresponding simple real root dα for dT satisfies

τ1(m
alg
dα

) = 1.

d) A real root β for T satisfies the parity condition for Λcan(φ) if and only if the
corresponding imaginary root dβ for dT is φ-noncompact (Definition 12.8).

Proof. Because of the definitions, it suffices to prove the assertions (a)–(d). For
(a), fix an element δ ∈ W(T Γ). The element δ(τ1) is obtained by multiplying δ
by an appropriate element t = e(τ/2), with τ ∈ t−aQ (Proposition 9.10); here τ

represents τ1 in the isomorphism of Proposition 9.8(c). One can check easily that

τ1 factors through A(dT Γ)alg,
∨G if and only if the roots of T in G take integer values

on the element τ . (To see what the root lattice has to do with the problem, recall
that π1(

dT ) may be identified with X∗(
dT ) ≃ X∗(T ). The inclusion of dT in ∨G

induces a surjection π1(
dT ) → π1(

∨G), and the kernel of this map is the lattice of
roots of T in G.) On the other hand, we compute

δ(τ1)
2 = tσ(t)δ2 = e(τ)δ2 = e(τ)z(ρ)

(cf. proof of Proposition 9.10). So δ(τ1) is a strong real form if and only if e(τ) ∈
Z(G). Of course this condition is also equivalent to the roots of T in G taking
integral values on τ , proving (a).

Part (b) is clear (see Proposition 10.6). For (c), we can use the notation of (a).
Inspecting the definitions in section 9 and at (12.6), we find that

τ1(m
alg
dα

) = exp(2πiα(τ)) = (−1)α(τ/2).

So the condition on τ1 is equivalent to

α(τ/2) is an even integer.



111

On the other hand, every simple imaginary root α of T in G is noncompact with
respect to δ (see the proof of Proposition 13.6 in section 14). Consequently α is
nocompact with respect to δ(τ1) = tδ if and only if α(t) = 1. Since t = e(τ/2), this
is equivalent to α(τ/2) being an even integer.

The proof of (d) is similar; since we have referred to [AV2] for the construction
of Λ(φ), we omit the details. Q.E.D.

Proposition 13.13. Suppose (GΓ,W) is an extended group for G, and (∨GΓ,S)
is an E-group for the corresponding inner class of real forms. Write z for the second
invariant of the E-group (Definition 4.14). Then the various correspondences of
Proposition 13.12 induce a bijection from the set of equivalence classes of final limit
characters of type z of Cartan subgroups of GΓ (Definition 12.1) and equivalence
classes of final complete limit parameters of Cartan subgroups of ∨GΓ (Definition
12.8).

Proof. Suppose (φ, τ1) is a complete limit parameter for dT
Γ
. To construct the

corresponding limit character, we need to make dT Γ a based Cartan subgroup; so
we must choose certain sets of positive roots. Let dR+

R be a set of positive real roots

for dT making λ(φ) dominant (cf. (12.5) and Definition 13.11); and let dR+
iR be

an arbitrary set of positive imaginary roots. Let dT Γ be the corresponding based
Cartan subgroup (Proposition 13.8). Fix a based Cartan subgroup T Γ for GΓ and
a pairing

ζ : ∨T → dT (13.14)

with dT Γ. Proposition 13.12 gives a final limit character (δ(τ1),Λ(φ)) of T Γ. We
must show that the equivalence class of this character is independent of the two
positive root systems we chose.

Consider first a second system (dR+
R )′ of positive real roots making λ(φ) domi-

nant. These two positive systems differ by a Weyl group element w that is a product
of simple reflections in real roots vanishing on λ. Let n be a representative of w.
Changing the sytem of positive real roots changes the based Cartan subgroup dT Γ

by conjugation by n, and replaces ζ by w ◦ ζ. (Evidently this implies that the final
limit character (δ(τ1),Λ(φ)) is unchanged.) We claim that w has a representative
n fixing (φ, τ1). It is enough to check this for a simple reflection sα, with α a real
root vanishing on λ. Choose a root subgroup φα : SL(2) → ∨G as usual (cf. Def-
inition 11.10)) with the additional property that φα carries the inverse transpose
involution on SL(2) to the action of θy. We may take

nα = φα

(
0 1
−1 0

)

as a representative of sα. Evidently nα belongs to K(y)∩L(λ, y · λ) (cf. Corollary
5.9); that is, to the centralizer of φ. To compute its effect on τ1, recall that τ1 is a

character of (a certain quotient of) (dT θ)alg,
∨G. If t is in this group, then α(t) = ±1

since α is real. Consequently

sα(t) = tα∨(α(t−1)) = tα∨(±1) = t or tmalg
α .

Since (φ, τ1) is final, τ1(m
alg
α ) = 1; so we find that sα(τ1) = τ1, as we wished to

show.
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Next, consider a second choice (dR+
iR)′ of positive imaginary roots. This differs

from the original by an element w in the Weyl group of the imaginary roots. To get
the corresponding based Cartan subgroup (dT Γ)′, we must also conjugate S(dT Γ)
by a representative n of w (because of Definition 13.7(e)). This conjugation has
the effect of multiplying S(dT Γ) by an element t = nθ(n−1); this element satisfies
θ(t) = t−1. Back in G, we can get the new based Cartan subgroup just by replacing
the set of positive real roots by the new set (R+

R )′ corresponding to (dR+
iR)′. The

pairing ζ is then unchanged. The canonical character (Λcan)′ attached to these
new choices differs from Λcan only because of the change in the E-group structure
on dT Γ. The proof of Lemma 9.28 of [AV2] shows that the effect of this change
is to twist Λcan by the character τ(R+

R , (R
+
R )′) of (11.4). By Definition 11.6 and

Definition 12.1, the equivalence class of the limit character is unchanged.
That this construction actually depends only on the equivalence class of (λ, τ1)

is obvious. That it is surjective is clear from Proposition 13.12. That the inverse
correspondence is well-defined may be proved in exactly the same way. Q.E.D.

Theorem 10.4 is a consequence of Proposition 13.13, Theorem 12.3, and Theorem
12.9.

14. Proof of Propositions 13.6 and 13.8.

Evidently part of what a based Cartan subgroup provides is some distinguished
extensions of its real form to all of G. We begin by studying such extensions.

Lemma 14.1. Suppose T is a maximal torus in the connected reductive algebraic
group G, and σ is a real form of T permuting the roots of T in G. Suppose that
σ1 and σ2 are two real forms of G extending σ, and that they determine the same
sets of compact (and noncompact) imaginary roots. Then σ1 and σ2 are conjugate
by an element of T .

Proof. Choose a set R+ of positive roots of T in G having the property that
σ preserves the non-imaginary positive roots. (One way to do this is to order the
roots using first their restrictions to the +1-eigenspace of σ on the rational span of
the coroots.) In the argument below, we will usually write β for an imaginary root,
γ for a non-imaginary root, and α for a general root. For any root in R+, we have
either

β is imaginary, and σβ = −β (14.2)(a)

or
γ is not imaginary, and σγ is positive. (14.2)(b)

For simple roots in R+, one can say even more.

Lemma 14.3. In the setting of Lemma 14.1, suppose R+ is a set of positive
roots for T in G such that σ preserves the non-imaginary positive roots. Then every
simple root of R+ falls into exactly one of the following three categories.

a) β is imaginary, and σβ = −β.
b) γ is not imaginary, and

σγ = γ +
∑

β simple imaginary

nβ(γ)β
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with nβ(γ) a non-negative integer.
c) γ is not imaginary, and there is a distinct non-imaginary root γ′ so that

σγ = γ′ +
∑

β simple imaginary

nβ(γ)β

with nβ(γ) a non-negative integer. In this case

σγ′ = γ +
∑

β simple imaginary

nβ(γ)β.

Proof. Suppose γ is a non-imaginary simple root. Then σγ is a positive root
by (14.2)(b), so it can be expressed as a sum of simple roots with non-negative
coefficients. In this expression there must appear at least one non-imaginary simple
root γ′ = γ′(γ), for otherwise σγ (and therefore γ) would be imaginary. Thus

σγ = γ′ + (other non-imaginary simple roots) +
∑

nββ.

Now apply σ to this expression. On the right we get at least one non-imaginary
simple root from the first term, more from the second if it is non-zero, and various
imaginary simple roots. On the left we get γ, since σ is an involution. It follows
that the second term is zero, and that σγ′ involves γ. The remaining assertions of
the lemma are now clear. Q.E.D.

We continue now with the proof of Lemma 14.1. Fix root vectors {Xα} for all
the roots. As usual we may choose these so that

[Xα, X−α] = Hα (14.4)(a)

(the usual coroot), and
[Xα, Xα′ ] = q(α, α′)Xα+α′ (14.4)(b)

(with q(α, α′) rational) whenever α+ α′ is a root. Define complex constants ci(α)
by

σi(Xα) = ci(α)Xσα. (14.4)(c)

Since σ1 and σ2 agree on T , they differ by the adjoint action of an element s of T :

c2(α)/c1(α) = α(s). (14.4)(d)

In particular,

c2/c1 extends to a multiplicative character of the root lattice. (14.4)(e)

Replacing σ1 by tσ1t
−1 replaces c1(α) by

[(σα)(t)/α(t)]c1(α). (14.5)(a)

It follows that t conjugates σ1 to σ2 if and only if

(σα)(t)/α(t) = c2(α)/c1(α) (14.5)(b)
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for every root α. Because of (14.4)(e), it suffices to verify (14.5)(b) for any set of
roots α generating the root lattice. What we must show is that our hypotheses on
σi provide enough control on ci to guarantee the existence of an element t satisfying
(14.5)(b). We choose a generating set S of roots as follows: S is the union of

S1 = simple imaginary roots;

S2 = simple roots as in Lemma 14.3(b);

S3 = one simple root γ from each pair (γ, γ′) as in Lemma 14.3(c); and

S4 = the roots σγ, with γ ∈ S3.

(14.6)

Lemma 14.3 shows that S is actually a basis of the root lattice. We may therefore
choose t so that α(t) has any value we specify for α ∈ S; we must show that this
can be done so that (14.5)(b) holds for α ∈ S.

Applying the antiholomorphic involution σi to (14.4)(c), we find that

ci(α)ci(σα) = 1. (14.7)(a)

Applying σi to (14.4)(b) gives

ci(α)ci(α
′) = q(α, α′)ci(α + α′) (14.7)(b)

whenever α+ α′ is a root.
Suppose now that β is an imaginary root. Then σHβ = −Hβ. Applying σi to

(14.4)(a) gives
ci(β)ci(−β) = 1. (14.8)(a)

On the other hand, (14.7)(a) gives

ci(β)ci(−β) = 1. (14.8)(b)

Consequently
ci(β) is real, and ci(−β) = ci(β)−1. (14.8)(c)

Calculation in SL(2) shows that

ci(β) is positive if and only if β is noncompact for σi. (14.8)(d)

The hypothesis of Lemma 14.1 therefore guarantees that c1(β)/c2(β) is positive for
every imaginary root β. We therefore require of our element t that

β(t) is a square root of c1(β)/c2(β) (14.8)(e)

for every β in S1. Condition (14.5)(b) follows for such β, and then for all imaginary
roots by (14.4)(e).

Suppose next that γ belongs to S2. The requirement (14.5)(b) on t may be
written as

(c2/c1)(γ) = (γ(t)/γ(t))(σγ − γ)(t). (14.9)(a)

This is the same as
γ(t)/γ(t) = (c2/c1)(γ)(γ − σγ)(t). (14.9)(b)
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We can choose γ(t) so that this equation is satisfied if and only if the right side has
absolute value 1. To see that this is the case, divide (14.7)(a) for σ2 by the same
equation for σ1, to obtain

1 = (c2/c1)(γ)(c2/c1)(σγ)

= (c2/c1)(γ)(c2/c1)(γ)(c1/c2)(γ − σγ)

= |(c2/c1)(γ)|
2(c1/c2)(γ − σγ).

(14.9)(c)

Now Lemma 14.3 shows that γ − σγ is a sum of imaginary roots. It therefore
follows from (14.8) that the last factor on the right here is the positive real number
(γ − σγ)(t)2. Consequently

1 = |(c2/c1)(γ)|
2(γ − σγ)(t)2. (14.9)(d)

This guarantees the existence of a solution γ(t) to (14.9)(b).
Finally, suppose γ ∈ S3. We require of t that

γ(t) = 1, σγ(t) = (c2/c1)(γ). (14.10)

Then (14.5)(b) is automatically satisfied for α = γ. To check it for α = σγ, just
apply (14.7)(a). This completes the construction of t satisfying (14.5)(b), and so
the proof of Lemma 14.1. Q.E.D.

Proof of Proposition 13.6. The real form σT of T (defined by conjugation by
any element y of T Γ − T ) is an antiholomorphic involution preserving the roots. It
may therefore be extended to a quasisplit real form σG of G, with the property that
every simple root of T in R+

iR is noncompact. (A proof of this fact may be found
in [IC4], Lemma 10.9.) Clearly σG belongs to the inner class defined by GΓ, so by
Proposition 2.12 there is a triple (δ1, N1, χ1) ∈ W with Ad(δ1) = σG. In particular,
δ1 and y both act by σT on T , so δ1 ∈ yT = T Γ − T . If we write W1(T

Γ) for the
T -conjugacy class of δ1, then conditions (a) – (d) of Definition 13.5 are satisfied.
The interesting and subtle point is arranging (e). This is essentially in [Kostant];
we sketch the argument.

Fix (δ1, N, χ1) as above, and write G(R, δ1) for the corresponding real form.
Define AR ⊂ T (R) as in (11.3) (the identity component of the split part of T (R)),
and put

M = centralizer of AR in G.

Fix a σG-stable parabolic subgroup P = MU of G with Levi subgroup M . After
replacing (N,χ1) by a conjugate under G(R, δ1), we may assume that

PN is open in G.

It follows that NM = N ∩M is a maximal unipotent subgroup of M normalized
by δ1, and that χM,1 = χ1|NM(R) is a non-degenerate unitary character (Definition
1.12). We apply to this situation the following lemma.

Lemma 14.11. Suppose σ is a quasisplit real form of a complex connected
reductive algebraic group G, and P = MU is a σ-stable Levi decomposition of a
parabolic subgroup of G. Suppose (N,χ) is the data for a Whittaker model for G
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(Definition 3.1). Suppose also that PN is open in G, so that if we write NM =
N ∩M , χM = χ|NM (R), then (NM , χM ) is the data for a Whittaker model for M .

Suppose πM is a finite length admissible Hilbert space representation of M(R),

and π = Ind
G(R)
P (R)πM . Then π admits a Whittaker model of type χ if and only if πM

admits a Whittaker model of type χM .

Proof. The “only if” assertion is a special case of Theorem 1 of [Hashizume].
The “if” part is a formal consequence of the “only if,” Harish-Chandra’s subquo-
tient theorem, and the fact that a principal series representation has exactly one
Whittaker model of a given type ([Kostant], Theorem 6.6.2). Q.E.D.

We continue with the argument for Proposition 13.6. Now the standard limit
representations in Definition 13.5(e) may be constructed by induction from limits
of discrete series on M (see the discussion at (11.2)). By Lemma 14.11, they will
admit Whittaker models of type χ1 if and only if these limits of discrete series
admit Whittaker models of type χM,1. Because all of the limits of discrete series
in question correspond to a single system of positive imaginary roots, it is possible
to pass from any one to any other by tensoring with finite-dimensional representa-
tions of M(R) (more precisely, of its canonical covering). This does not affect the
existence of Whittaker models (cf. [Kostant], proof of Theorem 6.6.2).

We may therefore confine our attention to a single limit of discrete series rep-
resentation πM of M(R). By the construction of σG, every simple imaginary root
of T in M is noncompact. It follows that the annihilator of πM in the enveloping
algebra of m is a minimal primitive ideal ([GKDim], Theorem 6.2). By Theorem
6.7.2 of [Kostant], there is a non-degenerate unitary character χM of NM (R) so
that πM admits a Whittaker model of type χM . It is clear from Definition 3.1 that
there is a non-degenerate unitary character χ of N(R) restricting to χM on M . By
Lemma 14.11, our standard limit representations all admit Whittaker models of
type χ. By Lemma 3.2, there is a t ∈ G normalizing N , so that Ad(t) is defined
over R, and t · χ1 = χ. Consider now the triple

(tδ1t
−1, N, t · χ1) = (δ,N, χ).

Since W is a G-orbit, this triple belongs to W . Since Ad(t) is defined over R,
conjugation by δ defines the same real form σG as δ1. Define

W(T Γ) = T -conjugacy class of δ.

This satisfies the requirements of Definition 13.5.
For the uniqueness, suppose W ′(T Γ) is another extended group structure on T Γ

satisfying the requirements of Definition 13.5. Fix a triple (δ′, N ′, χ′) ∈ W so that
δ′ belongs to W ′(T Γ). The argument in the first half of the proof may be reversed
to deduce from the assumed existence of Whittaker models (Definition 13.5)(e))
that every simple root of R+

iR must be noncompact for the real form σ′G defined
by conjugation by δ′. By the construction of σG, it follows that σG and σ′G define
exactly the same sets of compact and noncompact imaginary roots. By Lemma
14.1, they are conjugate by an element of T . Since W ′(T Γ) is a T -conjugacy class,
we may therefore assume that δ′ is chosen so that

the conjugation action σ′G of δ′ is equal to σG. (14.12)(a)
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This means that the real form G(R) defined by δ′ coincides with the one defined
by δ. The groups N and N ′ are therefore conjugate by G(R); after applying such
a conjugation to N ′ (which does not change δ′) we may assume that N = N ′. Fix
a maximal torus Ts ⊂M normalizing N and defined over R; we write

Bs = TsN, Bs(R) = Ts(R)Ns(R). (14.12)(b)

Of course Ts contains Z(G), so the set of elements of Bs for which the conjugation
action on G is defined over R may be decomposed as

(Bs/Z(G))(R) = (Ts/Z(G))(R)Ns(R). (14.12)(c)

Recall now that (δ,N, χ) and (δ′, N, χ′) both belong to W , and so are conjugate
by an element t of G. This element normalizes N , and so belongs to Bs. By
(14.12), the element may be chosen to belong to Ts (where it must represent a class
in (Ts/Z(G))(R)). In particular,

t · χ = χ′, tδt−1 = δ′. (14.13)

On the other hand, Definition 13.5(e) and Lemma 14.11 provide a single limit of
discrete series representation for M(R) admitting Whittaker models of types χM
and χ′M . To this situation we can apply

Lemma 14.14. Suppose G(R) is a quasisplit real form of a complex connected
reductive algebraic group, and π is an irreducible representation in the limits of
(relative) discrete series. If π admits Whittaker models of types χ and χ′, then χ
and χ′ must be conjugate under G(R).

Proof. Fix a Borel subgroup Bs = TsN defined over R, and a maximally compact
maximal torus T (R). We may as well assume that χ and χ′ are non-degenerate
unitary characters of N(R). Consider the group (AdG)(R) of inner automorphisms
of G defined over R. It contains the image (Ad(G(R)) of G(R) as a subgroup of
finite index. Define

Q(G(R)) = (AdG)(R)/(Ad(G(R)). (14.15)(a)

This finite group acts on the set of equivalence classes of representations of G(R),
and on the set of conjugacy classes of Whittaker models.

It follows easily from the essential uniqueness of Bs that every coset in Q(G(R))
meets Ts. It therefore follows from Lemma 3.2 that

Q(G(R)) acts simply transitively on conjugacy classes of Whittaker models for G(R).
(14.15)(b)

At the same time, the existence of representatives in Ts shows that

Q(G(R)) acts trivially on the set of principal series representations for G(R).
(14.15)(c)

On the other hand, the essential uniqueness of the maximally compact torus T
shows that every coset in Q(G(R)) meets the normalizer of T in G. Define

W2(G, T ) = Weyl group of T in (AdG)(R).
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Since T (R) is connected, it follows that

Q(G(R)) ≃W2(G, T )/W (G(R), T (R)).

¿From this it follows that

Q(G(R)) acts without fixed points on limits of discrete series representations of G(R).
(14.15)(d)

To prove the lemma, realize π as a quotient of a principal series representation ρ.
By (14.15)(b), there is an element q ∈ Q(G(R)) with q ·χ is conjugate by G(R) to χ′.
It follows formally that π′ = q · π has a Whittaker model of type χ′. By (14.15)(c),
q · ρ is equivalent to ρ, so π′ is also a quotient of ρ. The quotient representations π
and π′ of ρ now both have Whittaker models of type χ′. Because ρ has a unique
Whittaker model ([Kostant], Theorem 6.6.2) it follows that π must be equivalent
to π′. By (14.15)(d), q = 1, so χ is conjugate to χ′. Q.E.D.

Returning to the proof of Proposition 13.6, we deduce that χM is conjugate to
χ′M by an element of M(R); by Lemma 3.2, we may as well choose this element tM
in Ts(R). We can replace χ′ by tM ·χ′, and t by ttM ; then (14.13) remains true, and
we have in addition that χM = χ′M . From this we deduce that Ad(t) acts trivially
on each of the simple restricted root spaces in m. Consequently t is central in M ,
so it belongs also to the maximal torus T of M . The second equation of (14.13)
now shows that δ and δ′ are conjugate by T , as we wished to show. Q.E.D.

We turn now to the proof of Proposition 13.8. Formally the argument is quite
similar, and most of the subtleties have been dealt with in [AV2]. We will therefore
omit some details. Again the first point is to understand extensions of involutions
from maximal tori to reductive groups.

Lemma 14.16. Suppose T is a maximal torus in the connected reductive alge-
braic group G, and θ is a (holomorphic) involutive automorphism of T permuting
the roots of T in G. Suppose θ1 and θ2 are two involutive automorphisms of G
extending θ, and that they determine the same sets of compact (and noncompact)
imaginary roots. Then θ1 and θ2 are conjugate by an element of T .

(Recall from (12.5) – (12.7) that a root is called imaginary if it is fixed by θ, and
compact if the corresponding root vector is also fixed.)

The proof is exactly parallel to (and perhaps slightly simpler than) that of
Lemma 14.1, so we omit it.

Proof of Proposition 13.8. By Lemma 9.17 of [AV2], there is an element ∨δ1 ∈

S ∩ dT
Γ
. Write K1 for the centralizer of ∨δ1 in ∨G, and

dB1 = { dB|(∨δ1,
dB) ∈ S }

This is evidently a singleK1-orbit of Borel subgroups. By Proposition 6.30 of [AV2],

there is a set dR
+
iR,1 of positive imaginary roots special with respect to dB1. Now

there is a unique element w of the Weyl group of imaginary roots carrying dR
+
iR,1

to dR
+
iR. The action of w on dT (as a product of reflections in imaginary roots)

commutes with the action of ∨δ1 on dT . Choose an element n of the normalizer
of dT in ∨G representing w, and define ∨δ = n(∨δ1)n

−1. Clearly ∨δ belongs to S.
The action of ∨δ on dT agrees with that of ∨δ1 (since the latter commutes with
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w); so ∨δ = ∨δ1t for some t ∈ dT ; so ∨δ belongs to S ∩ dT
Γ
. The corresponding

set dB of Borel subgroups is obtained from dB1 by conjugating by n; so it follows

immediately from the definition that dR
+
iR = w(dR

+
iR,1) is special with respect to

dB. The dT -conjugacy class S(dT
Γ
) of ∨δ therefore satisfies the requirements of the

proposition.

For the uniqueness, suppose S′(dT
Γ
) is another E-group structure satisfying the

requirements of the proposition. Fix ∨δ′ ∈ S′(dT
Γ
); what we are trying to show is

that ∨δ′ is conjugate to ∨δ by dT . Write θ and θ′ for the involutive automorphisms
of ∨G defined by conjugation by ∨δ and ∨δ′. By Proposition 6.30(a) of [AV2],

every simple root in dR
+
iR is noncompact with respect both to θ and to θ′. By

Lemma 14.16, it follows that θ and θ′ are conjugate by dT . After replacing ∨δ′ by
a conjugate, we may therefore assume that θ = θ′.

Now ∨δ and ∨δ′ belong to S, which is a single orbit of ∨G. It follows that there
is an element x of ∨G conjugating ∨δ to ∨δ′. We can multiply x on the right or
left by elements of K without affecting this property; what we need to show is that
this may be done so as to put x in dT . The automorphism Ad(x) commutes with
θ, so the coset xZ(∨G) belongs to the group K of fixed points of θ in Ad(∨G).
Now Ad(x) carries dT to another θ-stable maximal torus dT ′, so these two tori are
conjugate by K. We apply to Ad(∨G) the following easy lemma.

Lemma 14.17. Suppose G is a connected reductive algebraic group, and θ is an
involutive automorphism of G. Write K for the group of fixed points of θ. Suppose
T and T ′ are θ-stable maximal tori in G, conjugate by K. Then they are conjugate
by the identity component K0.

We omit the elementary proof.
In our situation, we conclude that there is an element x0 ∈ K conjugating dT ′

to dT . Multiplying x by x0 on the left, we may therefore assume that dT ′ = dT ;
that is, that x normalizes dT . In particular, the action of x defines an element
w ∈ W (∨G, dT ) commuting with θ. Proposition 3.12 of [IC4] describes the Weyl
group elements commuting with θ. By Proposition 4.16 of [IC4], we may modify
x by a representative in K of an appropriate Weyl group element, and arrange for
w to be in the imaginary Weyl group. Since x carries ∨δ to ∨δ′, it follows that

w(dR
+
iR) must (like dR

+
iR) be special with respect to dB′. By Proposition 6.30(c)

of [AV2], it follows that w has a representative in K. After multiplying x by the
inverse of such a representative, we get x ∈ dT , as we wished to show. Q.E.D.

15. Multiplicity formulas for representations.

Our next goal is Theorem 1.24 of the introduction, relating the geometric invari-
ants discussed in sections 7 and 8 to representation theory. We begin by discussing
a little more carefully the definition of the representation-theoretic multiplicity and
character matrices (cf. (1.21)). For the same reasons as in section 11, we work
at first in the setting of (11.1). Recall from Definition 11.13 the set Lz(GR) of
equivalence classes of final limit characters of type z. For Λ ∈ Lz(GR), write

M(Λ) = standard limit representation attached to Λ (15.1)(a)
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(cf. (11.2)), and
π(Λ) = Langlands quotient of M(Λ). (15.1)(b)

(We leave open the question of which form of the representation to use — Harish-
Chandra module or some topological version. Several reasonable possibilities are
discussed below.) By Theorem 11.14, π(Λ) is irreducible, and this correspondence
establishes a bijection

Lz(GR) ↔ Πz(GR), Λ ↔ π(Λ). (15.1)(c)

There are several ways to fit these representations into a nice abelian category.
By far the simplest approach, due to Harish-Chandra, is to choose a maximal
compact subgroup KR of GR. (This is unique up to conjugation by GR.) One can
then consider

Mz(g,KR), (15.2)(a)

the category of finite-length canonical projective (g,KR)-modules of type z, or
Harish-Chandra modules. (Such a module is a representation simultaneously of g

and of Kcan,G
R (cf. (11.1)(e)), with π1(G)can acting by the character parametrized

by z.) Sometimes it is convenient to obscure the choice of KR, writing instead

Mz
HC(GR) (15.2)(b)

for this category. Alternatively, one can consider the category

Mz
∞(GR) (15.2)(c)

for which a typical object is the space of smooth vectors in a finite-length canonical
projective representation of GR of type z on a Hilbert space. That this is a nice
category is a deep theorem of Casselman and Wallach; in fact they show that
it is equivalent (by taking KR-finite vectors) to Mz(g,KR). Instead of smooth
vectors, one can consider distribution vectors, analytic vectors, or hyperfunction
vectors; all of these choices lead to equivalent categories (designated with a subscript
−∞, ω, or −ω). For our purposes in this paper, the category of Harish-Chandra
modules is sufficient; but the aesthetic advantages of the other possibilities (such
as the elimination of the choice of KR) are significant. Recall also that the critical
Definition 13.5(e) really makes sense only on Mz

∞ (cf. Definition 3.1).
In any case, the categories are all canonically equivalent, so we can safely define

KΠz(GR) = Grothendieck group of Mz
HC(GR). (15.2)(d)

Suppose Θ and Λ belong to Lz(GR). As in (1.21), define

mr(Θ,Λ) = multiplicity of π(Θ) in M(Λ). (15.3)(a)

We call mr the representation-theoretic multiplicity matrix. In the Grothendieck
group this definition amounts to

M(Λ) =
∑

Θ∈Lz(GR)

mr(Θ,Λ)π(Θ). (15.3)(b)
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Entries of mr corresponding to limit characters of distinct infinitesimal character
are zero, so mr is “block-diagonal” with finite blocks. In an appropriate ordering
of the basis, each block is upper triangular with one’s on the diagonal ([Green],
Lemma 6.6.6). Consequently the multiplicity matrix is invertible; its inverse cr is
called the representation-theoretic character matrix. Explicitly,

π(Θ) =
∑

Λ∈Lz(GR)

cr(Λ,Θ)M(Λ) (15.3)(c)

in KΠz(GR). In particular, the final standard limit representations M(Θ) form a
basis of the Grothendieck group. (The distribution characters of the standard rep-
resentations are relatively simple. The equation (15.3)(c) therefore provides a fairly
good formula for the distribution character of the irreducible representation π(Θ);
hence the term “character matrix.” In the case of regular infinitesimal character,
the standard representation M(Λ) is characterized by the appearance of one partic-
ular term in the formula for its distribution character (on the Cartan subgroup TR

corresponding to Λ). The entries cr(Λ,Θ) may therefore be interpreted as certain
coefficients in the character formula for π(Θ).) In analogy with (7.11)(f), we define
the Bruhat order on Lz(GR) to be the smallest partial order with the property that

mr(Θ,Λ) 6= 0 only if Θ ≤ Λ. (15.3)(d)

We could replace mr by cr without changing the order. The Bruhat order makes
tempered final limit characters minimal, since the corresponding standard repre-
sentations are irreducible. (Of course there are non-tempered minimal elements as
well.)

We will need to recall a little about the Kazhdan-Lusztig algorithm for com-
puting the matrices mr and cr (for linear groups). Just as in the geometric case
(Proposition 8.8) the first step is a reduction to the regular case using a translation
principle. We begin with an easy and well-known result.

Lemma 15.4. Suppose G is a complex connected reductive algebraic group, and
∨G is a dual group for G. Write g for the Lie algebra of G, and

Z(g) = center of U(g).

Then there is a natural one-to-one correspondence between the set of algebra homo-
morphisms

χ : Z(g) → C

and the set of semisimple orbits O of ∨G on ∨g.

Proof. Fix maximal tori T ⊂ G and dT ⊂ ∨G. Harish-Chandra’s theorem (see
[Hump]) parametrizes the characters of Z(g) by orbits of the Weyl group on the
dual t∗ of the Lie algebra of T . By (9.3)(b), t∗ is naturally isomorphic to the Lie
algebra ∨t of the dual torus ∨T . By Lemma 13.1, there is an isomorphism of ∨T
with dT determined uniquely up to the action of W ; so Weyl group orbits on the
respective Lie algebras are canonically identified. But every semisimple orbit of ∨G
on ∨g meets dt in a unique Weyl group orbit. Q.E.D.

We sometimes write
χO : Z(g) → C (15.5)(a)
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for the character corresponding to the semisimple orbit O in the bijection of Lemma
15.4. If T is a maximal torus in G and λ ∈ t∗, then we may also write

χλ : Z(g) → C (15.5)(b)

using Harish-Chandra’s theorem more directly. The various definitions in (15.2)
may be restricted to a single infinitesimal character, as in

Lz(O, GR) = {Λ ∈ Lz(GR) | π(Λ) has infinitesimal character χO } (15.5)(c)

Mz
HC(O, GR) = Harish-Chandra modules of generalized infinitesimal character χO

(15.5)(d)
KΠz(O, GR) = Grothendieck group of Mz

HC(O, GR). (15.5)(e)

The set Lz(O, GR) is finite, so KΠz(O, GR) is a lattice of finite rank.
It is convenient to include here the notation we will use in the extended group

setting, even though we have a little more work to do with GR. So suppose for a
moment that (GΓ,W) is an extended group for G. As in Lemma 1.15, choose a set
{ δs | s ∈ Σ } of representatives for the equivalence classes of strong real forms of
G. Recall from Definition 12.1 that Lz(G/R) is the set of G-conjugacy classes of
pairs (Λ, δ), with δ a strong real form of G (Definition 1.13) and Λ ∈ Lz(G(R, δ))
a final limit character. As in Lemma 1.15, there is a natural identification

Lz(G/R) ≃
∐

s∈Σ

Lz(G(R, δs)). (15.6)(a)

Theorem 12.3 provides a bijection between these parameters and the set Πz(G/R)
of Definition 10.3; and the proof of Lemma 1.15 shows that

Πz(G/R) ≃
∐

s∈Σ

Πz(G(R, δs)). (15.6)(b)

Just as in (15.5), we can restrict attention to a single infinitesimal character corre-
sponding to a ∨G-orbit O, writing for example Lz(O, G/R). Finally, let (∨GΓ,S)
be an E-group for GΓ with second invariant z. Theorem 10.4 identifies Πz(G/R)
with

Ξz(G/R) = Ξ(∨GΓ). (15.6)(c)

This set also decomposes according to the semisimple orbits of ∨G on ∨g, and we
have

Ξz(O, G/R) = { complete geometric parameters for ∨G
alg

acting on X(O, ∨GΓ) }
(15.6)(d)

It is clear from the definitions that Theorem 10.4 provides an identification

Πz(O, G/R) ≃ Ξz(O, G/R). (15.6)(e)

In analogy with Definition 7.13, we can form the direct sum of abelian categories

Mz
HC(G/R) =

⊕

s∈Σ

Mz
HC(G(R, δs)). (15.7)(a)



123

(Recall that the notation conceals a choice of maximal compact subgroup for each
strong real form.) Every object in this category has finite length, and we have
irreducible and standard representations parametrized by Lz(G/R) or Ξz(G/R).
For ξ ∈ Ξz(O, G/R), we may write as in (15.3)

M(ξ) =
∑

γ∈Ξz(O,G/R)

mr(γ, ξ)π(γ) (15.7)(b)

and so forth; this identity is in the Grothendieck group

KΠz(O, G/R) =
⊕

s∈Σ

KΠz(O, G(R, δs)). (15.7)(c)

In order to define the pairing of Theorem 1.24, we need one more definition.

Definition 15.8. Suppose ∨GΓ is a weak E-group. Recall from Definition 4.9

the element z(ρ) ∈ Z(∨G
alg

); it has order 2. Because it is canonically defined, it
is fixed by the conjugation action of any element of ∨GΓ. If ξ = (φ, τ) ∈ Ξ(∨GΓ),

it follows that z(ρ) belongs to ∨G
alg
φ . Write z(ρ) for its image in the universal

component group Aloc,algφ ; this is a central element of order 2. It therefore acts by
±1 in the irreducible representation τ , and we define

e(ξ) = τ(z(ρ)) = ±1.

We also recall from (1.22) the notation

d(ξ) = dimSξ,

with Sξ the ∨G-orbit on X(∨GΓ) corresponding to ξ (Definition 7.6).

Lemma 15.9. In the setting of Theorem 10.4, suppose ξ ∈ Ξz(G/R) corresponds
to an irreducible representation π of a real form G(R, δ). Then the sign e(ξ) of
Definition 15.8 is equal to the sign e(G(R, δ)) defined in [Kott1]. In particular, it
is equal to 1 if G(R, δ) is quasisplit.

We will give a proof at the end of section 17.

Definition 15.11. Suppose we are in the setting (15.6). The Grothendieck
groups KΠz(O, G/R) (cf. (15.7)(c)) and KX(O, ∨GΓ) (Definition 7.13) are both
free Z-modules on bases parametrized by Ξz(G/R). It therefore makes sense to
define the canonical perfect pairing

〈, 〉 : KΠz(O, G/R) ×KX(O, ∨GΓ) → Z

by the requirement
〈M(ξ), µ(γ)〉 = e(ξ)δξ,γ .

The last term on the right is a Kronecker delta.

We can now restate Theorem 1.24 using E-groups instead of L-groups.

Theorem 15.12. Suppose (GΓ,W) is an extended group for G (Definition 1.12),
and (∨GΓ,S) is an E-group for the corresponding inner class of real forms, having
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second invariant z (Definition 4.14). Fix a semisimple orbit O of ∨G on ∨g. Write
KΠz(O, G/R) for the Grothendieck group of canonical projective representations of
type z and infinitesimal character χO of strong real forms of G (cf. (15.7)(c)), and

KX(O, ∨GΓ) for the Grothendieck group of ∨G
alg

-equivariant constructible sheaves
on the geometric parameter space X(O, ∨GΓ) (Definitions 6.9 and 7.13). Fix com-
plete geometric parameters ξ, γ ∈ Ξz(O, G/R) (cf. (15.6)(d)), and write π(ξ), P (γ)
for the corresponding irreducible representation and perverse sheaf (Theorem 10.4
and Definition 7.13). Then the canonical pairing of Definition 15.11 satisfies

〈π(ξ), P (γ)〉 = e(ξ)(−1)d(ξ)δξ,γ .

Here e(ξ) is defined in (15.8).

We will prove this result in the next two sections. The following relationship
between the geometric and representation-theoretic multiplicity matrices is just a
reformulation.

Corollary 15.13. In the setting of Theorem 15.12, fix η and γ in Ξz(G/R).
Then the geometric and representation-theoretic multiplicity and character matrices
(cf. (7.11) and (15.3)) satisfy

a) cg(η, γ)(−1)d(η)−d(γ) = mr(γ, η).

b) cr(η, γ)(−1)d(η)−d(γ) = mg(γ, η).

Proof. Using (15.3)(c) and (7.11)(c), we can rewrite the pairing in Theorem
15.12 in terms of standard representations and elementary constructible sheaves.
The result is

〈π(ξ), P (γ)〉 = 〈
∑

ξ′

cr(ξ
′, ξ)M(ξ′),

∑

γ′

cg(γ
′, γ)µ(γ′)(−1)d(γ

′)〉

=
∑

ξ′,γ′

cr(ξ
′, ξ)cg(γ

′, γ)(−1)d(γ
′)〈M(ξ′), µ(γ′)〉.

By Definition 15.11, only the terms with γ′ = ξ′ contribute; we get

∑

η

cr(η, ξ)cg(η, γ)(−1)d(η)e(η).

Now the central element z(ρ) clearly acts by e(γ) on all the stalks of the perverse
sheaf P (γ). So whenever the second factor is non-zero, we must have e(η) = e(γ).
This leads to

e(γ)(−1)d(γ)
∑

η

cr(η, ξ)cg(η, γ)(−1)d(η)−d(γ).

Comparing with the formula in Theorem 15.12, we find

∑

η

cr(η, ξ)cg(η, γ)(−1)d(η)−d(γ) = δξ,γ .

Since the inverse of the matrix cr(γ, ξ) is by definition mr(γ, ξ), it follows that

mr(γ, η) = cg(η, γ)(−1)d(η)−d(γ),
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which is (a).
For (b), write

cg(η, γ) = mr(γ, η)(−1)d(η)−d(γ).

Multiply by mg(ξ, η) and sum over η. Since cg is by definition the inverse of mg,
we get δξ,γ on the left. The right side can be written as

(−1)d(γ)−d(ξ)
∑

η

mr(γ, η)mg(ξ, η)(−1)d(ξ)−d(η).

Since the left side is zero unless γ = ξ, we can drop the sign in front of the
summation. Since cr is by definition the inverse of mr, it follows that

cr(η, ξ) = mg(ξ, η)(−1)d(ξ)−d(η).

This is (b). Q.E.D.
We leave to the reader the straightforward verification that the argument given

for Corollary 15.13(a) can be reversed, so that

Theorem 15.12 is equivalent to Corollary 15.13(a). (15.14)

16. The translation principle, the Kazhdan-Lusztig algorithm, and Theorem 1.24.

In this section we will begin the proof of Theorem 15.12 (which is essentially
Theorem 1.24). The first step is a reduction to the case of regular infinitesimal
character. For this, we reformulate the translation principle for representations so as
to emphasize the connection with the geometric translation principle of Proposition
8.8.

Definition 16.1. In the setting of Lemma 15.4, suppose O and O′ are semisim-
ple orbits of ∨G on ∨g, and T is a translation datum from O to O′ (Definition 8.6).
Fix maximal tori T ⊂ G and dT ⊂ ∨G, and construct µ = λ′ − λ ∈ X∗(

dT ) as in
Definition 8.6(e); this element is defined up to the Weyl group. By Lemma 13.1(b),
µ corresponds to a weight (also called µ) in X∗(T ), defined up to the action of
the Weyl group. By the Cartan-Weyl theory, there is a unique finite-dimensional
irreducible algebraic representation FT of G having extremal weight −µ. Write PO
for the functor of projection on the generalized infinitesimal character χO; this is
defined on all representations of g on which Z(g) acts in a locally finite way.

The Jantzen-Zuckerman translation functor

ψT : Mz(O′, GR) → Mz(O, GR)

is defined by
ψT (M) = PO(M ⊗ FT ).

(Of course it is also defined on Mz(O′, G/R).) In the notation of (11.15), this is

ψλaλa+µa . Our present hypotheses are somewhat weaker. Because of the definition
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of translation datum, this functor is a translation “to the wall.” A complete devel-
opment of the theory also requires the adjoint translation functor (“away from the
wall”)

φT : Mz(O, GR) → Mz(O′, GR)

defined by
φT (M) = PO′(M ⊗ F ∗T ).

The most basic properties of these functors (that they are well-defined, covariant,
exact, and adjoint to each other) are established in [Green], Proposition 4.5.8.
Before we recall anything deeper, it may be helpful to reformulate the definition of
translation datum so as to put Definition 16.1 in a more familiar setting.

Lemma 16.2. Suppose G is a complex connected reductive algebraic group, ∨G is
a dual group, and O and O′ are semisimple orbits of ∨G on ∨g. Then a translation
datum T from O to O′ (Definition 8.6) may be identified with a G-conjugacy class
of triples (T, λ, λ′) subject to the conditions below.

i) T is a maximal torus in G, and λ and λ′ belong to t∗.
ii) The infinitesimal characters χλ and χ′λ are equal to χO and χO′ respectively

(notation (15.5)).
iii) Suppose α is a root of T in g, and 〈λ, α∨〉 is a positive integer. Then 〈λ′, α∨〉 is

a positive integer.
iv) The weight µ = λ′ − λ belongs to X∗(T ).

Any triple (T, λ, λ′) satisfying (i)–(iv) determines a unique translation datum.

This is clear from Definition 8.6 and Lemma 13.1. In the language of Definition
4.5.7 of [Green], our (t, λ, λ′) corresponds to (hs, ξ + λ2, ξ + λ1). (Various extra
complications appear in [Green] because the finite-dimensional representations are
not assumed to come from an ambient algebraic group. On the other hand, the
definition in [Green] does not require any condition like (iii) of Lemma 16.2; such
conditions appear only when there are theorems to be proved.) Our functor ψT is

called ψξ+λ1

ξ+λ2
in [Green], and our φT is ψξ+λ2

ξ+λ1
.

In the setting of Definition 16.1, suppose Λ′ = ((Λcan)′, R+
iR, R

+
R ) is a limit char-

acter of infinitesimal character O′ (cf. (11.2)). When G is linear we can define a
new limit character

Λ = ψT (Λ′) (16.3)(a)

as follows (cf. (11.17)). First, the Cartan subgroup TR and the positive root systems
are unchanged. Identify the translation datum T as in Lemma 16.2, and choose a
triple (T, λ, λ′) with T the complexification of TR and λ′ the differential of (Λ′)can;
this is possible by our hypothesis on the infinitesimal character of Λ′. By the
definition of a translation datum (see Lemma 16.2(iii)), the stabilizer of λ′ in the
Weyl group W (G, T ) also stabilizes λ. It follows that λ is uniquely determined by
T and λ′; so the weight µ = λ′ − λ ∈ X∗(T ) is well-defined. (This step is not
symmetric in Λ and Λ′; we cannot reverse it to define “φT (Λ).”) Via the map
(11.1)(b), we can regard µ as a character of TR; so we can define

Λcan = ((Λ)can)′ ⊗ µ−1. (16.3)(b)

The positivity assumption in Lemma 16.2(iii) guarantees that Λ inherits from Λ′

the requirement (11.2)(d) in the definition of a limit character. (This is where
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the linearity of G enters: it forces the imaginary roots to be integral, so that
Lemma 16.2(iii) imposes some restrictions on their positivity. This point introduces
substantial difficulties in the detailed character theory of non-linear groups. In
section 11, we avoided these problems by assuming µ dominant.)

Theorem 16.4. Suppose G is a complex connected reductive algebraic group,
and GR is a linear real Lie group as in (11.1). Fix infinitesimal characters O and
O′ (Lemma 15.4) and a translation datum T from O to O′.

a) Suppose Λ′ is a limit character with infinitesimal character O′ write Λ = ψT (Λ′)
(cf. (16.3)). Then

ψT (M(Λ′)) = M(Λ)

(notation (11.2) and (16.1).)
b) Suppose π′ ∈ Πz(GR) is an irreducible canonical projective representation of

infinitesimal character O′. Then ψT (π′) is irreducible or zero.
c) In the setting of (a), suppose in addition that Λ′ is final and that ψT (π(Λ′)) 6= 0.

Then Λ is also final, and
ψT (π(Λ′)) = π(Λ).

In this way ψT defines a bijection from a subset of Πz(O′, GR) onto Πz(O, GR).

This is another version of the results in Propositions 11.16, 11.18, and 11.20; the
arguments and references given there apply here as well. Write

ψ−1
T : Πz(O, GR) → Πz(O′, GR) (16.5)(a)

for the injective map inverting the correspondence of (c). This is not so easy to
describe explicitly; one characterization is

ψ−1
T (π) = unique irreducible subrepresentation of φT (π). (16.5)(b)

Because of Theorem 11.14, there is a corresponding injective map on equivalence
classes of final limit characters

φT : Lz(O, GR) → Lz(O′, GR). (16.5)(c)

As a consequence of Theorem 16.4, this map respects the representation-theoretic
multiplicity matrix:

mr(φT (Θ), φT (Λ)) = mr(Θ,Λ) (Θ,Λ ∈ Lz(O, GR)). (16.5)(d)

Because of Lemma 8.7, this reduces the calculation of the multiplicity matrix mr

to the case of regular infinitesimal character. In connection with Theorem 1.24, we
need to know that this reduction is compatible with the corresponding one on the
geometric side.

Proposition 16.6. In the setting of (15.6), suppose T is a translation datum
from O to O′. Then the diagram

Lz(O, G/R)
φT

−→ Lz(O′, G/R)
↓ ↓

Ξz(O, ∨GΓ)
f∗
T−→ Ξz(O′, ∨GΓ)
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commutes. Here the vertical arrows are the bijections of Theorem 10.4.

Proof. The map in the top row has been described rather explicitly in terms
of Cartan subgroups of GΓ in the course of the proof of Proposition 11.20. (The
hypotheses there were slightly different, but the same ideas apply.) The sets in the
bottom row have been parametrized in terms of Cartan subgroups of ∨GΓ (Theorem
12.9). The vertical maps are defined in terms of Cartan subgroups (Propositions
13.12 and 13.13). All that remains is to check that the geometrically defined map
in the bottom row (cf. (7.16)) can be computed in terms of Cartan subgroups. This
is an elementary exercise, and we leave it to the reader. (Notice that there are no
perverse sheaves in this calculation — just homogeneous spaces and representations
of component groups.) Q.E.D.

To get the reduction of Theorem 15.12 to the case of regular infinitesimal char-
acter, we use the equivalent form Corollary 15.13(a) (cf. (15.14)). For that, we
need only compare Proposition 7.15(c) with (16.5)(d). (The orbit correspondence
of Proposition 7.15 does not preserve dimensions of orbits, but it changes all of them
by the same constant d. Since only differences of dimensions appear in Corollary
15.13(a), this suffices.)

For the balance of this section, we may therefore assume that

O ⊂ ∨g is a regular semisimple orbit of ∨G. (16.7)(a)

In order to describe the proof of Theorem 15.12, we need to recall in some detail
the structure of the Kazhdan-Lusztig algorithm that computes the various character
matrices. Suppose (dT 1, λ1) and (dT 2, λ2) are pairs with dT i a maximal torus in
∨G and λi ∈ dT i ∩O. Just as in (11.17), there is a unique isomorphism

j(λ1, λ2) : dT 1 → dT 2 (16.7)(b)

induced by an element of ∨G and carrying λ1 to λ2. (It is the assumption that O
is regular that makes the isomorphism unique.) Define

(∨TO, λO) = lim (dT , λ), (16.7)(c)

the projective limit taken over pairs as above using the isomorphisms of (16.7)(b).
Then any such pair is canonically isomorphic to (dTO, λO), say by

j(λO, λ) : ∨TO → dT (16.7)(d)

Write

TO = dual torus to ∨TO. (16.8)(a)

The dual of the Lie algebra of TO may be identified with ∨tO, so we may write

λO ∈ t∗O. (16.8)(b)

By inspection of the proof of Lemma 15.4, it is clear that we may identify

(TO, λO) = lim (T, λ). (16.8)(c)



129

The projective limit is taken over pairs (T, λ) with T a maximal torus in G, and λ ∈
t∗ a weight defining the infinitesimal character χO, using isomorphisms analogous
to those of (16.7)(b). In particular, we get isomorphisms

i(λO, λ) : TO → T (16.8)(d)

as in (16.7)(d).
The torus ∨TO inherits a root system R(∨G, ∨TO) ⊂ X∗(∨TO), a Weyl group

W (∨G, ∨TO), and so on. Similarly (using (16.8)(c)) we can define R(G, TO). The
identification (16.8)(a) makes R(G, TO) and R(∨G, ∨TO) into dual root systems,
so that the roots for one may be regarded as coroots for the other. We define the
set of O-integral coroots

R∨(O) = {α∨ ∈ R(∨G, ∨TO)|α∨(λO) ∈ Z }. (16.9)(a)

Equivalently,
R∨(O) = {α∨ ∈ R∨(G, TO)|λO(α∨) ∈ Z }. (16.9)(b)

Clearly an isomorphism j(λO , λ) as in (16.7)(d) identifies R∨(O) with the set of
roots of dT in ∨G(λ) (cf. (6.2)(b)). In G, i(λO, λ) identifies R(O) with the set of
λ-integral roots of T in G. There is a natural positive root system

R+(O) = {α ∈ R(O)|α∨(λO) > 0 }; (16.9)(c)

j(λO, λ) identifies the positive coroots with the roots of dT in the Borel subgroup
P (λ) of ∨G(λ) (cf. (6.2)(e)). We write

R(λ) = i(λO, λ)(R(O)) = {α ∈ R(G, T )|α∨(λ) ∈ Z }, R+(λ) = i(λO, λ)(R
+(O)),

(16.9)(d)
and similarly for R∨. Define

∆(O) = set of simple roots of R+(O), W (O) = Weyl group of R(O).
(16.9)(e)

We can regard W (O) as a group of automorphisms of TO or of ∨TO. The corre-
sponding set of simple reflections is written

S(O) = { sα|α ∈ ∆(O) }. (16.9)(f)

Of course (W (O), S(O)) is a Coxeter group. We may therefore attach to it a
Hecke algebra H(O) (cf. [KL0]). The Hecke algebra is a free Z[u1/2, u−1/2]-algebra
with basis

{Tw|w ∈ W (O) }. (16.10)(a)

It is characterized by the relations

TxTy = Txy (x, y ∈W (O), l(x) + l(y) = l(xy)) (16.10)(b)

and
(Ts + 1)(Ts − u) = 0 (s ∈ S(O)). (16.10)(c)

(Here l(x) is the length function on the Coxeter group (W (O), S(O)); it need not
be the restriction of any length function on the larger Weyl group W (G, TO).) It
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follows that the operators Ts generate the Hecke algebra. The specialization to
u1/2 = 1 of H(O) — that is, its quotient by the ideal generated by u1/2 − 1 — is
naturally isomorphic to the group algebra of W (O).

This is the basic structure required for the Kazhdan-Lusztig algorithms, and
we will make no explicit use of any more natural descriptions of it. As a hint
about the geometry underlying the algorithms, however, we mention a (well-known)
geometric description of W (O). Recall the map e from ∨g to ∨G (cf. (6.2)(a)). We
use the notation of (6.10). Thus F(O) is the set of canonical flats in O, C(O) is
the corresponding conjugacy class in ∨G, and e is a smooth projective algebraic
morphism from F(O) to C(O). Define

Z(O, ∨G) = F(O) ×C(O) F(O) (16.11)(a)

This definition is analogous to that of the geometric parameter space in Proposition
6.16, but it is substantially simpler. An analysis along the lines of that proposition
shows that there is a natural bijection

{ ∨G-orbits on Z(O) } ↔W (O). (16.11)(b)

Here the diagonal orbit (which is just F(O)) corresponds to the identity element
of W (O). The length function on W (O) corresponds to the dimension of orbits
(shifted by the dimension of F(O)). Now one can realize the group algebra of W (O)
(and even the Hecke algebra H(O)) as an algebra of correspondences, endowed with
a natural geometric action on KX(O, ∨GΓ). For a sketch of this, we refer to the
end of [LV]. (Our construction of geometric translation functors in section 8 was of
essentially the same nature; recall that a translation datum was a very special kind
of ∨G-orbit on F(O) ×C(O) F(O′).)

We return now to our description of the Kazhdan-Lusztig algorithms. Suppose
GR is a linear Lie group as in (15.1)–(15.2). Define

KΠz(O, GR) = KΠz(O, GR) ⊗Z Z[u1/2, u−1/2], (16.12)(a)

(cf. (15.7)), the free Z[u1/2, u−1/2]-module with basis the irreducible (or standard)
representations of GR. We may refer to this as the mixed Grothendieck group of
representations. (In a sense the definition is misleading: an ordinary Grothendieck
group should be naturally the specialization to u = 1 of a mixed one, but a mixed
one does not arise naturally by extension of scalars from an ordinary one. In
our case there is little to be done, because of the lack of a category of “mixed
representations.”) In the setting of (15.6), we will write

KΠz(O, G/R) = KΠz(O, G/R) ⊗Z Z[u1/2, u−1/2], (16.12)(b)

Similarly, we define

KX(O, ∨GΓ) = KX(O, ∨GΓ) ⊗Z Z[u1/2, u−1/2], (16.12)(c)

the mixed Grothendieck group of perverse sheaves. In this case a more geometric
interpretation is available ([LV], Definition 2.2). Finally, we will need an analogue
of the definition in Corollary 1.26:

KΠz(O, G/R) = Z[u1/2, u−1/2]-linear combinations of elements of Πz(O, G/R);
(16.12)(d)
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here infinite linear combinations are allowed. (Infinite combinations can arise only
for non-semisimple groups, because of the possibility of infinitely many strong real
forms.) We call K the formal mixed Grothendieck group of representations.

Proposition 16.13. In the setting (16.7) – (16.12), there are natural ac-
tions of the Hecke algebra H(O) on the mixed Grothendieck groups KΠz(O, GR)
(or KΠz(O, G/R), or KΠz(O, G/R)) and KX(O, ∨GΓ).

Proof. By (8.9), the Z[u1/2, u−1/2]-module KX(O, ∨GΓ) is a direct sum of copies
of Hecke algebra modules constructed in [LV]. Explicit formulas for the action of
the generators Ts appear in Lemma 3.5 of [LV]. For KΠz(O, GR), the action is
constructed in [IC4], section 12. Explicit formulas may be found there or in [IC3],
Definition 6.4. (There is a small but dangerous subtlety concealed in the details
omitted here. The basis for KΠz(O, GR) used in the references corresponds after
Beilinson-Bernstein localization to a local system on an orbit, placed in degree 0.
This differs by something like (−1)d, with d the orbit dimension, from a standard
representation. One effect appears in the formula for Cr in Proposition 16.20 be-
low, which contains a sign absent from the references. Of course the sign could be
absorbed in the definition of the representation-theoretic Kazhdan-Lusztig polyno-
mials, and this is probably where it belongs.) Q.E.D.

In addition to the Hecke algebra module structure, there are two more structures
that are needed for the Kazhdan-Lusztig algorithms.

Definition 16.14 (see [KL0]). Verdier duality is the unique algebra automor-
phism

D : H(O) → H(O)

satisfying

Du1/2 = u−1/2, DTs = u−1(Ts + (1 − u)) (s ∈ S(O)).

The terminology arises from the geometric interpretation of H(O). Using the defin-
ing relations (16.10), one can easily verify that D is also characterized by

Du1/2 = u−1/2, DTw = (Tw−1)−1 (w ∈ W (O)).

Another useful characterization is

Du1/2 = u−1/2, D(Ts + 1) = u−1(Ts + 1) (s ∈ S(O)).

It follows from either characterization that D2 = 1. If M is a module for H(O),
then a Verdier duality for M is a Z-linear involution

DM : M → M

satisfying
DM(a ·m) = (Da) · (DMm) (a ∈ H(O),m ∈ M).

Again several equivalent characterizations are possible, notably

DM(u1/2·m) = u−1/2(DMm), DM((Ts+1)·m) = u−1(Ts+1)·(DMm) (m ∈ M, s ∈ S(O).



132

Proposition 16.15 ([LV], Theorem 1.10, and [IC3], Lemma 6.8). In the setting
of Proposition 16.13, there is a natural Verdier duality DX on the Hecke algebra
module KX(O, ∨GΓ). It is characterized uniquely by the requirement that the matrix
of DX with respect to the basis {µ(ξ)} of (7.10)(c) be upper triangular in the Bruhat
order (cf. (7.11)(f)) with u−d(ξ) on the diagonal.

The dualityDX is constructed in [LV] directly from Verdier duality for complexes
of sheaves. (The powers of u on the diagonal here differ from those in [IC3] by a
constant. This modifies DX by a power of u, but has no other effect.) Since we are
interested in using this duality to compute the geometric character matrix, there
is a small problem of circularity: the characterization of DX involves the Bruhat
order, which in turn is defined using the geometric character matrix. This problem
is circumvented in [IC3] by defining in elementary terms a weaker preorder rela-
tion, then proving a stronger uniqueness result for DX , involving only the weaker
preorder. In any case, the proof of the uniqueness of DX provides an algorithm for
computing it.

To formulate an analogous result for the mixed Grothendieck group of represen-
tations, we need a function on Lz(GR) analogous to the function d(ξ) (dimension
of the orbit) on Ξ(∨GΓ). In the cases of interest Theorem 10.4 provides a bijection
between these two sets, so we could simply use d(ξ); but this is a little unsatis-
factory aesthetically. What we want is essentially the “integral length” of [Green],
Definition 8.1.4; we will normalize it in a slightly different way, however.

Definition 16.16. Let GR be a linear Lie group as in (11.1). Fix a Langlands
decomposition MRARNR of a minimal parabolic subgroup of GR, and let BM be a
Borel subgroup of M . Define

c0(GR) = 1/2(dimBM ). (16.16)(a)

Suppose that Λ is a GR-limit character of a Cartan subgroup TR, with differential
λ ∈ tR (Definition 11.2). Assume that Λ has infinitesimal character corresponding
to O as in (16.7), so that we have a well-defined set R+(λ) of positive integral roots
(cf. (16.9)(d)). Choose a Cartan involution θ of GR preserving TR. Then θ acts on
the roots of T in G, and this action preserves the integral roots. (For this we need
the linearity of GR.) We can therefore define the integral length of Λ by

lI(Λ) = −1/2
(
|{α ∈ R+(λ)|θα ∈ R+(λ) }| + dim(T θR)

)
+ c0(GR). (16.16)(b)

Clearly this differs by a constant (depending on O and GR) from the definition
in [IC4], Definition 12.1 or [Green], Definition 8.1.4. It is also evident from the
discussion in [IC4] that lI takes non-positive integral values. In the setting of
(15.6), we will write

lI(ξ) = lI(Λ) (16.16)(c)

whenever ξ ∈ Ξz(G/R) corresponds to Λ ∈ Lz(G(R, δs)).

Proposition 16.17 ([IC4], Lemma 12.14). In the setting of Proposition 16.13,
there is natural Verdier duality DΠ on the Hecke algebra modules KΠz(O, G/R). It
is characterized uniquely by the requirement that the matrix of DΠ with respect to the
basis {M(Λ)} of (15.1)(a) be upper triangular in the Bruhat order (cf. (15.3)(d))

with u−l
I(Λ) on the diagonal.
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The construction of DΠ in [IC4] is a very complicated reduction to the case of
integral infinitesimal character. In that case the Beilinson-Bernstein localization
theory provides a further reduction to the case of Proposition 16.15. Again it is
important to establish a stronger uniqueness theorem (not involving the Bruhat
order) so that DΠ is computable.

We now have all the ingredients needed to define the Kazhdan-Lusztig polyno-
mials.

Proposition 16.18 ([IC3], Theorem 7.1). In the setting (16.7)–(16.12), there
is for every geometric parameter γ ∈ Ξ(O, ∨GΓ) an element

Cg(γ) =
∑

ξ

Pg(ξ, γ)(u)µ(ξ) (Pg(ξ, γ) ∈ Z[u1/2, u−1/2])

of KX(O, ∨GΓ) characterized by the following properties.

i) DXCg(γ) = u−d(γ)Cg(γ) (cf. Proposition 16.15).
ii) Pg(γ, γ) = 1.
iii) Pg(ξ, γ) 6= 0 only if ξ ≤ γ in the Bruhat order (cf. (7.11)(f)).
iv) If ξ 6= γ, then Pg(ξ, γ) is a polynomial in u of degree at most 1/2(d(γ)−d(ξ)−1).

As in Proposition 16.15, there is actually a stronger uniqueness theorem, and
an algorithm for computing the polynomials. We call the Pg geometric Kazhdan-
Lusztig polynomials. Here is the main result of [LV].

Theorem 16.19 ([LV], Theorem 1.12). In the setting of Proposition 16.18, fix
γ, ξ ∈ Ξ(O, ∨GΓ). Recall from (7.10)–(7.11) the perverse sheaf P (γ) and the local
system Vξ on Sξ.

a) H−d(γ)+iP (γ) = 0 if i is odd.
b) The multiplicity of Vξ in H−d(γ)+iP (γ)|Sξ is the coefficient of ui/2 in Pg(ξ, γ).

c) cg(ξ, γ) = (−1)d(ξ)−d(γ)Pg(ξ, γ)(1).

d) The specialization Cg(γ)(1) ∈ KX(O, ∨GΓ) is equal to (−1)d(γ)P (γ).

Here the first two assertions are in [LV] (although our present definition of P (γ),
which follows [BBD], differs by a degree shift from the one in [LV]). The third
assertion is immediate from the second and (7.11)(d), and the last follows from
(7.11)(c).

On the representation-theoretic side, things are formally quite similar.

Proposition 16.20 ([IC4], Lemma 12.15). Suppose we are in the setting (16.7)–
(16.12) (so that in particular GR is a linear group). Then there is for every element
Θ ∈ Lz(O, GR) an element

Cr(Θ) =
∑

Λ

(−1)l
I(Θ)−lI(Λ)Pr(Λ,Θ)(u)M(Λ) (Pr(Λ,Θ) ∈ Z[u1/2, u−1/2])

of KΠz(O, GR) characterized by the following properties.

i) DΠCr(Θ) = u−l
I (Θ)Cr(Θ) (cf. Proposition 16.17).

ii) Pr(Θ,Θ) = 1.
iii) Pr(Λ,Θ) 6= 0 only if Λ ≤ Θ in the Bruhat order (cf. (15.3)(d)).
iv) If Λ 6= Θ, then Pr(Λ,Θ) is a polynomial in u of degree at most 1/2(lI(Θ) −

lI(Λ) − 1).
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Again there is a better uniqueness theorem and an algorithm for computing the
polynomials. We call the Pr representation-theoretic Kazhdan-Lusztig polynomials.
To state a result completely analogous to Theorem 16.19, we need to compute
entries of the representation-theoretic character matrix as Euler characteristics.

Proposition 16.21. Suppose Λ = (Λcan, R+
iR, R

+
R ) is a GR-limit character of

TR of infinitesimal character O (cf. Definition 11.2 and (16.7)). Choose a Cartan
involution θ for GR preserving TR. Write λ for the differential of Λcan, so that
R+(Λ) is the corresponding set of positive integral roots (cf. (16.9)(d)). After
replacing Λ by an equivalent limit character, assume that R+

R (λ) ⊂ R+
R (Definition

11.6). Fix a system of positive roots

R+ ⊃ R+(λ) ∪R+
R

for T in G. Define

b = 1/2|{α ∈ R+ −R+(λ) | θα ∈ R+ }|,

a non-negative integer. Let n be the nilpotent subalgebra spanned by the negative

root vectors for R+, so that Λcan ⊗ ρ(n) is a character of T can,GR of type z. Recall

from Definition 11.2 the dual standard representation M̃(Λ).

a) The weight Λcan ⊗ ρ(n) occurs in Hi(n, M̃(Λ)) exactly once, in degree b− lI(Λ).
b) If Θ is another standard limit character not equivalent to Λ, then Λcan ⊗ ρ(n)

does not occur in Hi(n, M̃(Θ)).
c) For any standard limit character Θ, the representation-theoretic character matrix

is given by

cr(Λ,Θ) = (−1)l
I(Λ)+b

∑

i

(−1)i(multiplicity of Λcan ⊗ ρ(n) in Hi(n, π(Θ))).

We use here the Harish-Chandra module version of the standard representations
(cf. (15.2), taking for KR the fixed points of the Cartan involution θ chosen at the
beginning of the proposition. The Lie algebra t and the group TR ∩KR both act
on the Lie algebra homology groups, and the multiplicities are to be interpreted in
the category of (t, TR ∩ KR)-modules. It is not difficult to reformulate the result
without a choice of θ, using instead the complex conjugation on T coming from
TR. In this form it is probably true for the various smooth forms of the standard
modules discussed in (15.2), but we do not know how to prove it.

Proof. Since GR is assumed to be linear, all the imaginary roots are integral.
The set of roots appearing in the definition of b therefore consists of certain pairs
α, θα of complex roots. Consequently b is an integer.

In the case of integral infinitesimal character, parts (a) and (b) are Corollary
4.7 of [IC3]. The proof given there carries through essentially without change in
general. (It consists mostly of references to [Green], where there is no assumption
of integrality.) Part (c) is a formal consequence of (a) and (b), together with the
fact that the Euler characteristic of n homology is a well-defined map from the
Grothendieck group KΠz(GR) to KΠz(TR).

Theorem 16.22. In the setting of Proposition 16.20, fix Λ and Θ in Lz(O, GR),
and choose n as in Proposition 16.21.
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a) Λcan ⊗ ρ(n) does not occur in Hb−lI (Θ)+i(n, π(Θ)) if i is odd.

b) The multiplicity of Λcan ⊗ ρ(n) in Hb−lI(Θ)+i(n, π(Θ)) is the coefficient of ui/2

in Pr(Λ,Θ).

c) cr(Λ,Θ) = (−1)l
I(Λ)−lI (Θ)Pr(Λ,Θ)(1).

d) The specialization Cr(Θ)(1) ∈ KΠz(O, GR) is equal to π(Θ).

We postpone a discussion of the proof to the next section.

Definition 16.23. Suppose we are in the setting (15.6). The mixed Grothen-
dieck groupsKΠz(O, G/R) and KX(O, ∨GΓ) (cf. (16.12)) are both free Z[u1/2, u−1/2]-
modules on bases parametrized by Ξz(O, G/R). It therefore makes sense to define
the canonical perfect pairing

〈, 〉 : KΠz(O, G/R) ×KX(O, ∨GΓ) → Z[u1/2, u−1/2]

to be the Z[u1/2, u−1/2]-linear map satisfying

〈M(ξ), µ(γ)〉 = e(ξ)δξ,γu
1/2(d(γ)+lI(ξ))

(cf. Definition 15.8, Definition 16.16) Notice that the specialization to u = 1 of this
pairing is the canonical pairing of Definition 15.11.

Theorem 16.24. Suppose we are in the setting (15.6). With respect to the
pairing of Definition 16.23, the elements Cr(ξ) and Cg(γ) of Propositions 16.18
and 16.20 satisfy

〈Cr(ξ), Cg(γ)〉 = e(ξ)δξ,γu
1/2(d(γ)+lI(ξ)).

The geometric and representation-theoretic Kazhdan-Lusztig matrices are essen-
tially inverse transposes of each other:

∑

η

(−1)l
I(ξ)−lI (η)Pr(η, ξ)Pg(η, γ) = δξ,γ .

We will discuss the proof of the first assertion in section 17. The second is a
formal consequence, as in the proof of Corollary 15.13 from Theorem 15.12.

Theorem 15.12 follows from Theorem 16.24 by specializing to u = 1 (see Theorem
16.19(d) and Theorem 16.22(d)). Q.E.D.

17. Proof of Theorems 16.22 and 16.24.

When the infinitesimal character is integral, Theorem 16.22 is the main result
(Theorem 7.3) of [IC3]; it is a more or less straightforward consequence of [BB]
and [LV]. The proofs in [IC3] can be modified easily to cover the case when the
simple root system ∆(O) of (16.9) is contained in a set of simple roots for R(G, TO).
Unfortunately this is not always the case. That the general case can be treated has
been known to various experts for many years, but there does not seem to be an
account of it in print. The geometric part of the argument for the case of Verma
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modules may be found in the first chapter of [Lbook]. The outline below is gleaned
from conversations with Bernstein, Brylinski, Kashiwara, and Lusztig; it is due to
them and to Beilinson. To simplify the notation, we take the central element z in
Z(∨G)θZ to be trivial; this changes nothing.

To begin, we must choose a system of positive roots

R+(G, TO) ⊃ R+(O) (17.1)(a)

for the root system R(G, TO). There is no distinguished choice for this positive
system, and in fact the argument will use several different ones. We write

ρO = 1/2
∑

α∈R+(G,TO)

α. (17.1)(b)

Now classical intertwining operator methods (as for example in [SV]) show that
cr(Λ,Θ) is unchanged by a small modification of Θ that does not affect the integral
roots. (Implicit here is the assertion that it is possible to make a corresponding
modification of Λ.) After making such a modification, we may assume that the
infinitesimal character is rational; that is, (in the notation of (16.8)) that there is
a positive integer n with

n(λO − ρO) = γO ∈ X∗(TO). (17.1)(c)

Define
B = variety of Borel subalgebras of g. (17.2)(a)

If b ∈ B is any Borel subalgebra with Cartan subalgebra t, then there is a natural
isomorphism j : tO → t carrying R+(G, TO) to the roots of t in g/b. Using these
isomorphisms, and the character γO of TO, we can define an algebraic line bundle

L → B. (17.2)(b)

(If the infinitesimal character is integral, then L has non-trivial sections.) The
complexification KC of a maximal compact subgroup KR of GR acts algebraically
on B and L, with a finite number of orbits on B. We make the multiplicative group
C× act on L one fiber at a time, by

z · ξ = znξ (z ∈ C×, ξ ∈ L). (17.2)(c)

Then the product group H = KC × C× acts on

L× = L − zero section , (17.2)(d)

with finitely many orbits corresponding precisely to the orbits of KC on B.
It is convenient to develop this situation a little more generally at first. So

suppose Y is a smooth complex algebraic variety, and L is an algebraic line bundle.
Write L× for L with the zero section removed:

π : L× → Y (17.3)(a)
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a principal C× bundle. We make C× act on L× as in (17.2)(c):

z · ξ = znξ (z ∈ C×, ξ ∈ L×). (17.3)(b)

We may therefore speak of C×-equivariant DL× -modules on L×. If M is such a
module, then its direct image on Y is graded by the action of C×:

π∗(M) =
∑

k∈Z

π∗(M)(k) (17.3)(c)

We say that M is genuine if the group of nth roots of unity in C× acts by the
inverse of the tautological character:

ω ·m = ω−1m (ωn = 1,m ∈ M) (17.3)(d)

Evidently this is equivalent to

π∗(M) =
∑

k≡−1 (mod n)

π∗(M)(k) (17.3)(e)

One can define a sheaf of algebras DY (L1/n) on Y , as follows. Informally,
DY (L1/n) is the algebra of differential operators on sections of the (1/n)th power of
L. The difficulty is that there is usually no such line bundle. Now if k is an integer,
the space of sections of L⊗k may be identified with the space of functions on L×

homogeneous of degree −k in the fiber variable; that is, with functions satisfying

f(z · ξ) = z−nkf(ξ). (17.4)(a)

Write E for the (Euler) vector field on L×, induced by the vector field z d
dz on C×

and the action (17.2)(c). This is a globally defined vector field on L×. Clearly

{ functions homogeneous of degree −k } = { functions killed by E + nk }.
(17.4)(b)

It follows easily that the differential operators on sections of L⊗k may be identified
with the differential operators on L commuting with E, modulo the ideal generated
by E + nk. This suggests defining (over every open set U ⊂ Y )

DY (L1/n)(U) = (DL×(π−1U))E/(E + 1) (17.4)(c)

Here on the right we are dividing by the ideal generated by E + 1.

Proposition 17.5. In the setting (17.3)-(17.4), there is a natural equivalence
of categories

( genuine C×-equivariant DL×-modules on L× ) ↔ ( DY (L1/n)-modules on Y ).

In the notation of (17.3)(e), the equivalence is

M ↔ π∗(M)(−1).
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This is easy general nonsense.
We now return to the setting of (17.1) and (17.2). The action of G on B lifts to

L×, and so defines an operator representation

ψL× : U(g) → DL× . (17.6)(a)

The action of G commutes with that of C×, so the image of U(g) commutes with
E. By (17.4)(c), we get

ψB(L
1/n) : U(g) → DB(L

1/n). (17.6)(b)

We write
IB(L

1/n) = kerψB(L
1/n) ⊂ U(g). (17.6)(c)

Theorem 17.7 (Beilinson-Bernstein localization theorem — see [BB]). Suppose
we are in the setting (17.1)–(17.2) (so that in particular the weight λO is regular).
Use the notation of (17.3)–(17.4) and (17.6).

a) The operator representation (17.6)(b) is surjective, with kernel equal to the ideal
generated by the kernel of the infinitesimal character χO.

b) The global sections and localization functors provide an equivalence of categories
between quasicoherent sheaves of DB(L

1/n)-modules on B and g-modules of in-
finitesimal character χO.

Corollary 17.8. In the setting of Theorem 17.7, there is a (contravariant) equiv-
alence of categories between finite-length (g,KC)-modules of infinitesimal character
χO, and genuine H-equivariant perverse sheaves on L×.

Here H = KC × C× acts on L× as in (17.2)(c), and “genuine” is explained
in (17.3)(d). To get this, we first apply Proposition 17.5 to pass to genuine H-
equivariant coherent DL×-modules, then use the Riemann-Hilbert correspondence
of Theorem 7.9. To get the equivalence to be contravariant, we must use the solu-
tion sheaf version of the Riemann-Hilbert correspondence rather than the DeRham
functor; this is the approach used in [IC3].

According to (7.10), the genuine irreducible H-equivariant perverse sheaves on
L× are parametrized by genuine H-equivariant local systems on orbits; so we must
study such local systems.

Lemma 17.9. In the setting of Theorem 17.7, there is a natural bijection be-
tween genuine H-equivariant local systems on H-orbits on L×, and equivalence
classes of limit characters in L(O, GR) (cf. (15.5)). Suppose the limit character Λ
corresponds to a local system on an orbit S. In the notation of Definition 16.16
and Propostion 16.21, the codimension of the orbit S is equal to b− lI(Λ).

Proof. Fix a KC-orbit S0 on B, and write S for its preimage in L× (an orbit of
H). We can find a Borel subalgebra

b = t + n ∈ S0 (17.10)(a)

with the property that t is both θ-stable and defined over R. The stabilizer BK of
b in K has a Levi decomposition

BK = TKNK ; (17.10)(b)
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the first factor is reductive, with compact real form

TK,R = TK ∩KR = TR ∩KR. (17.10)(c)

There is a natural map from BK into the Borel subgroup B corresponding to b

(induced by restricting (11.1)(a) to KR and complexifying). On the other hand,
the line bundle L gives a character γ of B, and so of BK . The stabilizer in H of
any point ξ of L× over b is then

B̃K = { (b, z) | b ∈ BK , z ∈ C×, γ(b) = z−n }. (17.10)(d)

By projection on the first factor, we see that B̃K is a central extension of BK by
the nth roots of one. Projection on the second factor defines a genuine character

of B̃K of differential equal to ρ−λ. Tensoring with this character therefore defines
a bijection

( characters of BK with differential λ− ρ ) ↔ ( genuine characters of B̃K/(B̃K)0 ).
(17.10)(e)

The objects on the right are essentially the genuine geometric parameters for the
orbit S. Using (17.10)(b) and (17.10)(c), we may identify the characters on the
left with characters of TR with differential λ − ρ. (The point is that TR is a direct
product of TK,R with a vector group, so that characters with specified differential
are determined by their restrictions to TK,R.) Such characters in turn give rise (by
twisting by ρ as in (11.3)) to limit characters of differential λ, and so to classes
in L(O, GR). We leave to the reader the easy verification that this construction
establishes the bijection we need. The last assertion is an elementary calculation,
which we omit. Q.E.D

Proposition 17.11. In the setting of Theorem 17.7, suppose V is a finite-
length Harish-Chandra module for GR of infinitesimal character χO. Let P be the
corresponding perverse sheaf on L× (Theorem 17.7). Fix an orbit S and a genuine
H-equivariant irreducible local system V on S. Choose corresponding TR, n, and
limit character Λ as in the proof of Lemma 17.9. Then the multiplicity of V in
HiP |S is equal to the multiplicity of the character Λcan ⊗ ρ(n) in Hi+dimL×(n, V ).

The proof is parallel to that of Proposition 4.1 of [IC3], and we omit it.
The main assertion in Theorem 16.22 is (b); for (a) is a special case, and (c) and

(d) follow from (b) and Proposition 16.21. So we need to calculate certain Lie al-
gebra homology groups with coefficients in irreducible representations. Proposition
17.11 reduces this to calculating the stalks of some irreducible perverse sheaves.
Assembling all of this (and the dimension calculation in Lemma 17.9) we see that
Theorem 16.22 is equivalent to

Theorem 17.12. In the setting of Theorem 17.7, suppose P (Θ) is the irreducible
perverse sheaf on L× corresponding to the limit character Θ ∈ L(O, GR). Write
d for the dimension of the underlying orbit. Suppose Λ is another limit character,
corresponding to the local system V on the orbit S. Then the multiplicity of V in
H−d+iP (Θ)|S is the coefficient of ui/2 in Pr(Λ,Θ).

The analogy with Theorem 16.19 is now immediately apparent.
To prove Theorem 17.12, we can proceed as follows. The corresponding calcula-

tion of Lie algebra homology groups is carried out in [Green], under the hypothesis
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that certain representations Uα(X) are completely reducible (cf. [IC3], section 7).
Here X is an irreducible representation of infinitesimal character χO, and α ∈ ∆(O)
is a simple integral root (cf. (16.9)). The idea is to prove that complete reducibility
more or less geometrically. Write P and Uα(P ) for the perverse sheaves correspond-
ing to X and Uα(X) (Corollary 17.8). We may assume by induction that Theorem
17.12 is true for P . We would like to find a geometric description of Uα(P ). Un-
fortunately, no such description is available in general. To get one, we must first
replace our choice of positive root system in (17.1) by a new one

(R+)′(G, TO) ⊃ R+(O) (17.13)(a)

with the additional property that

α is a simple root in (R+)′(G, TO). (17.13)(b)

Such a choice certainly exists; the difficulty is that we cannot make one choice for all
α. This change replaces all the nilpotent algebras n whose homology we considered
by slightly different algebras n′; but Proposition 4.3 of [IC3] guarantees that the
homology changes only by a shift in degree. Next, we must replace the infinitesimal
character λO by some

λO′ = λO + µ, (17.13)(c)

with µ ∈ X∗(TO). What we require of the new infinitesimal character is

λO′ is regular and dominant for R+(O), and α∨(λO′) = 1. (17.13)(d)

(To get the second condition, we may have to replace G by some finite cover.) The
translation principle identifies the Lie algebra homology groups we want with some
corresponding ones for representations of infinitesimal character attached to O′.

After making all of these adjustments, we are reduced to the case when our
simple integral root α is simple in R+(G, T ), and the coroot α∨ is one on λO.
Because of (17.1)(c), we have

α∨(γO) = 0 (17.14)(a)

Write
Pα = variety of parabolic subalgebras of type α (17.14)(b)

(as for example in [LV], (3.2)). The condition (17.14)(a) is what is needed for the
weight γO to define an equivariant algebraic line bundle

Lα → Pα. (17.14)(c)

The natural projection πα from B to Pα pulls Lα back to L; so it defines a (proper
equivariant) morphism

πα : L× → L×α . (17.14)(d)

The fibers of πα are one-dimensional projective lines. The geometric Uα functor on
the derived category of H-equivariant constructible sheaves on L× is given by

Uα,g(C) = π∗α(πα)∗(C) (17.14)(e)

(cf. [LV], Definition 3.1, and [Lbook], Lemma 1.19).
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Suppose now that P is an irreducible genuine H-equivariant perverse sheaf on
L× as above. By the (very deep!) decomposition theorem of Beilinson, Bernstein,
Deligne, and Gabber ([BBD], Theorem 6.2.5), the direct image (πα)∗P (in an ap-
propriate derived category) is a direct sum of irreducible (genuine H-equivariant)
perverse sheaves on L×α , with various degree shifts. By Proposition 7.15, π∗α[1] car-
ries irreducible perverse sheaves on L×α to irreducible perverse sheaves on L×. It
follows that Uα,g(P ) is a direct sum in the derived category of irreducible perverse
sheaves, with degree shifts. Since we know the cohomology sheaves of P by in-
duction, and since they vanish in every other degree, it is possible to compute the
cohomology sheaves of Uα,g(P ) completely. The result agrees with the calculation
of the Lie algebra homology of Uα(X) made in [Green] (compare the argument at
(7.9) – (7.12) in [IC3]). It follows first of all that Uα(P ) and Uα,g(P ) have the same
image in the Grothendieck group. Now an equivariant perverse sheaf in our setting
that is not completely reducible must have some stalks of its homology sheaves
strictly smaller than those for the direct sum of its composition factors. (This is
elementary; it is also not difficult to prove a corresponding statement on the level
of Harish-Chandra modules.) Consequently Uα(P ) is completely reducible, as we
wished to show. Q.E.D.

We turn now to the proof of Theorem 16.24. Of course this is essentially taken
from [IC4]. The idea is to define a certain natural dual of the Hecke algebra module
KX(O, ∨GΓ), then to identify this dual with KΠz(O, G/R) (or rather an appropri-
ate completion) using the pairing of Definition 16.23. The dual module has a basis
dual to the basis {Cg(γ)}; an element of this basis must for formal reasons satisfy
the requirements of Definition 16.20 characterizing the Cr(ξ). The first point is
therefore to define a dual Hecke module.

Definition 17.15. In the setting of (16.10), suppose M is a module for H(O).
Set

M∗ = HomZ[u1/2,u−1/2](M,Z[u1/2, u−1/2]). (17.15)(a)

Any Z[u1/2, u−1/2]-linear map A on M defines a Z[u1/2, u−1/2]-linear map At on
M∗, by the requirement

(Atµ)(m) = µ(Am) (m ∈ M, µ ∈ M∗). (17.15)(b)

As usual, we have (AB)t = BtAt. Since the Hecke algebra is non-commutative,
we cannot make M∗ into a module for it just by transposing the action on M; we
must twist by an anti-automorphism of H(O). Such an anti-automorphism may be
defined by sending Tw to (−u)l(w)T−1

w . (The inverse of Ts may be computed from
(16.10)(c); it is

T−1
s = u−1(Ts + (1 − u)). (17.15)(c)

The invertibility of the other Tw then follows from (16.10)(b).) We can therefore
make M∗ a module for the Hecke algebra by defining

Tw · µ = (−u)l(w)(T−1
w )t · µ. (17.15)(d)

Using (17.15)(b)–(d), we can get three equivalent formulations of this definition:

(Ts · µ)(m) = µ((−Ts − 1 + u) ·m), or

((Ts + 1) · µ)(m) = −µ((Ts − u) ·m), or

((Ts − u) · µ)(m) = −µ((Ts + 1) ·m).

(17.15)(e)
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Suppose that M admits a Verdier duality DM. We can define a Z-linear invo-
lution DM∗ on M∗ by

(DM∗µ)(m) = µ(DMm) (17.15)(f)

Here bar denotes the automorphism of Z[u1/2, u−1/2] defined by u1/2 = u−1/2. It is
straightforward to check that DM∗ is a Verdier duality for M∗ (Definition 16.14).

Proposition 17.16. Suppose we are in the setting of (15.6); use the notation
of (16.12). Then the pairing of Definition 16.23 extends to

〈, 〉 : KΠz(O, G/R) ×KX(O, ∨GΓ) → Z[u1/2, u−1/2]

On this level it provides an identification

KΠz(O, G/R) ≃ HomZ[u1/2,u−1/2](KX(O, ∨GΓ),Z[u1/2, u−1/2]) = KX(O, ∨GΓ)∗.

The Hecke algebra actions provided by Proposition 16.13 and Definition 17.15 are
identified by this isomorphism.

Proof. Because the representation-theoretic character matrix is a direct sum of
invertible finite blocks, the formal mixed Grothendieck group KΠz(O, G/R) may
be identified with formal sums of standard representations. Now the first assertion
is obvious from Definition 16.23: the dual of a free module is a direct product over
a dual basis. For the second, we must show (according to Definition 17.15(e))

〈(Ts − u)M(ξ1), µ(ξ2)〉 = −〈M(ξ1), (Ts + 1)µ(ξ2)〉 (17.17)

for every ξ1, ξ2 ∈ Ξz(O, G/R), and every simple reflection s = sα ∈ S(O) (cf. (16.9)(f)).
The proof of this is essentially identical to the proof of Proposition 13.10(b) in [IC4].
We will examine carefully one easy case and one difficult case.

So suppose ξ1 corresponds to a complete Langlands parameter (φ1, τ1) for a Car-
tan subgroup dT Γ

1 of ∨GΓ (Definition 12.4 and Theorem 12.9). Choose a compatible
based Cartan subgroup structure

dT Γ
1 = (dT

Γ

1 ,S(dT
Γ

1 ), dR
+

iR,1,
dR

+

R,1) (17.18)(a)

(Definition 13.11). Choose a based Cartan subgroup

T Γ
1 = (T Γ

1 ,W(T Γ
1 ), R+

iR,1, R
+
R,1) (17.18)(b)

for GΓ and a pairing
ζ1 : ∨T 1 → dT 1 (17.18)(c)

between them (Definition 13.9 and Proposition 13.10(b)). Construct a limit char-
acter (δ1,Λ1) for T Γ

1 (Definition 12.1) as in Proposition 13.12. By the definition
in Proposition 13.13, the standard representation M(ξ1) is attached to the real
form δ1 of G and the limit character Λ1. The parameter λ1 ∈ dT 1 attached to φ1

(Proposition 5.6) belongs to O, so (16.7)(d) provides natural isomorphisms

j(λO, λ1) : ∨TO → dT 1, i(λO, λ1) : TO → T1. (17.18)(d)



143

Under these maps, the simple root α ∈ ∆(O) of (17.17) corresponds to

α1 ∈ ∆(λ1) (17.18)(e)

(a root of T1 in G), and α∨ to a root

dα1 ∈ d∆(λ1) (17.18)(f)

of dT 1 in ∨G.
For our easy case, assume that α1 is a compact imaginary root of T1 in G(R, δ1),

and that ξ1 = ξ2. By [IC4], Definition 12.3,

TsM(ξ1) = uM(ξ1). (17.19)(a)

By Proposition 13.12(c), dα1 is a real root failing to satisfy the parity condition.
By [LV], Lemma 3.5(e),

Tsµ(ξ2) = −µ(ξ2). (17.19)(b)

It follows from (17.19) that both sides of (17.17) are zero.
For a hard case, assume that α1 is noncompact imaginary in G(R, δ1), and that

the reflection sα1 does not belong to the Weyl group of T1(R) in G(R, δ1). (In
the terminology of [Green], α1 is “type I.” This case arises in SL(2,R) but not in
PGL(2,R). Our assumption on ξ2 will be formulated after (17.20).) Define G(α1)
to be the subgroup generated by T1 and the image of the root subgroup φα1 (see
(11.10)). The assumption that α1 is imaginary implies that G(α1) is normalized
by T Γ

1 , and in fact
G(α1)

Γ = G(α1)T
Γ
1 (17.20)(a)

is a weak extended group. By the proof of Proposition 13.6 (after (14.10)), α1

is also noncompact imaginary with respect to the real forms in W(T Γ
1 ). We can

therefore find an element
δ01 ∈ W(T Γ

1 ) (17.20)(b)

that acts as δ1 does on G(α1). Up to center, the common real form G(α1, δ1) =
G(α1, δ

0
1) is locally isomorphic to SL(2,R), and T1(R) corresponds to a compact

Cartan subgroup. Now let T2(R) be another Cartan subgroup of G(α1, δ
0
1), corre-

sponding to a split Cartan subgroup of SL(2,R). Define

T Γ
2 = group generated by T2 and δ01 , W(T Γ

2 ) = Ad(T2) · δ
0
1 . (17.20)(c)

This is a Cartan subgroup of GΓ, the Cayley transform of T Γ
1 through α1. (Compare

[Green], Definition 8.3.4.) We want to define on T Γ
2 a structure of based Cartan

subgroup. To do that, we first fix an isomorphism

c : T1 → T2 (17.20)(d)

given by conjugation by an element of G(α1). This choice carries α1 to a real root
α2 of T2 in G. It identifies the imaginary roots in T2 with the imaginary roots in
T1 orthogonal to α1, so we can define

R+
iR,2 = c(R+

iR,1) ∩RiR,2. (17.20)(e)
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On the other hand, c−1 carries the real roots of T2 orthogonal to α2 onto the real
roots of T1. We choose a set of positive real roots subject to the two conditions

R+
R,2 ⊃ c(R+

R,1), α2 is simple in R+
R,2. (17.20)(f)

This is certainly possible. We claim that

T Γ
2 = (T Γ

2 ,W(T Γ
2 ), R+

iR,2, R
+
R,2) (17.20)(g)

is a based Cartan subgroup of GΓ. The only difficult condition is (e) of Definition
13.5. To check it, suppose Λ0

1 is a limit character for G(R, δ01) as in Definition
13.5(e). Form the Cayley transform of this limit character through the noncom-
pact root α1 ([Green], Definition 8.3.6). This is a limit character Λ0

2 for the Cartan
subgroup T2(R) of G(R, δ01), again of the type considered in Definition 13.5(e). By
a theorem of Hecht and Schmid ([Green], Proposition 8.4.5), the standard represen-
tation M(Λ0

2) contains M(Λ0
1) as a subrepresentation. Since the latter is assumed

to admit a Whittaker model, the former must as well; so T Γ
2 is a based Cartan

subgroup. We define
Λ2 = (Λcan2 , R+

iR,2, R
+
R,2) (17.20)(h)

to be the Cayley transform of Λ1 through the root α1 ([Green], Definition 8.3.6).
We assume (back in (17.17)) that ξ2 is the geometric parameter corresponding

to (Λ2, δ1). Definition 12.3(c) of [IC4] expresses (Ts−u)M(ξ1) in terms of standard
representations. The coefficient of M(ξ2) is 1. By Definition 16.23, the left side of

(17.17) in this case is therefore e(ξ2)u
1/2(d(ξ2)+l

I(ξ2)).
To continue with our calculation, we need to describe a based Cartan subgroup

for ∨GΓ paired with T Γ
2 . Since α1 was assumed to be real, the corresponding root

dα1 for dT1 is a real root satisfying the parity condition (Proposition 13.12(c)). We
may therefore proceed in analogy with (17.20) to construct a Cayley transform dT Γ

2

of dT Γ
1 through dα1. Specifically , the map φ1 of (17.18) provides an element

y ∈ dT Γ
1 − dT1, (17.21)(a)

and we can choose
∨δ1 ∈ S(dT Γ

1 ) (17.21)(b)

acting on ∨G(dα1) as y does. We define

S(dT Γ
2 ) = Ad(dT2) ·

∨δ1, (17.21)(c)

and fix an isomorphism dc between the maximal tori inner for ∨G(dα1). As in
(17.20)(e), this choice provides a noncompact imaginary root dα2, and a natural
choice dR+

R,2 of positive real roots. It also carries λ1 ∈ dt1 to λ2 ∈ dt2, and the pair

(y, λ2) defines a Langlands parameter

φ2 : WR → dT Γ
2 . (17.21)(d)

We want to define a pairing between T2 and dT2. We have a pairing ζ1 from
(17.18)(c), and the map c of (17.20)(d) defines an isomorphism ∨c from ∨T2 to ∨T1.
Put

ζ2 = dc ◦ ζ1 ◦
∨c : ∨T2 → dT2, (17.21)(e)
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Finally, let dR+
iR,2 be the set of roots corresponding to R+

R,2 under this pairing. By

construction and (17.20)(f),

R+
iR,2 ⊃ dc(R+

iR,1),
dα2 is simple in R+

iR,2. (17.21)(f)

We claim that R+
iR,2 is special ([AV2], Definition 6.29.) This follows from the

appendix to [AV2] in essentially the same way as we checked Definition 13.5(e)
after (17.20)(g). Granted this, it is now clear that

dT Γ
2 = (dT

Γ

2 ,S(dT
Γ

2 ), dR
+

iR,2,
dR

+

R,2) (17.21)(g)

is a based Cartan subgroup (Definition 13.7) paired with T Γ
2 by ζ2. The strong real

form δ1 of T2 (cf. (17.20)) defines a character τ2 of the canonical component group
for dT Γ

2 with respect to ∨GΓ (Definition 12.4 and Proposition 13.12(a)). By Propo-
sition 13.12, the pair (φ2, τ2) corresponds to the complete geometric parameter ξ2.

By inspection of the definitions (particularly the proofs in section 9) one can
find the following more direct description of τ2. (Additional details may be found
in [Green], section 8.3). Write

Ai = (dT yi )alg,
∨G/(dT yi )alg,

∨G
0 (17.22)(a)

By calculation in SL(2), one sees that

(dT y1 )alg,
∨G

0 ⊂ (dT y2 )alg,
∨G

0 . (17.22)(b)

(That is, the compact part of the more compact Cartan subalgebra is larger.) Set

A12 = (dT y1 ∩ dT y2 )alg,
∨G/(dT y1 )alg,

∨G
0 . (17.22)(c)

By definition A12 is a subgroup of A1; in fact it is precisely the kernel of the charac-
ter defined by the real root dα1 (which takes values in {±1}). Similarly, the natural

map from A12 to A2 is surjective; the kernel is generated by the element malg
dα1

. Now

τ1 is a representation of A1. We may therefore restrict it to a representation τ12 of
A12. Because of Proposition 13.12(c), τ12 descends to a representation of A2, and
this is the one we want.

We can now consider the right side of (17.17). Lemma 3.5(c2) of [LV] expresses
(Ts + 1)µ(ξ2) in terms of other extensions by zero of sheaves on orbits. The co-
efficient of µ(ξ1) is −1. By Definition 16.23, the right side of (17.17) is therefore

e(ξ1)u
1/2(d(ξ1)+l

I(ξ1)). To compare this with the formula for the left side obtained
after (17.20), notice first that τ1 and τ2 agree on the central element z(ρ) by (17.22).
By Definition 15.8, e(ξ1) = e(ξ2). Next, the geometric description of orbits in [LV]
shows that d(ξ1) = d(ξ2)+1. Finally, it is elementary to show from Definition 16.16
and (17.20) that lI(ξ1) = lI(ξ2) − 1. It follows that the exponents of u on the two
sides of (17.17) agree as well.

This completes our hard case; the similar arguments for other cases are left to
the reader. Q.E.D.

Corollary 17.23. The identification

KΠz(O, G/R) ≃ KX(O, ∨GΓ)∗
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of Proposition 17.16 identifies the Verdier duality DΠ of Proposition 16.17 with the
“conjugate transpose” of DX (Definition 17.15). Explicitly,

〈DΠM,µ〉 = 〈M,DXµ〉

for M ∈ KΠz(O, G/R) and µ ∈ KX(O, ∨GΓ).

Proof. Proposition 17.16 guarantees that the conjugate transpose of DX is a
Verdier duality. Proposition 16.17 provides a characterization of DΠ in terms of its
action on the basis {M(ξ)}. Definition 16.23 allows us to check very easily that the
conjugate transpose of DX has the required characteristic properties. (We refer to
[IC4], Lemma 13.4 for more details.) Q.E.D.

To complete the proof of Theorem 16.24, notice that Proposition 16.18 guaran-
tees that the elements Cg(ξ) form a basis of KX(O, ∨GΓ). By Proposition 17.16,
we may therefore define elements C′r(ξ) of KΠz(O, G/R) by the requirement

〈C′r(ξ), Cg(γ)〉 = e(ξ)δξ,γu
1/2(d(γ)+lI(ξ)).

By Corollary 17.23 and Proposition 16.18(i), these elements satisfy Proposition
16.20(i). Slightly more calculation (using also Definition 16.23) shows that the
remaining conditions (ii)–(iv) of Proposition 16.18 guarantee those in Proposition
16.20. By Proposition 16.20, C′r(ξ) = Cr(ξ), as we wished to show. (We refer to
Lemma 13.7 of [IC4] for more details.) Q.E.D.

We conclude this section with the proof of Lemma 15.9. Applying the translation
principle as in Proposition 16.6, we can reduce to the case when ξ has regular
infinitesimal character. We may therefore place ourselves in the setting of (12.4)–

(12.6), with ξ corresponding to some complete Langlands parameter (φ, τ1) for dT
Γ
.

We can choose a set dR+ of positive roots for dT in ∨G with the property that

dR+ − dR+
R is preserved by θ. (17.24)(a)

For every root α, we can define an element

mα = α∨(−1) (17.24)(b)

as in (12.6). For any positive root system, we have by (4.9)(b)

z(ρ) =
∏

α∈dR+

mα. (17.24)(c)

By (17.24),

mαmθα = mα(θmα) ∈ dT θ0 . (17.24)(d)

Since the character τ1 is trivial on the identity component of dT θ, it follows from
(17.24)(c)–(d) that

τ1(z(ρ)) =
∏

α∈dR+
R

τ1(mα). (17.24)(e)

Proposition 13.12(c) allows us to translate this back to G(R, δ) and a Cartan sub-
group T (R) dual to dT Γ. Here is the result. Let χ be the character of the lattice
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of imaginary roots for T (R) in G(R, δ) which is 1 on noncompact simple roots and
−1 on compact simple roots. Then

e(ξ) =
∏

β∈R+
iR

χ(β). (17.24)(f)

At this point there are several ways to proceed. For one of them, let A(R) be
the maximal R-split torus in T (R), and M(R) its centralizer in G(R, δ). We have
shown that e(ξ) may be calculated in M(R); since the same is true of Kottwitz’s
sign ([Kott1], Corollary (6) on page 295) we may assume M = G. Let χ0 be the
character of the imaginary root lattice that is −1 on each simple root. Evidently
χχ0 is −1 exactly on the noncompact roots, so

e(ξ) = (−1)(number of noncompact positive roots) · e0,

where e0 does not depend on the real form. The exponent of −1 here is just
q(G(R, δ)), half the dimension of the symmetric space attached to G(R); so

e(ξ) = (−1)q(G(R,δ)) · e0.

On the other hand, if G(R, δ′) is quasisplit, then we can choose the positive root
system so that all simple imaginary roots are noncompact. It follows from (17.24)(f)

that e(ξ) = 1 in that case. Comparing with the last formula gives e0 = (−1)q(G(R,δ′)),
so finally

e(ξ) = (−1)q(G(R,δ))−q(G(R,δ′)), (17.24)(g)

which agrees with Kottwitz’s definition. Q.E.D.

18. Strongly stable characters and Theorem 1.29.

We begin by recalling Langlands’ notion of stable characters. This seems to
make sense only for linear groups, so we will not try to define it in the setting of
(11.1). Suppose therefore that we are in the setting of Definition 10.3, and that η
is a finite-length canonical projective representation of type z of a strong real form
δ of GΓ. Thus η is in particular a representation of G(R, δ)can. The character of
η is a generalized function Θ(η) on G(R, δ)can, defined as follows. Suppose f is
a compactly supported smooth density on G(R, δ)can. Then η(f) is a well-defined
operator on the space of η. (If we write f as a compactly supported smooth function
times a Haar measure, f(g)dg, then η(f) is given by the familiar formula

η(f) =

∫

G(R,δ)can
f(g)η(g)dg.)

The operator η(f) is trace class, and the value of the generalized function Θ(η) on
the test density f is by definition the trace of this operator:

Θ(η)(f) = tr(η(f)) (18.1)(a)
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Of course we can immediately define the trace of any virtual canonical projective
representation (cf. (15.5)):

Θ : KΠz(G(R, δ)) → ( generalized functions on G(R, δ)can ). (18.1)(b)

This map is injective (since characters of inequivalent irreducible representations
are linearly independent). Recall that an element g of G(R, δ)can is called strongly
regular if its centralizer is a Cartan subgroup. (This condition is slightly stronger
than regular semisimple, which asks only that the centralizer in the Lie algebra be
a Cartan subalgebra.) Write

G(R, δ)canSR ⊂ G(R, δ)can (18.1)(c)

for the set of strongly regular elements; it is a dense open subset of full measure.
Harish-Chandra’s regularity theorem for invariant eigendistributions shows that the
trace of a virtual representation is determined by its restriction to this subset, and
that this restriction is an analytic function. The map of (18.1)(b) therefore becomes

ΘSR : KΠz(G(R, δ)) →֒ C∞(G(R, δ)canSR ). (18.1)(d)

Of course the resulting functions are constant on conjugacy classes of G(R, δ)can.

Definition 18.2. ([Langlands2]). In the setting of (18.1), the virtual represen-
tation η is said to be stable if whenever g and g′ are strongly regular elements of
G(R, δ)can conjugate under the complex group Gcan, we have

ΘSR(η)(g) = ΘSR(η)(g′).

Now we have in Corollary 1.26 a formal parametrization of all virtual represen-
tations in terms of L-group data, specifically as linear functionals on a category of
perverse sheaves. It is natural to look for a characterization of the subset of stable
virtual characters. As we remarked after the formulation of Theorem 1.29, it is
quite difficult to find such a characterization. Fortunately the ideas of Langlands
and Shelstad about stable characters admit a slightly different formulation. To
begin, define

G(R, ∗)can = { (g, δ) | δ ∈ GΓ −G a strong real form, g ∈ G(R, δ)can } (18.3)(a)

This set is analogous to P (∨GΓ) (Proposition 5.6), or to various fiber products
appearing in section 6. The group Gcan acts on it by conjugation. More generally,
whenever D is a set of strong real forms of G, we can define

G(R,D)can = { (g, δ) | δ ∈ D, g ∈ G(R, δ)can } (18.3)(b)

Suppose for example that D0 is the equivalence class of the strong real form δ0.
Then

G(R,D0)
can ≃ Gcan ×G(R,δ0)can G(R, δ0)

can, (18.3)(c)

with G(R, δ0)
can acting by conjugation to define the induced bundle. (The base

space of the bundle is Gcan/G(R, δ0)can, which is just D0.) The singular space
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G(R, ∗)can is undoubtedly an interesting place to do analysis, but we will confine
our attention to the smooth open subset

G(R, ∗)canSR = { (g, δ) ∈ G(R, ∗)can| g is strongly regular}. (18.3)(d)

This is a disjoint union of open subsets corresponding to equivalence classes of
strong real forms; each open subset is invariant under conjugation by Gcan, and
may be described as a smooth induced bundle in analogy with (18.3)(c).

Lemma 18.4. Suppose GΓ is a weak extended group (Definition 2.13). In
the setting (18.3), to specify a smooth Gcan-invariant function on G(R, ∗)canSR is
equivalent to specifying (for one representative δ0 of each equivalence class of strong
real forms of G) a smooth G(R, δ0)

can-invariant function on G(R, δ0)
can
SR .

This is obvious from the definition. Using this idea, we can reformulate Lang-
lands’ definition of stability.

Lemma 18.5. Suppose D0 is an equivalence class of strong real forms of the
weak extended group GΓ, δ0 ∈ D0, and η is a virtual representation of G(R, δ0)can.
Use the character of η to define a smooth Gcan-invariant function ΘSR(η,D0) on
G(R,D0)

can
SR ((18.3)(b) and Lemma 18.4). Then η is stable (Definition 18.2) if and

only if ΘSR(η,D0) is constant on the fibers of the first projection

p1 : G(R,D0)
can
SR → Gcan, p1(g, δ) = g.

Now Corollary 1.26 suggests considering families of virtual representations of
all strong real forms. Such families are going to give rise to smooth functions on
G(R, ∗)canSR , by means of (18.1)(d) and Lemma 18.4. Here is the appropriate class
of virtual representations.

Definition 18.6 (cf. Definition 1.27). Suppose GΓ is a weak extended group

(Definition 2.13). As in Corollary 1.26, write K
z
(G/R) for the set of formal infinite

integral combinations of irreducible canonical projective representations of strong
real forms of G, the group of formal virtual representations. Such a formal virtual
representation

η =
∑

ξ∈Ξz(G/R)

n(ξ)π(ξ)

is called locally finite if for each fixed strong real form δ there are only finitely many
ξ with n(ξ) 6= 0 and δ(ξ) (the strong real form parametrized by ξ) equivalent to δ.
Write

KfΠ
z(G/R) (18.6)(a)

for the set of locally finite formal virtual representations. Evidently the map of
(18.1) extends to

Θ(·, δ) : KfΠ
z(G/R) → ( generalized functions on G(R, δ)can ). (18.6)(b)

Finally, these maps can be assembled into a single map

ΘSR(·, ∗) : KfΠ
z(G/R) → C∞(G(R, ∗)canSR )) (18.6)(c)
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defined by
ΘSR(η, ∗)(g, δ) = Θ(η, δ)(g). (18.6)(d)

That is, given a strong real form δ and a (strongly regular) element g of it, we find
the (finitely many) irreducible representations of G(R, δ)can appearing in η; add
their distribution characters; and evaluate the sum at g.

The locally finite formal virtual representation η is said to be strongly stable if
the function ΘSR(η, ∗) is constant on the fibers of the first projection

p1 : G(R, ∗)canSR → Gcan, p1(g, δ) = g.

By Lemma 18.5, the restriction of a strongly stable virtual representation to
a single strong real form must be stable. The converse is false, however, since a
strongly regular element g of Gcan may belong to several inequivalent strong real
forms of G. In fact g must belong to a quasisplit real form (if it belongs to any at
all); we have already encountered this elementary fact in the proof of Proposition
13.6. It follows that a strongly stable virtual representation is determined by its
restriction to any quasisplit real form of G. The results of Shelstad in [Shelstad1]
can be formulated as a converse to this statement, as follows.

Theorem 18.7 ([Shelstad1]). Suppose GΓ is a weak extended group for G (Def-
inition 2.13), and δ0 is a strong real form of G. Suppose η0 is a stable virtual
representation of G(R, δ0)can (Definition 18.2). Then there is a strongly stable lo-
cally finite formal virtual representation η for G (Definition 18.6) with the property
that

ΘSR(η, ∗)(g, δ0) = ΘSR(η0)(g)

for every strongly regular element g of G(R, δ0)
can (cf. (18.6)(c) and (18.1)(d)). If

δ0 is quasisplit, then η is unique.

We will need a more explicit statement than this; formulating it will also allow
us to explain the relationship between Theorem 18.7 and the superficially rather
different results of [Shelstad1]. We begin with something in terms of the traditional
Langlands classification. For the rest of this section we will fix an E-group

(∨GΓ,D) (18.8)

for GΓ with second invariant z (Definition 4.6).

Definition 18.9 ([Shelstad1], section 3). In the setting of (18.1) and (18.8), sup-
pose φ ∈ P (∨GΓ) is a Langlands parameter (Definition 5.2). The stable standard
(virtual) representation attached to φ is by definition the sum of all the (inequiva-
lent) standard final limit representations of G(R, δ)can parametrized by φ (Propo-
sition 13.12); to simplify later definitions we insert the sign e(G(R, δ)) attached to
the real form by Kottwitz (Definition 15.8). It is written as ηlocφ (δ). (Equivalently,

ηlocφ (δ) may be defined as the sum of the inequivalent standard representations

induced from discrete series parametrized by φ.) In the notation of (1.19),

ηlocφ (δ) = e(G(R, δ))
∑

ξ=(φ,τ)∈Ξz(G/R)
δ(ξ)=δ

M(ξ);
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the sum is over complete Langlands parameters (Definition 5.11), with φ fixed.

The terminology of the definition is justified by

Lemma 18.10 ([Shelstad1], Lemma 5.2). In the setting of Definition 18.9, the
virtual representation ηlocφ (δ) is stable.

Shelstad proves this under the assumption that φ is tempered, but the argument
is unchanged in general. Although she does not state the result explicitly, her
argument also proves

Lemma 18.11. In the setting of (18.1), the lattice of stable virtual representa-
tions has as a basis the set of non-zero ηlocφ (δ) (as φ varies over Φ(∨GΓ)).

To prove Theorem 18.7, we need also a way to compare different real forms.

Theorem 18.12 ([Shelstad1], Theorem 6.3). In the setting of Definition 18.9,
suppose that δ and δ′ are strong real forms of G, and that

g ∈ G(R, δ)can ∩G(R, δ′)can

is strongly regular. Then

ΘSR(ηlocφ (δ))(g) = ΘSR(ηlocφ (δ′))(g).

Here ΘSR is as in (18.1).

Definition 18.13. In the setting of Definitions 18.6 and 18.9, suppose φ ∈
P (∨GΓ) is a Langlands parameter (Definition 5.2). The strongly stable standard
formal virtual representation attached to φ is by definition the sum of all the (in-
equivalent) standard final limit representations parametrized by φ (Proposition
13.12), normalized by the signs e(ξ) (Definition 15.8). It is written as ηlocφ . In the

notation of (1.19),

ηlocφ =
∑

ξ=(φ,τ)∈Ξz(G/R)

e(ξ)M(ξ);

the sum is over complete Langlands parameters (Definition 5.11). Equivalently,

ηlocφ =
∑

δ

ηlocφ (δ);

the sum is over strong real forms. Finally, we can also write

ηlocφ =
∑

τ∈(Aloc,alg
φ

)̂

e(φ, τ)M(φ, τ),

a sum over the (necessarily one-dimensional) irreducible representations of the uni-
versal component group.

The terminology is justified by

Theorem 18.14. In the setting of Definition 18.12, the formal virtual repre-
sentation ηlocφ is strongly stable. The lattice of strongly stable formal virtual repre-

sentations has as a basis the set of ηlocφ (as φ varies over Φ(∨GΓ)).



152

Theorems 18.7 and 18.14 follow from Lemmas 18.10 and 18.11, and Theorem
18.12.

To complete the proof of Theorem 1.29, we need to identify the formal virtual
representation ηlocφ in the isomorphism of Corollary 1.26; that is, as a Z-linear

functional on the Grothendieck group KX(∨GΓ).

Lemma 18.15. In the setting of Definition 18.13, write S for the orbit of ∨G
on X(∨GΓ) corresponding to φ (Proposition 6.17). Then

ηlocφ =
∑

ξ=(S,V)∈Ξz(G/R)

e(ξ)M(ξ).

Here we identify complete geometric parameters as in Definition 7.6; the sum is
therefore over irreducible equivariant local systems V on S. In the isomorphism of
Corollary 1.26, this formal virtual representation corresponds to the map

χlocS : Ob C(X(∨GΓ), ∨G
alg

) → N

that assigns to a constructible equivariant sheaf the dimension of its fiber over S
(Definition 1.28).

Proof. The first formula is immediate from Definition 18.13 and the identification
of complete Langlands parameters with complete geometric parameters (Definition
7.6). For the second, notice first of all that all the irreducible equivariant local
systems on S have fiber dimension 1. (This is equivalent to the assertion that

the group Aloc,algS is abelian. The proof of Theorem 10.4 exhibits Aloc,algS as a

subquotient of a Cartan subgroup of the connected reductive complex group ∨G
alg

(Definition 12.4 and Theorem 12.9), proving the assertion.) We may therefore write

χlocS (C) =
∑

V

( multiplicity of V in C restricted to S ), (18.16)

the sum extending over irreducible equivariant local systems on S. Comparing
(18.16) with the first formula of the lemma, and using Corollary 1.26(a), we get the
second formula. Q.E.D.

Theorem 1.29 now follows from Lemma 18.15 and Theorem 18.14.

19. Characteristic cycles, micro-packets, and Corollary 1.32.

In this section we will repeat in a little more detail the argument given in the
introduction for defining the new strongly stable virtual representations ηmicS . It
is convenient to work at first in the setting of Definition 7.7; that is, that Y is a
smooth complex algebraic variety on which the pro-algebraic group H acts with
finitely many orbits. At each point y of Y , the differential of this action defines a
map

ay : h → TyY (19.1)(a)

from the Lie algebra h of H into the tangent space of Y at y. If y belongs to the
H-orbit S, then

ay(h) = TyS (19.1)(b)
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If we regard h × Y as a trivial bundle over Y , we get a bundle map

a : h × Y → TY (19.1)(c)

Of course the cotangent bundle of Y is dual to the tangent bundle, so we may
define the conormal bundle to the H action as the annihilator of the image of a.
Explicitly,

T ∗H(Y ) = { (λ, y) | λ ∈ T ∗y (Y ), λ(ay(h)) = 0 } (19.1)(d)

It is clear from this definition that T ∗H(Y ) is a closed cone in the cotangent bundle.
In the situation of (19.1)(b), the fiber of T ∗H(Y ) at y is the conormal bundle to S
at y (that is, the annihilator of TyS in T ∗y (Y )):

T ∗H,y(Y ) = T ∗S,y(Y ). (19.1)(e)

Consequently

T ∗H(Y ) =
⋃

H-orbits S

T ∗S(Y ). (19.1)(f)

That is, the conormal bundle to the action is the union of the conormal bundles to
the orbits.

Lemma 19.2. Suppose the proalgebraic group H acts on the smooth variety Y
with finitely many orbits; use the notation of (19.1).

a) The conormal bundle T ∗H(Y ) is a closed Lagrangian cone in T ∗(Y ).
b) The H-components (that is, the smallest H-invariant unions of irreducible com-

ponents) of T ∗H(Y ) are the closures T ∗S(Y ) of conormal bundles of H-orbits S in
Y .

Proof. We have already seen that T ∗H(Y ) is a closed cone. Since the conormal
bundle to a locally closed smooth subvariety is automatically Lagrangian, part (a)
follows from (19.1)(f). The conormal bundle T ∗S(Y ) to an H-orbit S has dimen-
sion equal to the dimension of Y , and is H-irreducible (that is, H permutes the
irreducible components transitively). Part (b) follows. Q.E.D.

We turn now to a discussion of the characteristic variety. We follow [BorelD],
VI,1.9, which the reader may consult for more details. On any smooth algebraic
variety Y , the sheaf DY of algebraic differential operators has a natural filtration
by order

OY = DY (0) ⊂ DY (1) ⊂ · · · (19.3)(a)

The terms here are coherent OY -modules, and the multiplication of differential
operators satisfies

DY (p)DY (q) ⊂ DY (p+ q), (19.3)(b)

Write p : T ∗(Y ) → Y for the natural bundle map. The symbol calculus for differ-
ential operators is an isomorphism of graded sheaves of algebras

grDY ≃ p∗(OT∗(Y )). (19.3)(c)

Because p is an affine map, p∗ defines an equivalence of categories

( quasicoherent sheaves of OT∗(Y )-modules ) → ( quasicoherent sheaves of p∗OT∗(Y )-modules )
(19.3)(d)
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([Hartshorne], Exercise II.5.17(e)).
Suppose now that M is a quasicoherent DY -module. A filtration on M is a

sequence

· · · ⊂ M(p) ⊂ M(p+ 1) ⊂ · · · (p ∈ Z) (19.4)(a)

of quasicoherent OY -submodules, satisfying

D(p)M(q) ⊂ M(p+ q),
⋃

p

M(p) = M,
⋂

p

M(p) = 0 (19.4)(b)

The first condition makes the associated graded sheaf grM into a sheaf of modules
for grDY . By (19.3)(c) and (d), we may therefore regard grM as a sheaf of
modules on T ∗(Y ). The filtration on M is called good if grM is a coherent sheaf
(of OT∗(Y )-modules). (This implies in particular that M(p) = 0 for p sufficiently
negative.)

Lemma 19.5 ([BorelD], VI.1.9). Suppose M is a coherent DY -module. Then
good filtrations of M exist locally on Y . More precisely, if U is any affine open
subset of Y , then the restriction of M to U admits a good filtration.

We do not know whether global good filtrations exist in general. (According
to [KK], Corollary 5.1.11, they exist in the analytic category.) We will eventually

see that ∨G
alg

-equivariant D-modules on X(O, ∨GΓ) admit global ∨G
alg

-invariant
good filtrations (Proposition 21.4).

Even when good filtrations exist, they are certainly not unique. The next lemma
allows us to compare objects defined using different filtrations, and to deduce that
some such objects are independent of the filtration chosen.

Lemma 19.6 ([Ginsburg], Corollary 1.3; cf. [Assoc], Proposition 2.2). Suppose
F and G are good filtrations of the coherent DY -module M. Then there are finite
filtrations

gr(M,F)(0) ⊂ gr(M,F)(1) ⊂ · · · ⊂ gr(M,F)(N) = gr(M,F)

gr(M,G)(0) ⊂ gr(M,G)(1) ⊂ · · · ⊂ gr(M,G)(N) = gr(M,G)

by graded coherent sheaves of p∗OT∗(Y )-modules ), with the property that the cor-
responding subquotients are isomorphic:

gr(M,F)(j)/gr(M,F)(j − 1) ≃ gr(M,G)(j)/gr(M,G)(j − 1) (0 ≤ j ≤ N).

(There is a constant N ′, 0 ≤ N ′ ≤ N , with the property that the jth isomorphism
shifts the grading by j −N ′.)

In particular, the class of gr(M) in the Grothendieck group of coherent sheaves
of OT∗(Y )-modules is independent of the choice of good filtration.

Definition 19.7. Suppose V is a complex algebraic variety, and N is a coherent
sheaf of OV -modules. The associated variety (or support) of N is the set of (not
necessarily closed) points v ∈ V at which the stalk of N is not zero:

V(N ) = { v ∈ V | Nv 6= 0 }.
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It is a closed subvariety of V , defined by the sheaf of ideals AnnN ⊂ OV . The
set {Wi} of irreducible components of V(N ) is the set of maximal points (that is,
points not in the closure of other points) of V(N ). (If V is affine, these correspond
to the minimal prime ideals containing the annihilator of N .) To each such point
we assign a positive integer

mWi(N ),

the multiplicity of N along Wi. One way to define it is as the length of NWi as a
module for the local ring OV,Wi . The associated cycle of N is the formal sum

Ch(N ) =
∑

i

mWi(N )Wi.

This is a finite formal integer combination of irreducible subvarieties of V , with no
containments allowed among the subvarieties. Notice that the support of N is the
union of the subvarieties appearing in the associated cycle.

The theory of associated cycles is elementary, and well-known to experts; but
it is not easy to give references with enough details for the novice. The theory
is essentially local, so it suffices to discuss it for affine varieties. In that case the
necessary commutative algebra is summarized in section 2 of [Assoc].

Lemma 19.8. Suppose N and N ′ are coherent sheaves of modules on the com-
plex algebraic variety V . Assume that N and N admit finite filtrations (as OV -
modules) with the property that grN ≃ grN ′. Then ChN = ChN ′.

Again this is well-known, and again we refer to section 2 of [Assoc] for a proof.

Definition 19.9 Suppose M is a coherent DY -module on the smooth algebraic
variety Y . Assume first that M admits a good filtration. The characteristic variety
of M (or singular support) is the support of the OT∗(Y )-module grM (cf. (19.4)):

SS(M) = V(grM) ⊂ T ∗Y.

By Lemmas 19.6 and 19.8, this is independent of the choice of good filtration.
Since grM is graded, the characteristic variety is a closed cone in T ∗(Y ). The
characteristic cycle of M is the associated cycle of grM:

Ch(M) = Ch(grM).

It is a formal sum of irreducible subvarieties of T ∗(Y ), with positive integer coeffi-
cients; the union of these subvarieties is the characteristic variety of M. Lemmas
19.6 and 19.8 guarantee that it is independent of the choice of good filtration.

In general (that is, even if M does not admit a good filtration) we can define the
characteristic variety and characteristic cycle over each affine open set in Y using
Lemma 19.5; the resulting invariants agree on overlapping affines, and so make
sense on all of Y (cf. [BorelD], VI.1.9).

Obviously the characteristic variety of M is contained in the inverse image under
p (cf. (19.3)) of the support of M. In fact

SS(M) ∩ T ∗y (Y ) 6= ∅ ⇔ y ∈ Supp(M). (19.10)
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In this sense the characteristic variety refines the notion of support for D-modules
(or, via the Riemann-Hilbert correspondence of Theorem 7.9, for perverse sheaves).

Recall that the dimension of the characteristic variety of M is (everywhere locally
on SS(M)) greater than or equal to the dimension of Y ([BorelD], Theorem VI.1.10)
and that (by definition) M is holonomic exactly when equality holds.

Examples 19.11. If M is equal to DY , then the usual filtration by degree is
good. The associated graded module is OT∗(Y ), so Ch(DY ) = 1 · T ∗(Y ).

Suppose M is equal to OY . Then we can define

M(p) = OY (p = 0, 1, 2, . . . ).

(This module is regular holonomic.) The associated graded module is OY ; that
is, it is OT∗(Y ) modulo the ideal defining the zero section of the cotangent bundle.
Consequently Ch(OY ) = 1 · Y

Suppose M is the DY module generated by a delta function supported at the
point y; that is,

M = DY /DY I(y).

(Here we write I(y) for the ideal in OY defining the point y. Again the module
is regular holonomic.) Then M inherits a good quotient filtration from DY . The
associated graded module is the sheaf of functions on the cotangent space T ∗y (Y ),
so Ch(M) = 1 · T ∗y (Y ).

We return now to the equivariant setting.

Proposition 19.12. Suppose we are in the setting of Lemma 19.2, and that M
is an H-equivariant coherent DY -module.

a) For each X ∈ h, let a(X) be the vector field on Y induced by the action of H, a
first-order differential operator on Y . Then the action of a(X) on M induced by
the DY -module structure agrees with the action of X defined by differentiating
the action of H on M.

b) The characteristic variety of M is contained in the conormal bundle to the H
action (cf. (19.1)).

c) The H-components (Lemma 19.2) of SS(M) are closures of conormal bundles
of H-orbits on Y . Consequently

Ch(M) =
∑

H-orbits S

χmicS (M)T ∗S(Y ),

for some non-negative integers χmicS (M).
d) The support of M is given by

Supp(M) =
⋃

χmic
S

(M) 6=0

S.

e) The functions χmicS are additive for short exact sequences (of H-equivariant co-
herent DY -modules). Consequently they define Z-linear functionals

χmicS : K(Y,H) → Z
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(notation (7.10)).

Proof. Part (a) is a trivial exercise in understanding the definition of equivariant
D-modules ([BorelD], VII.12.10). (We couldn’t do it ourselves, but never mind.)
For (b), assume for simplicity that there is a global H-invariant good filtration. Fix
X ∈ h. We may regard the vector field a(X) as a first-order differential operator,
and therefore

a(X) : M(p) → M(p+ 1).

On the other hand, the action of H preserves degree in the filtration, so the differ-
entiated action of h does as well. By (a), it follows that

a(X) : M(p) → M(p).

It follows that the principal symbol of a(X) annihilates gr(M). This symbol is
nothing but a(X), regarded as a function on T ∗(Y ). It follows that

V(grM) ⊂ { (λ, y) ∈ T ∗(Y ) | λ(ay(X)) = 0 }.

Comparing this with (19.1)(d) gives (b). Part (c) follows from (b) and Lemma 19.2.
Part (d) follows from (c) and (19.10). Part (e) is clear from the definitions. Q.E.D.

This completes our exposition of Definition 1.30. Corollary 1.32 is an immediate
consequence of Theorem 1.31 (Kashiwara’s local index theorem) and Theorem 1.29.
It will be convenient to introduce a bit more notation in that context, however.

Definition 19.13. In the setting of (19.1), fix S ∈ Φ(Y,H) (Definition 7.1);
that is, an orbit of H on Y . To every complete geometric parameter ξ′ ∈ Ξ(Y,H) is
associated an irreducible perverse sheaf P (ξ′) (cf. (7.10)(d)). The conormal bundle
T ∗S(Y ) has a non-negative integral multiplicity χmicS (ξ′) in the characteristic cycle
ChP (ξ′) (Proposition 19.12). We define the micro-packet of geometric parameters
attached to S to be the set of ξ for which this multiplicity is non-zero:

Ξ(Y,H)micS = { ξ | χmicS (ξ′) 6= 0 }.

Lemma 19.14. In the setting of Definition 19.13, suppose ξ′ = (S′,V ′) is a
geometric parameter (Definition 7.1).

a) If ξ′ ∈ Ξ(Y,H)micS , then S ⊂ S′.
b) if S′ = S, then ξ′ ∈ Ξ(Y,H)micS . In this case χmicS (ξ′) is equal to the rank of the

local system V ′; that is, to the dimension of the corresponding representation of
AlocS (Definition 7.1).

Proof. Part (a) is clear from (19.12)(d), as is the first assertion in (b). The
rest of (b) (which is “well-known”) can be deduced from the construction of the
DY -module corresponding to the perverse sheaf P (ξ′) ([BorelD]; some of the main
points are contained in the proof of Kashiwara’s theorem VI.7.11 in [BorelD]).
Q.E.D.

Definition 19.15. In the setting of Theorem 10.4, fix an equivalence class
φ ∈ Φz(G/R) of Langlands parameters (Definition 5.3), and write S = Sφ for the
corresponding orbit of ∨G on X(∨GΓ) (Definition 7.6). Then we can define the
micro-packet of geometric parameters attached to φ as

Ξz(G/R)micφ = Ξ(X(∨GΓ), ∨G
alg

)micSφ
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(notation as in Definition 19.13). The micro-packet of φ is the corresponding set of
irreducible representations of strong real forms of G:

Πz(G/R)micφ = { π(ξ′) | ξ′ ∈ Ξz(G/R)micφ }.

Corollary 19.16. In the setting of Theorem 10.4, fix an equivalence class φ ∈
Φz(G/R) of Langlands parameters. Then the micro-packet Πz(G/R)micφ contains

the L-packet Πz(G/R)φ. If π(ξ′) is any irreducible representation occurring in the
micro-packet, then the corresponding orbit S′ on X(∨GΓ) contains Sφ in its closure.
There is a strongly stable formal virtual character

ηmicφ =
∑

π′∈Πz(G/R)mic
φ

e(π′)(−1)d(π
′)−d(φ)χmicφ (π′)π′.

Here e(π′) = ±1 is Kottwitz’ sign attached to the real form of which π′ is a rep-
resentation; d(π′) is the dimension of the orbit Sπ′ on X(∨GΓ); and the positive
integer χmicφ (π′) is the multiplicity of the conormal bundle to Sφ in the character-

istic variety of the irreducible perverse sheaf corresponding to π′. This is therefore
a sum over the full L-packet Πz(G/R)micφ , together with “correction terms” taken

from L-packets corresponding to larger orbits on X(∨GΓ).
The set { ηmicφ } (as φ varies over Φz(G/R)) is a basis of the lattice of strongly

stable formal virtual representations.

This is just a reformulation of Corollary 1.32 (taking into account the information
in Lemma 19.14). The point of the result is that under favorable circumstances the
characteristic variety of an equivariant D-module is relatively small; at best it may
just be the conormal bundle of a single orbit. The sum in Corollary 19.16 therefore
does not extend over too many representations. By contrast, the sum in Lemma
18.15 (when expressed in terms of irreducible representations) tends to include most
of the representations for which the corresponding irreducible perverse sheaf has
Sφ in its support.

Example 19.17. Suppose that G is adjoint. In this case strong real forms are
the same as real forms, and ∨G is simply connected (so there are no coverings to
consider). Take (∨GΓ,S) to be an L-group for G in the sense of Definition 4.14.
Let O ⊂ ∨g be the orbit of half sums of positive coroots; this corresponds to repre-
sentations of G of infinitesimal character equal to that of the trivial representation
(Lemma 15.4). The conjugacy class C(O) of (6.10) consists of the single (central)
element z(ρ). Since ρ is regular and integral, each canonical flat Λ ⊂ F(O) is
preserved by a unique Borel subgroup dB(Λ) (notation (6.6)). We may therefore
identify the geometric parameter space X(O, ∨GΓ) with the set of pairs (y, dB),
with y ∈ ∨GΓ − ∨G, y2 = z(ρ), and dB a Borel subgroup of ∨G (Definition 6.9).

Now by definition the L-group structure provides a distinguished orbit S0 = S of
∨G on X(O, ∨GΓ). We write φ0 for the corresponding Langlands parameter. Fix a
point (y, dB) ∈ S0. Since ∨G is simply connected, the fixed point group K(y) of the
involution θy is connected. Since θy preserves dB, the intersection dB ∩K(y) is a
Borel subgroup of K(y), so it is connected as well. Evidently dB ∩K(y) is just the
isotropy group of the action of ∨G; so it follows that the canonical component group

Aloc,algφ0
is trivial. The L-packet Πφ0 therefore consists of a single representation.
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Inspecting the constructions in the proof of Theorem 10.4, we find that M(φ0) is
a spherical principal series representation of the quasisplit real form of G (in our
fixed inner class), and that π(φ0) is the trivial representation of this group. The
strongly stable standard formal virtual representation ηlocφ0

of Definition 18.13 is

M(φ) alone. This representation has a great many irreducible composition factors,
however, occurring with relatively high multiplicity; so as a “stabilization” of the
trivial representation π(φ0), M(φ0) is not very useful. (Another way to say this is
that the relationship between the characters of π(φ0) and M(φ0) is quite weak.)

We consider therefore the virtual representation ηmicφ0
. To calculate it, we need to

know the multiplicity of the conormal bundle T ∗S0
(X(O, ∨G)) in the characteristic

variety of any irreducible perverse sheaf. We will consider some techniques for
making such calculations in sections 21 and 27 (see for example Theorem 27.18).
For the moment we simply state the result: the micro-packet of φ0 consists of one
trivial representation of each real form of G in our inner class. The multiplicities
χmicS0

are equal to 1, and the differences in orbit dimensions have the same parity
as Kottwitz’ invariant. The formula in Corollary 19.16 therefore reduces to

ηmicφ0
=

∑

real forms δ

( trivial representation of G(R, δ) ).

This is a charming (if rather obvious) stabilization of the trivial representation.
Notice that all real forms (in the inner class) appear, even though φ0 is relevant
only for the quasisplit one.

20. Characteristic cycles and Harish-Chandra modules.

Recall that Theorem 8.5 related the category of equivariant perverse sheaves (or,
equivalently, equivariant D-modules) on the geometric parameter space to certain
categories of Harish-Chandra modules. Our goal in this section is to see what
this relationship has to say about the characteristic cycles. Theorem 8.5 implies
that the characteristic cycles must somehow be encoded in the Harish-Chandra
modules. We are not able to break that code, but we get some useful information
about it (Theorem 20.18). This will later be the key to relating our definition
of Arthur’s unipotent representations to the original one of Barbasch and Vogan.
Roughly speaking, Arthur’s representations will be characterized on the E-group
side by the occurrence of certain “regular” components in a characteristic cycle
(Definition 20.7). We therefore seek to understand that occurrence on the level of
Harish-Chandra modules.

We begin with analogues of Propositions 7.14 and 7.15.

Proposition 20.1. Suppose X and Y are smooth algebraic varieties, and

f : X → Y

is a smooth surjective morphism having connected geometric fibers of dimension d.
Suppose M is a DY -module.
a) There is a natural inclusion

f∗(T ∗Y ) →֒ T ∗X



160

identifying the pullback of the cotangent bundle of Y with a subbundle of T ∗X.
This induces a bundle map

f̃ : f∗(T ∗Y ) → T ∗Y

which is again a smooth surjective morphism having connected geometric fibers
of dimension d.

b) The OX -module f∗M carries a natural DX-module structure.
c) The functor f∗ is a fully faithful exact functor from coherent DY modules to

coherent DX modules.
d) Suppose M(p) is a good filtration of M. Then

(f∗M)(p) = f∗(M(p))

is a good filtration of f∗M. The associated graded module gr(f∗M) is defined
on the subvariety f∗(T ∗Y ) of T ∗X, where it may be computed by

gr(f∗M) ≃ f̃∗gr(M).

The characteristic cycle of f∗M is therefore

Ch(f∗M) = f̃−1(Ch(M)).

e) Suppose we are in the setting of Proposition 7.15 (that is, that a pro-algebraic
group H acts on everything). Suppose M is an H-equivariant coherent DY -
module, and S is an H-orbit on Y . Define f∗S to be the unique dense H-orbit
in f−1S (cf. (7.16)). Then the multiplicities of Proposition 19.12 are given by

χmicf∗S(f∗M) = χmicS (M).

Proof. Part (a) is formal. Part (b) may be found in [BorelD], VI.4.1. Part (c)
is [BorelD], Proposition VI.4.8. For (d), we know that f∗ is an exact functor on
OY -modules (since f is smooth), and that it preserves coherence; the only thing to
check is the degree condition in (19.4)(b). This is immediate from the definition of
the DX -module structure. The rest of (d) is a straightforward consequence. (Notice
that the inverse image under a smooth map with connected fibers of an irreducible
variety is irreducible, so the last assertion makes sense.) The formula of (e) just
interprets the last relation in (d). Q.E.D.

For an analogue of Proposition 7.14, we will need to recall (in that setting)
that the induction functor G×H is an equivalence of categories from H-equivariant
(quasi)-coherent OY -modules to G-equivariant (quasi)-coherent OX -modules. We
have already used this for local systems, but we will need it now more generally.
(The definitions of the functors may be found for example in the appendix to [Dix].)

Proposition 20.2. Suppose we are in the setting of Proposition 7.14. Regard
g×TY as a vector bundle over Y , containing the bundle h×Y of (19.1). We make
H act on the bundle by the adjoint action on g. Write i : h × Y → g × Y for the
inclusion, and consider the bundle map

i× a : h × Y → g × TY.
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Write Q for the quotient bundle: the fiber at y is

Qy = (g × TyY )/{(X, ay(X) | X ∈ h}.

a) The tangent bundle TX of X = G ×H Y is naturally isomorphic to the bundle
on X induced by Q:

TX ≃ G×H Q.

b) The action mapping ax : g → TxX (cf. (19.1)) may be computed as follows. Fix
a representative (g, y) for the point x of G×H Y , and an element Z ∈ g. Then

ax(Z) = class of (g, (Ad(g−1)Z, (y, 0))).

Here (y, 0) is the zero element of TyY , so the term paired with g on the right
side represents a class in Qy.

c) The conormal bundle to the G action on G ×H Y is naturally induced by the
conormal bundle to the H action on Y :

T ∗G(G×H Y ) ≃ G×H T ∗H(Y ).

Suppose M is an H-equivariant coherent DY -module admitting an H-invariant
good filtration M(p). Let N be the corresponding G-equivariant DX-module (Propo-
sition 7.14(d)).

d) As a G-equivariant OX-module, N is isomorphic to G×H M.
e) The filtration

N (p) = G×H M(p)

is a G-equivariant good filtration of N . In particular,

gr(N ) ≃ G×H gr(M).

f) The characteristic cycle of N may be identified as a cycle in T ∗GX (see (c) above)
as

Ch(N ) = G×H Ch(M).

In particular, the multiplicities are given by

χmicG×HS(N ) = χmicS (M).

Proof. Parts (a) and (b) are elementary. Part (c) is a consequence of (b). Parts
(d) and (e) of course involve the explicit equivalence of categories in Proposition
7.14(d), which we have not written down. The idea, as in Proposition 7.14, is to
apply Proposition 20.1 to the two smooth morphisms fG : G× Y → Y (projection
on the second factor) and fH : G×Y → G×H Y (dividing by the H action). Then
f∗HM ≃ f∗GN ; this is more or less the definition of N . Part (f) follows from (e).
Q.E.D.

We work now in the setting of Theorem 8.3. Fix a complex connected reductive
algebraic group G, and a complete homogeneous space Y for G. If y is any point
of Y , then the isotropy group Gy is a parabolic subgroup of G; in this way Y may
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be identified with a conjugacy class P of parabolic subgroups in G (or parabolic
subalgebras in g). As in (19.1) or (8.1) there is a bundle map

a : g × Y “ TY. (20.3)(a)

It is surjective because Y is a homogeneous space. The transpose of a is a bundle
map

a∗ : T ∗Y →֒ g∗ × Y. (20.3)(b)

It is a closed immersion (and therefore projective) since a is surjective. Composing
a∗ with projection on the first factor gives the moment map

µ : T ∗Y → g∗ (20.3)(c)

([BorBI], 2.3). The first projection is a projective morphism because Y is a projec-
tive variety; so µ is also projective. Clearly

µ(T ∗y (Y )) = (g/gy)
∗, (20.3)(d)

so that the image of µ consists of all linear functionals annihilating some parabolic
subalgebra in the class P ([BorBI], Proposition 2.4). We write

N ∗Y = µ(T ∗Y ), (20.3)(e)

an irreducible closed cone in g∗.

Proposition 20.4 (Richardson — see [Rich] or [BorBI], 2.6). In the setting of
(20.3), the cone N ∗Y is contained in the cone of nilpotent elements of g∗. It is the
union of finitely many orbits under G. In particular there is a unique open orbit

ZY ⊂ N ∗Y ,

the Richardson orbit attached to Y . The dimension of ZY is equal to the dimension
of T ∗Y ; so µ is generically finite. The preimage µ−1(ZY ) is an open orbit of G on
T ∗Y .

The degree of µ may be computed as follows. Fix z ∈ ZY , and a point ζ ∈ T ∗y (Y )
with µ(ζ) = z. Write Gz for the isotropy group of z, Gy for the isotropy group of
y (a parabolic subgroup in P), and Gζ for the isotropy group of ζ. Then

Gζ = Gy ∩Gz , Gz ⊃ Gζ ⊃ (Gz)0.

The degree of µ is equal to the index of Gζ in Gz. Equivalently, it is the number of
distinct parabolic subalgebras in P annihilated by the linear functional z ∈ g∗.

We should say a word about the meaning of “nilpotent elements” of g∗. The
Lie algebra g is reductive, and so may be identified with its dual using an invariant
bilinear form. Using this identification, we may therefore speak of nilpotent or
semisimple elements in g∗. A more intrinsic discussion may be found in section 5
of [Assoc].

Finally, suppose M is a finitely generated U(g)-module. By an argument parallel
to (but technically much simpler than) Definition 19.9, we can define the associated
variety of M ,

V(M) ⊂ g∗ (20.5)
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(see [Assoc] or [BorBI], 4.1.) Again the irreducible components of the associated
variety have well-defined multiplicities, so that we can define the associated cycle
Ch(M) ([Assoc], Definition 2.4 or [BorBIII], 1.2).

Theorem 20.6 (Borho-Brylinski — see [BorBIII], Theorem 1.9). In the setting
(20.3), suppose M is a finitely generated module for U(g)/IY (cf. (8.1)(c)) and M
is the corresponding DY -module (Theorem 8.3). Then

V(M) = µ(SS(M)).

Keeping track of multiplicities is a more delicate task, because the fibers of µ
can be quite complicated.

Theorem 20.7 (Borho-Brylinski). In the setting of Theorem 20.6, fix good
filtrations of M and M . Consider the higher direct images

Riµ∗(grM) = N i,

which we regard as finitely generated graded S(g)-modules. Then N i is supported
on

{ z ∈ N ∗Y | dim(µ−1(z) ∩ SSM) ≥ i } ⊂ V(M).

In the Grothendieck group of coherent modules supported on V(M), we have

grM =
∑

i

(−1)iN i.

Proof. ThatN i is coherent follows from the fact that µ is projective ([Hartshorne],
Theorem III.8.8). The statement about support follows from [Hartshorne], Theo-
rem III.11.1. A version of the main assertion is proved in [BorBIII], Corollary A.6
after twisting by a sufficiently positive line bundle on Y . (This has the effect of
killing the higher direct images.) Their argument proves this result in general.
Q.E.D.

There are several ways to describe the modules N i of Theorem 20.6. One is

N i ≃ Hi(T ∗Y, grM) (20.8)(a)

([Hartshorne, Proposition III.8.5). Here we are using (19.3) to regard grM as a
sheaf on T ∗Y . Elements of S(g) define global functions on T ∗Y , and so act on this
cohomology. Another is

N i ≃ Hi(Y, grM) (20.8)(b)

([Hartshorne, Exercise III.8.2). Here we are regarding grM as a quasicoherent
sheaf on Y that happens to be also a module for p∗OT∗Y . The extra structure is
needed to make N i an S(g) module, but not to compute it as a vector space or as
a module for some group.

Definition 20.9. In the setting of Proposition 20.4, we say that an element
ζ ∈ T ∗Y is regular if it belongs to the inverse image of the G-orbit ZY . Similarly, an
element z ∈ N ∗Y is Y -regular (or simply regular) if it belongs to ZY . An irreducible
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subvariety W of T ∗Y or N ∗Y is regular if it contains a regular element; equivalently,
if its subset of regular elements is open and dense.

Corollary 20.10. In the setting of Proposition 20.4, suppose that W ⊂ T ∗Y is
a regular irreducible subvariety (Definition 20.9). Then µ(W ) is a Y -regular irre-
ducible subvariety of N ∗Y , and every Y -regular irreducible subvariety arises in this
way. If in addition µ has degree 1, then this correspondence of regular irreducible
subvarieties is bijective.

In the setting of Theorem 20.7, assume that µ has degree 1. Then µ defines a
multiplicity-preserving bijection from the regular irreducible components of SS(M)
onto the regular irreducible components of V(M).

Definition 20.11. A symmetric pair consists of a complex reductive Lie algebra
g, an involutive automorphism θ of g, and a reductive pro-algebraic group K, with
the following properties:

(a) (g,K) is a compatible pair (Definition 8.2);
(b) k = gθ; and
(c) θ commutes with Ad(K).

We will sometimes write s for the −1-eigenspace of θ on g, so that

g = k + s,

the Cartan decomposition.

In the setting of (20.3), we assume in addition now that

(g,K) is a symmetric pair, and K acts compatibly on Y (20.12)(a)

Since Y may be identified with a conjugacy class P of parabolic subalgebras, the
action of K may be identified with

k · p = Ad(k)(p). (20.12)(b)

(The only reason we need to assume in (a) that the action exists is that if K is
disconnected, it could fail to preserve P .) Recall from (19.1) the conormal bundle
T ∗K(Y ) to the K action on Y (the union of the conormal bundles of the orbits).
The fiber of this bundle at the point y may be identified with

T ∗K,y = (g/(gy + k))∗. (20.12)(c)

Set
N ∗Y,K = µ(T ∗K(Y )) =

⋃

p∈P

(g/(p + k))∗; (20.12)(d)

the second description is immediate from (20.12)(c). This is a closed cone in N ∗Y .

Lemma 20.13. In the setting (20.12), suppose M ∈ F(g,K, IY ) (Definition
8.2); that is, that M is a finite-length (g,K)-module annihilated by the kernel of the
operator representation on Y . Let M be the associated K-equivariant DY -module
(Theorem 8.3)(c)), so that M may be identified with the space of global sections of
M.

a) The associated variety V(M) is a closed K-invariant cone in N ∗Y .
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b) The module M admits a K-invariant good filtration.

Proof. Part (a) follows from Theorem 20.6, Proposition 19.12(c), and (20.12)(d).
For (b), choose a finite-dimensional K-invariant generating subspace M(0) of M ≃
ΓM, and let M(0) be the (coherent) OY -submodule of M generated by M(0).
Then M(0) generates M as a DY module (Theorem 8.3). It follows that

M(p) = DY (p)M(0)

is a K-invariant good filtration of M. Q.E.D.

Lemma 20.14 (Kostant-Rallis; see [KR] or [Assoc], Corollary 5.20). In the
setting of (20.12), the group K has a finite number of orbits on N ∗Y,K . If z ∈ N ∗Y,K,
then

dimK · z = 1/2 dimG · z.

In particular, z is regular (Definition 20.9) if and only if dimK · z = dimY .

Theorem 20.15 (Borho-Brylinski) In the setting (20.12), suppose M ∈ F(g,K, IY )
(Definition 8.2); that is, that M is a finite-length (g,K)-module annihilated by the
kernel of the operator representation on Y . Let M be the associated K-equivariant
DY -module (Theorem 8.3)(c)), so that M may be identified with the space of global
sections of M. Then the following four conditions are equivalent:

1) the Gelfand-Kirillov dimension DimM is equal to the dimension of Y ;
2) the annihilator AnnM is equal to IY ;
3) the associated variety V(M) contains Y -regular elements (Definition 20.9); and
4) the singular support SSM contains regular elements (Definition 20.9).

Proof. We know that the Gelfand-Kirillov dimension of M is half that of
U(g)/AnnM ([GKDim], Theorem 1.1); so condition (1) is equivalent to

DimU(g)/AnnM = 2 dimY.

It is well-known that the right side is equal to the Gelfand-Kirillov dimension of
U(g)/IY . (This follows from Theorem 20.6, for example.) On the other hand, IY
is a prime ideal (since it is the kernel of a map into a ring without zero divisors),
and AnnM ⊃ IY . It follows that

DimU(g)/AnnM ≥ DimU(g)/IY ,

with equality only if AnnM = IY . This gives the equivalence of (1) and (2). Since
the Gelfand-Kirillov dimension of M is the dimension of the largest component of
V(M), the equivalence of (1) and (3) follows from Lemma 20.14. That of (3) and
(4) follows from Corollary 20.10. Q.E.D.

In light of this result and Proposition 19.12, we now seek to understand the
K-orbits S on Y with the property that T ∗SY is regular.

Lemma 20.16. In the setting (20.12), suppose S is an orbit of K on Y . Then
µ(T ∗SY ) is the closure of a single orbit ZS of K on N ∗Y,K . We have

dimZS = dimY − fiber dimension of µ|T∗
S
Y .
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Proof. Since T ∗SY is a vector bundle over a homogeneous space for K, it is
“K-irreducible;” that is, K permutes its irreducible components transitively. Con-
sequently µ(T ∗SY ) is also K-irreducible. By Lemma 20.14, it must be contained in
the closure of a single orbit. Since the dimension of T ∗SY is equal to the dimension
of Y , the last statement follows. Q.E.D.

Definition 20.17. In the setting (20.12), an orbit S of K on Y is called regular
if any of the following equivalent conditions is satisfied:

(a) T ∗SY is regular;
(b) µ(T ∗SY ) is Y -regular;
(c) the restriction of µ to T ∗SY has finite degree; or
(d) dimµ(T ∗SY ) = dimY .

The equivalence of the conditions follows from Corollary 20.10, Lemma 20.14,
and Lemma 20.16.

Theorem 20.18. In the setting (20.12), suppose that the moment map µ has
degree 1 on T ∗Y . Then the correspondence of Lemma 20.16 defines a bijection
from the set of regular orbits S of K on Y onto the set of regular orbits ZS of K
on N ∗Y,K . This bijection is multiplicity-preserving in the following sense. Suppose

the K-equivariant DY -module M corresponds to the finite-length (g,K)-module M
(Theorem 8.3). Then for every regular K-orbit S on Y , the multiplicity χmicS (M)

(Proposition 19.12) is equal to the multiplicity of ZS in the associated cycle Ch(M).

This is a special case of Corollary 20.10. It is not very difficult to analyze the
case when µ has degree greater than one. For example, if we fix a regular orbit Z0

of K on N ∗Y,K , then

∑

ZS=Z0

degree of µ on T ∗SY = degree of µ on T ∗Y . (20.19)

We conclude this section with some examples illustrating the notion of regular.

Example 20.20. Suppose that Y is the variety of Borel subgroups of G. Then
N ∗Y is the nilpotent cone in g∗, and ZY is the open orbit of principal nilpotent
elements. Suppose S is a regular orbit. We claim that S consists of θ-stable Borel
subalgebras having no compact simple roots. (These are the Borel subalgebras of
large type for θ in the sense of Definition 4.9.) To see this, suppose z ∈ µ(T ∗S,yY )

is a regular element. If y corresponds to the Borel subalgebra b, this means (by
(20.12)(c)) that z ∈ (g/(b+k))∗; that is, that z annihilates b. Since θb ⊂ b+k, z also
annihilates θb. The linear span of any two distinct Borel subalgebras must contain
a larger parabolic subalgebra; so if b 6= θb, then there is a parabolic p properly
containing b and annihilated by z. It follows from Proposition 20.4 that the G
orbit of z has dimension at most twice the dimension of G/P ; so z is not principal,
a contradiction. Consequently b = θb. If some simple root α is compact, we find
that z must also annihilate sαb, and reach a contradiction again. Conversely, if
(θ, b) is large, then it is easy to find a principal nilpotent element z annihilating b

with θz = −z ([AV2], Proposition A.7). Then z annihilates k, and so is a regular
element of µ(T ∗S,yY ). We have therefore completely characterized the regular orbits

in this case. (The moment map has degree one, since the stabilizer of a principal
nilpotent element is contained in a Borel subgroup.)
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Example 20.21. Suppose G = Sp(4), and Y = P3, the variety of (isotropic)
lines in C4; the Levi subgroup for the corresponding parabolic is GL(1) × Sp(2).
It turns out that ZY consists of all short root vectors in the Lie algebra, and that
the moment map has degree 2. We take K = GL(2), acting on C4 = C2 + C2

by block diagonal matrices with blocks g and (gt)−1. The two copies of C2 are in
natural duality by the symplectic form. We therefore think of C4 as consisting of
pairs (v, η), with v ∈ C2 and η a linear functional on C2. Obviously there are four
orbits of K on Y :

S+
1 = lines with v = 0, S−1 = lines with η = 0 (20.21)(a)

S2 = lines with η(v) = 0 not in S±1 , S3 = lines with η(v) 6= 0. (20.21)(b)

The subscripts indicate the dimensions of the orbits. The orbit S3 is obviously not
regular, since its conormal bundle is zero. It turns out that the other three orbits
are all regular, and that the corresponding orbits on N ∗K,Y are precisely the three

regular orbits there. Consequently (cf. (20.19)) the moment map has degree 2 on
the conormal bundle of each regular orbit.

Example 20.22. Take G = Sp(2n) and Y the variety of Lagrangian subspaces
of C2n; the corresponding parabolic has Levi factor GL(n), and the moment map
has degree 1. We take K = GL(n), acting on Cn + (Cn)∗ by diagonal blocks g
and (gt)−1. Using a little linear algebra, we can identify Y with the set of triples
(V0, V1, Q). Here V0 ⊂ V1 ⊂ Cn are subspaces, and Q is a non-degenerate quadratic
form on V1/V0. We will not recall in detail why this is so, but here are the definitions.
If L is a Lagrangian subspace, define

V0 = L ∩ Cn, V1 = { v ∈ Cn | (v, λ) ∈ L for some λ ∈ (Cn)∗ }. (20.22)(a)

Suppose then that (v, λ) and (v′, λ′) belong to L. The quadratic form is defined by

Q(v, v′) = λ(v′) = λ′(v); (20.22)(b)

these are equal because their difference is the symplectic pairing of (v, λ) and (v′, λ′).
¿From this description of Y , it is clear that the orbits of K are parametrized by
integers p and q with p + q ≤ n: we can take p = dimV0, q = dim(Cn/V1). The
orbit Sp,q is open if and only if p = q = 0, and closed if and only if p + q = n.
The n + 1 closed orbits are also precisely the regular orbits; they correspond by
Theorem 20.18 to the n+ 1 regular orbits of K on N ∗Y,K .

21. The classification theorem and Harish-Chandra modules for the dual group.

We assemble here the results we have established linking the representation the-
ory of real forms of G to Harish-Chandra modules for certain subgroups of ∨G.
This is for the most part a reformulation of the results of [IC4]. We work therefore
in the setting of Proposition 6.24. Specifically, we fix always a weak E-group ∨GΓ,
and a semisimple orbit

O ⊂ ∨g (21.1)(a)
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We fix a canonical flat Λ ⊂ O, or sometimes just a point λ ∈ O. In either case we
get as in (6.6) a well-defined semisimple element

e(Λ) = exp(2πiλ) ∈ ∨G (λ ∈ Λ) (21.1)(b)

and subgroups
P (Λ) ⊂ ∨G(Λ)0 (21.1)(c)

The reductive group ∨G(Λ)0 is the identity component of the centralizer of e(Λ).
Its parabolic subgroup P (Λ) is the stabilizer of Λ in the action of ∨G on F(O)
(cf. (6.10)). Define P(Λ)0 as in Proposition 6.24 to be the ∨G(Λ)0-orbit of Λ. Then

P(Λ)0 ≃ ∨G(Λ)0/P (Λ), (21.1)(d)

a flag manifold for ∨G(Λ)0. (This space will play the rôle of Y in section 20.) Recall
from (8.1) the ideal

IP(Λ)0 ⊂ U(∨g(Λ)), (21.1)(e)

and from Proposition 20.4 the nilpotent orbit

ZP(Λ)0 ⊂ ∨g(Λ)∗. (21.1)(f)

Recall from (6.10)(f) the set I(Λ), on which ∨G(Λ)0 acts with finitely many orbits
I0

1 (Λ), . . . , I0
s (Λ); choose representatives

yj ∈ I0
j (Λ). (21.1)(g)

Write θj for the involutive automorphism of ∨G(Λ)0 defined by yj, K
0
j for its group

of fixed points, and
∨g(Λ) = kj + sj (21.1)(h)

for the corresponding Cartan decomposition. Finally, recall from Proposition 6.24
that the geometric parameter space X(O, ∨GΓ) is the disjoint union of s smooth
connected subvarieties Xj(O, ∨GΓ), with

Xj(O,
∨GΓ) ≃ ∨G×K0

j
(∨G(Λ)0/P (Λ)) (21.1)(i)

In particular, the orbits of ∨G on Xj(O, ∨GΓ) are naturally in one-to-one corre-
spondence with the orbits of K0

j on ∨G(Λ)0/P (Λ).
We will sometimes abuse this notation in the following way. The element e(Λ),

the group ∨G(Λ)0, and the sets I0
j (Λ) depend only on the ∨G(Λ)0 orbit P(Λ)0, and

not on Λ itself. We may therefore allow Λ to vary over P(Λ)0, rather than keep it
fixed.

Here is a reformulation of Theorem 8.5.

Theorem 21.2. Suppose we are in the setting (21.1). Then there are natural
bijections among the following sets:

1) irreducible (∨g(Λ),Kalg
j )-modules annihilated by IP(Λ)0 ;

2) irreducible Kalg
j -equivariant DP(Λ)0-modules; and

3) irreducible ∨G
alg

-equivariant D-modules on Xj(O, ∨GΓ).
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These bijections arise from natural equivalences among the three corresponding
categories. If in addition we are in the setting of Theorem 10.4, then the union
over j of these sets is in natural bijection with

4) equivalence classes of irreducible canonical projective representations of type z
and infinitesimal character O of strong real forms of G.

Proof. The bijection between (1) and (2) is the Beilinson-Bernstein localization
theorem 8.3. That between (2) and (3) is the smooth base change of Proposition
7.14 (for which the hypotheses are established in Proposition 6.24). That between
(3) and (4) is Theorem 10.4. Q.E.D.

We want to apply the results of section 20 on characteristic varieties to these
bijections.

Proposition 21.3. Suppose we are in the setting (21.1). Regard x = (yj ,Λ) as
a point of X(O, ∨GΓ) (Definition 6.9), so that

S = ∨G · x ⊂ X(O, ∨GΓ), SK = K0
j · Λ ⊂ P(Λ)0

are corresponding orbits.

a) The isotropy group of the action of ∨G at x (or of the action of K0
j at Λ) is

P (Λ) ∩K0
j .

b) The conormal space to the orbit S at x (or to the orbit SK at Λ) may be identified
naturally (as a module for P (Λ) ∩K0

j ) with

T ∗S,x(X(O, ∨GΓ)) = T ∗∨G,x(X(O, ∨GΓ)) = (∨g(Λ)/(p(Λ) + kj))
∗.

c) Fix a non-degenerate ∨GΓ-invariant symmetric bilinear form on ∨g, and use it
to identify ∨g(Λ)∗ with ∨g(Λ). Then the subspace appearing in (b) corresponds
to

(∨g(Λ)/(p(Λ) + kj))
∗ ≃ n(Λ) ∩ sj .

Proof. Part (a) is obvious (and contained in Proposition 6.16). For (b), combine
the last description of X(O, ∨GΓ) in Proposition 6.24 with Proposition 20.2(a) and
(20.12)(d). For (c), the left side is clearly identified with p(Λ)⊥ ∩ k⊥j ; here the
orthogonal complements are to be taken with respect to the bilinear form. It is
well known (and easy to check) that the orthogonal complement of a parabolic
subalgebra is its nil radical; and the Cartan decomposition of (20.11) is orthogonal
since (by assumption) Ad(yj) respects the form. Q.E.D.

Proposition 21.4. Suppose we are in the setting (21.1).

a) Every ∨G
alg

-equivariant D-module on X(O, ∨GΓ) admits a ∨G
alg

-invariant good
filtration.

b) Suppose that the ∨G
alg

-equivariant D-module N corresponds to theK0,alg
j -equivariant

D-module M in the equivalence of Theorem 21.2. Suppose S is any orbit of ∨G

on X(O, ∨GΓ); write SK for the corresponding orbit of K0,alg
j on P0(Λ). Then

the multiplicities in the characteristic cycle are related by

χmicS (N ) = χmicSK (M).
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Proof. Part (a) follows from Proposition 20.2(e) and Lemma 20.13. Part (b) is
Proposition 20.2(f). Q.E.D.

Recall now from (20.3) and (20.12) the moment map

µ : T ∗(P(Λ)0) → N ∗P(Λ)0 ⊂ ∨g(Λ)∗ (21.5)(a)

and its restriction

µK0
j

: T ∗K0
j
(P(Λ)0) → N ∗P(Λ)0,K0

j
⊂ (∨g(Λ)/kj)

∗. (21.5)(b)

Write
ZP(Λ)0,K0

j
= ZP(Λ)0 ∩ (∨g(Λ)/kj)

∗, (21.5)(c)

a finite union of orbits of K0
j of dimension equal to dimP(Λ)0 (Lemma 20.14).

Recall (Definition 20.17) that an orbit SK of K0
j on P(Λ)0 is called regular if and

only if µ(T ∗SK (P(Λ)0)) meets ZP(Λ)0 . We say that an orbit S of ∨G on Xj(O, ∨GΓ)

is regular if the corresponding orbit of K0
j is regular (cf. (21.1)(i)).

Theorem 21.6. Suppose we are in the setting (21.1); use the notation (21.5).

Suppose that the irreducible (∨g(Λ),Kalg
j )-module M , the irreducible Kalg

j -equivariant

DP(Λ)0-module M, and the irreducible ∨G
alg

-equivariant D-module N correspond
in the bijections of Theorem 21.2. Then the following conditions are equivalent.

a) The singular support SS(N ) contains the conormal bundle of a regular orbit S
(Definition 19.9 and (21.5)).

b) The singular support SS(M) contains the conormal bundle of a regular orbit
SK .

c) The associated variety V(M) meets ZP(Λ)0,K0
j

((20.5) and (21.5)).

d) The annihilator AnnM is equal to IP(Λ)0 ((21.1)(e)).

e) The Gelfand-Kirillov dimension DimM is equal to dimP(Λ)0.

Proof. The equivalence of (a) and (b) follows from the definition of regular and
Proposition 21.4(b). The rest of the result is Theorem 20.15. Q.E.D.

Theorem 21.7. In the setting of (21.1), assume that the moment map µ of
(21.5)(a) has degree one. Then there are natural bijections among the following
three sets:

1) regular orbits S of ∨G on Xj(O, ∨GΓ);
2) regular orbits SK of K0

j on P(Λ)0; and

3) orbits ZS of K0
j on ZP(Λ)0,K0

j
((21.5)(c)).

This bijection is multiplicity-preserving in the following sense. Suppose S, SK ,
and ZS correspond as above, and N , M, and M correspond as in Theorem 21.2.
Then χmicS (N ) = χmicSK

(M), and these are equal to the multiplicity of ZS in the
associated cycle Ch(M) (cf. (20.5)).

Proof. The first bijection is a definition, and the equality χmicS (N ) = χmicSK
(M)

is Proposition 21.4(b). The rest of the result is Theorem 20.18. Q.E.D.

Theorem 21.8 (cf. [BVunip], Proposition 3.24). Suppose we are in the setting
(21.1). Then there is a natural order-reversing bijection

I → ∨I
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from the set of primitive ideals in U(g) of infinitesimal character λ, onto the set of
primitive ideals in U(∨g(Λ)) containing IP(Λ)0 . In particular, the maximal primitive
ideal Jmax(λ) of infinitesimal character λ corresponds to IP(Λ)0 :

∨Jmax(λ) = IP(Λ)0 .

In the setting of Theorem 21.2 and Theorem 10.4, suppose that the irreducible
(∨g(Λ),K0

j )-module M corresponds to the irreducible canonical projective represen-

tation π of G(R, δ)can. Then the annihilators correspond:

∨(Annπ) = AnnM.

In particular, the annihilator of π is a maximal primitive ideal if and only if the
annihilator of M is equal to IP(Λ)0 .

Recall that Theorem 21.6 provides several characterizations of the modules M
with annihilator equal to IP(Λ)0 .

22. Arthur parameters.

In this section we recall from [Arthur2] the parameters appearing in Arthur’s
conjectures. We begin with some simple facts about conjugacy classes in complex
algebraic groups, which will be applied to E-groups.

Definition 22.1. Suppose H is a complex algebraic group. An element h ∈ H
is called elliptic if the closure in the analytic topology of the group 〈h〉 generated
by h is compact. Similarly, an element X ∈ h is called elliptic if the closure in the
analytic topology of the one-parameter subgroup { exp(tX) | t ∈ R } is compact.

Lemma 22.2. Suppose H is a complex algebraic group, h ∈ H, and X ∈ h.

a) If h is elliptic, then h is semisimple; and if X is elliptic, then X is semisimple.
b) The element h is elliptic if and only if hn is elliptic for every non-zero integer

n.

Suppose T ⊂ H is an algebraic torus. Define

tR = X∗(T ) ⊗Z R ⊂ t

(cf. (9.1)(d) and Lemma 9.9), so that X∗(T ) is a lattice in the real vector space tR.
Finally, define

Tc = e(tR) ≃ tR/X∗(T ),

a compact analytic torus in T (cf. Lemma 9.9).

c) Suppose h ∈ T . Then h is elliptic if and only if h ∈ Tc.
d) Suppose X ∈ t. Then X is elliptic if and only if X ∈ itR.

We leave the elementary argument to the reader. The point of (a) and (b) is
that they reduce the problem of testing for ellipticity (even if H is disconnected)
to the cases treated in (c) and (d)).
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Definition 22.3. Suppose ∨GΓ is a weak E-group. A Langlands parameter
φ ∈ P (∨GΓ) (Definition 5.2) is said to be tempered if it satisfies any of the following
equivalent conditions.

(a) The closure of φ(WR) in the analytic topology is compact.
(b) In the notation of Proposition 5.6, the Lie algebra element λ+Ad(y)λ is elliptic.
(c) Suppose dT Γ is a Cartan subgroup of ∨GΓ, and that φ(WR) ⊂ dT Γ. Fix an E-

group structure on dT Γ, and let T be an algebraic torus defined over R admitting
dT Γ as an E-group. Then the canonical projective character π(φ) of T (R)can

associated to φ (Proposition 10.6) is unitary.
(d) Fix an E-group structure on ∨GΓ, and let (GΓ,W) be an extended group admit-

ting ∨GΓ as an E-group. Then at least one of the irreducible canonical projective
representations of strong real forms of G parametrized by φ (Theorem 10.4) is
tempered.

e) In the setting of (d), all the representations parametrized by φ are tempered.

We write Ptemp(
∨GΓ) for the set of tempered Langlands parameters, and Φtemp(

∨GΓ)
for the corresponding set of equivalence classes.

To see that the conditions in the definition are equivalent, we can argue as follows.
First, the Weil group is the direct product of the positive real numbers R+ and a
compact group; so (a) is equivalent to ellipticity of the generator of φ(R+). This
generator is precisely λ+Ad(y)λ (cf. (5.5)(a)). Hence (a) and (b) are equivalent. In
the setting of (c), T (R) is the direct product of a compact group and a vector group
([AV2], Corollary 3.16), so π(φ) is unitary if and only if its restriction to the vector
group is. Now λ+Ad(y)λ is identified with the differential of that restriction, so the
equivalence of (b) and (c) follows ([AV2], Proposition 4.11). From the definitions
underlying Theorem 10.4 (Proposition 13.12), it follows that (c) is equivalent to
versions of (d) and (e) in which “tempered representation” is replaced by “unitary
limit character” (Definitions 11.2 and 12.1). To finish, we need to observe that in
the classification of Theorem 11.4, tempered representations correspond precisely
to unitary final limit characters. This is a fairly serious result, but it is well-known
(see [Langlands]).

Definition 22.4 (cf. [Arthur2], section 6). Suppose ∨GΓ is a weak E-group
(Definition 4.3). An Arthur parameter is a homomorphism

ψ : WR × SL(2,C) → ∨GΓ

(see Definition 5.2) satisfying

(a) the restriction of ψ to WR is a tempered Langlands parameter; and
(b) the restriction of ψ to SL(2,C) is holomorphic.

Two such parameters are called equivalent if they are conjugate by the action of
∨G. The set of Arthur parameters is written Q(∨GΓ); the set of equivalence classes
is written Ψ(∨GΓ). In the setting of Definition 5.3, we may also write Ψ(G/R).

Suppose ψ is an Arthur parameter. In analogy with Definition 5.11, we define

∨Gψ = centralizer in ∨G of ψ(WR × SL(2,C)),

and
Aψ = ∨Gψ/(

∨Gψ)0,
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the Arthur component group for ψ. Similarly,

Aalgψ = ∨G
alg
ψ /(∨G

alg
ψ )0,

the universal component group for ψ.
The associated Langlands parameter for ψ is the homomorphism

φψ : WR → ∨G, φψ(w) = ψ(w,

(
|w|1/2 0

0 |w|−1/2

)
) (w ∈WR).

Attached to φψ is an orbit Sφψ of ∨G on X(∨GΓ) (Proposition 6.17); define

Sψ = Sφψ .

Write
PArthur(

∨GΓ) = {φψ | ψ ∈ Q(∨GΓ) } ⊂ P (∨GΓ)

for the image of the map on parameters, and

ΦArthur(
∨GΓ) ⊂ Φ(∨GΓ)

for the corresponding set of equivalence classes.

Proposition 22.5 (Arthur [Arthur1], p.10). Suppose ∨GΓ is a weak E-group.
The map ψ 7→ φψ from Arthur parameters to Langlands parameters defines a bijec-
tion on the level of equivalence classes

Ψ(∨GΓ) ≃ ΦArthur(
∨GΓ).

We have
Φtemp(

∨GΓ) ⊂ ΦArthur(
∨GΓ) ⊂ Φ(∨GΓ).

If ψ is an Arthur parameter, there is an inclusion

∨G
Γ
ψ ⊂ ∨G

Γ
φψ
.

The induced maps on component groups

Aψ → Alocφψ , Aalgψ → Aloc,algφψ

are surjective.

Here is the definition of the “Arthur packets” discussed in the introduction.

Definition 22.6. In the setting of Theorem 10.4, suppose ψ ∈ Ψ(∨GΓ) is an
Arthur parameter (Definition 22.4). The Arthur packet Πz

ψ of ψ is by definition

the micro-packet of the Langlands parameter φψ attached to ψ (Definition 19.15,
Definition 22.4):

Πz(G/R)ψ = Πz(G/R)micφψ
.

A little more explicitly , write S = Sψ as in Definition 22.4. Then Πz
ψ consists

of those irreducible representations with the property that the corresponding ir-
reducible perverse sheaf (Theorem 1.24 or Theorem 15.12) contains the conormal
bundle T ∗S(X(∨GΓ)) in its characteristic cycle (Proposition 19.12).
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Theorem 22.7. Suppose (GΓ,W) is an extended group for G (Definition 1.12),
and (∨GΓ,D) is an E-group for the corresponding inner class of real forms, with
second invariant z (Definition 4.6). Fix an Arthur parameter ψ ∈ Ψz(G/R) (Defi-
nition 22.4). Define the Arthur packet Πψ as in Definition 22.6.

a) Πψ contains the L-packet Πφψ , and at most finitely many additional representa-
tions of each strong real form of G.

b) There is a strongly stable formal virtual character

ηψ =
∑

π′∈Πψ

e(π′)(−1)d(π
′)−d(φψ)χψ(π′)π′.

Here the terms are as explained in Corollary 19.16. In particular, e(π′) = ±1
is Kottwitz’ sign attached to the real form of which π′ is a representation, and
χψ(π′) is a positive integer.

This is immediate from Corollary 19.16 and the definitions. Essentially it solves
Problems A, C, and E from the introduction. For Problem B, we must attach to

each π′ ∈ Πψ a representation of Aalgψ , of dimension equal to χψ(π′). This will
turn out to be standard micro-local geometry. To see that, however, we need a

micro-local interpretation of Aalgψ .
We turn therefore to an analysis of the geometry of an Arthur parameter ψ. Write

ψ0 for the restriction of ψ to WR, a tempered Langlands parameter. According to
Proposition 5.6, ψ0 is determined by a pair

(y0, λ0), y0 ∈ ∨GΓ − ∨G, λ0 ∈ ∨g. (22.8)(a)

Write ψ1 for the restriction of ψ to SL(2,C), an algebraic homomorphism into ∨G.
We can define

y1 = ψ1

(
i 0
0 −i

)
∈ ∨G, λ1 = dψ1

(
1/2 0
0 −1/2

)
∈ ∨g. (22.8)(b)

An elementary calculation from Definition 22.4 and Proposition 5.6 shows that the
Langlands parameter φψ is associated to the pair (y, λ), with

y = y0y1, λ = λ0 + λ1. (22.8)(c)

(Here and elsewhere in the following discussion, one should keep in mind that
elements of ψ0(WR) commute with elements of ψ1(SL(2,C).) Using λ and y, we
can introduce all of the structure considered in section 6 (cf. (6.1), (6.10)). We also
write θy for the conjugation action of y on ∨G(λ), and

∨g(λ) = k(y) + s(y) (22.8)(c)

for the corresponding Cartan decomposition. Define

Eψ = dψ1

(
0 1
0 0

)
∈ ∨g, Fψ = dψ1

(
0 0
1 0

)
∈ ∨g; (22.8)(d)

these are nilpotent elements. By calculation in sl(2), Eψ lies in the +1-eigenspace
of ad(λ1). Since λ0 and Eψ commute, it follows that

Eψ ∈ ∨g(λ)1 ⊂ n(λ). (22.8)(e)
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Similarly, we check that Ad(y1)(Eψ) = −Eψ, and deduce

Eψ ∈ s(y). (22.8)(f)

Here is a micro-local description of the Arthur component group. The result is a
slight generalization of work of Kostant and Rallis in [KR]; the proof follows their
ideas very closely.

Proposition 22.9. Suppose ∨GΓ is an E-group, and ψ ∈ Q(∨GΓ) is an Arthur
parameter. Let x = p(φψ) ∈ X(∨GΓ) (Proposition 6.17) be the corresponding
point, and S = ∨G ·x the corresponding orbit. Fix a non-degenerate ∨GΓ-invariant
symmetric bilinear form on ∨g, and use it as in Proposition 21.3 to identify the
conormal space T ∗S,x(X(∨GΓ)) with n(λ)∩s(y). Accordingly regard Eψ as an element

of this conormal space (cf. (22.8)(e),(f)):

Eψ ∈ n(λ) ∩ s(y) ≃ T ∗S,x(X(∨GΓ)).

a) We have
[p(λ) ∩ k(y), Eψ ] = n(λ) ∩ s(y).

b) The orbit (P (λ) ∩K(y)) · Eψ (with the natural action of the isotropy group on
the conormal space) is Zariski dense in T ∗S,x(X(∨GΓ)).

c) The orbit ∨G · Eψ is Zariski dense in the full conormal bundle T ∗S(X(∨GΓ)).
d) The isotropy groups of Eψ in the actions of (b) and (c) coincide; write ∨GEψ

for this subgroup of ∨Gx. Then ∨Gψ is a Levi subgroup of ∨GEψ .
e) The inclusion in (d) identifies the Arthur component group (Definition 22.4)

naturally with the component group of ∨GEψ :

Aψ ≃ ∨GEψ/(
∨GEψ)0.

Similarly,

Aalgψ ≃ ∨G
alg
Eψ/(

∨G
alg
Eψ )0.

Proof. By the representation theory of sl(2), ad(λ1) has half-integral eigenvalues.
(For this discussion, we call any element of 1/2Z a half-integer.) By definition of
g(λ), ad(λ) has integral eigenvalues on g(λ). It follows that λ0 = λ − λ1 has half-
integral eigenvalues on g(λ). In analogy with (6.1)(b), we define for half-integers r
and s

∨gr,s = {µ ∈ ∨g | [λ0, µ] = rµ, [λ1, µ] = sµ }. (22.10)(a)

Then
∨g(λ)n =

∑

r+s=n

∨gr,s. (22.10)(b)

Consulting the definitions (6.1), we deduce that

n(λ) =
∑

r+s∈N−{0}

∨gr,s, p(λ) =
∑

r+s∈N

∨gr,s. (22.10)(c)

Now θy(λ0) = θy0(λ0) commutes with λ0 and with λ1 (Proposition 5.6(c)) and
so acts diagonalizably on each ∨gr,s. Since ψ0 is tempered, λ0 + θy0(λ0) has purely
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imaginary eigenvalues (Definition 22.3(b)). It follows that θy(λ0) acts by −r on
∨gr,s. On the other hand,

θy(λ1) = Ad(y1)(λ1) = λ1;

so θy(λ1) acts by s on ∨gr,s. Combining these two facts, we get

θy : ∨gr,s →
∨g−r,s. (22.10)(d)

Combining the descriptions of θy and p(λ) in terms of the eigenspaces ∨gr,s, we
get

k(y) ∩ p(λ) = {X + θyX | X ∈ ∨gr,s, s± r ∈ N } (22.10)(e)

s(y) ∩ n(λ) = {X − θyX | X ∈ ∨gr,s, s± r ∈ N − {0} } (22.10)(f).

To study the adjoint action of Eψ, we use the representation theory of sl(2). We
deduce that

ad(Eψ) : ∨gr,s−1 → ∨gr,s; (22.10)(g)

this map is surjective for s ≥ 1/2 and injective for s ≤ 1/2.
We can now prove (a). Since both sides are vector spaces, it is enough by

(22.10)(f) to show that every element of the form X− θyX belongs to the left side,
with X ∈ ∨gr,s and s± r positive integers. By (22.10)(g), we can find Y ∈ ∨gr,s−1

with [Y,Eψ] = X . Since θyEψ = −Eψ, it follows that

[Y + θyY,Eψ] = X − θyX.

Furthermore (s−1)±r must be non-negative integers, so (by (22.10)(e)) Y +θyY ∈
k(y) ∩ p(λ). This is (a).

For (b), recall that the conormal space T ∗S,x(X(∨GΓ)) has been identified with

s(y) ∩ n(λ). This identification sends the isotropy action of ∨Gx = K(y) ∩ P (λ)
(Proposition 6.16) to the restriction of the adjoint action. It follows that the tangent
space to the orbit (P (λ) ∩ K(y)) · Eψ is just [k(y) ∩ p(λ), Eψ ]. (Here we identify
the tangent space to the vector space s(y) ∩ n(λ) at the point Eψ with the vector
space.) By (a), this tangent space is the full tangent space at Eψ; so the orbit is
open, as we wished to show.

For (c), the conormal bundle T ∗S(X(∨GΓ) is an equivariant bundle over the ho-
mogeneous space S = ∨G/∨Gx. The orbits of such an action are in one-to-one
correspondence with those of ∨Gx on the fiber over x (cf. Lemma 6.15); this bijec-
tion preserves isotropy groups and codimension of orbits. Since (P (λ)∩K(y)) ·Eψ
has codimension 0 in T ∗S,x(X(∨GΓ)), it follows that ∨G · Eψ has codimension 0 in

T ∗S(X(∨GΓ)), as we wished to show.
We have already explained the first claim of (d). For the rest, we begin with the

Levi decomposition

P (λ) ∩K(y) = (L(λ) ∩K(y))(Nθy ∩K(y)) (22.11)(a)

of Proposition 6.17 and Lemma 6.18. We claim that this decomposition is inherited
by the subgroup ∨GEψ :

∨GEψ = (L(λ) ∩K(y))Eψ(Nθy ∩K(y))Eψ . (22.11)(b)
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So suppose that ln is the decomposition of an element of ∨GEψ ; it is enough to
show that l ∈ ∨GEψ . Using (22.10), one calculates easily that

nθy =
∑

s≥|r|,s>0,s+r∈Z

∨gr,s. (22.11)(c)

It follows that

Ad(n)(Eψ) = Eψ + (terms in ∨gr,s with s > 1). (22.11)(d)

(Recall that Eψ ∈ ∨g0,1.) Applying Ad(l) to this, we get

Eψ = Ad(ln)(Eψ) = Ad(l)(Eψ) + (terms in ∨gr,s with s > 1). (22.11)(e)

Projecting on the 1-weight space of λ1, we find that Ad(l)(Eψ) = Eψ , proving
(22.11)(b).

To complete the proof of (d), it suffices to show that

(L(λ) ∩K(y))Eψ = ∨Gψ. (22.12)(a)

That the left side contains the right is trivial from the definitions; so suppose
l ∈ (L(λ)∩K(y))Eψ . We must show that l centralizes the image of ψ. It is enough
to show that it fixes the images under dψ1 of the basis {Eψ, 2λ1, Fψ} of sl(2) (see
(22.8)). Since l commutes with λ and y, it commutes also with θyλ. Now it follows
from (22.10)(c) that the only eigenvalue of λ0 + θyλ0 on ∨g(λ) is 0; so it is central
in ∨g(λ), and in particular is fixed by l. Hence

2λ1 = (λ+ θyλ) − (λ0 + θyλ0) (22.12)(b)

is also fixed by l. By the injectivity statement in (22.10)(g), there is at most one
element F ∈ ∨g0,−1 with the property that

[Eψ , F ] = 2λ1. (22.12)(c)

By calculation in sl(2), Fψ satisfies (22.12)(c). Since l fixes Eψ and 2λ1, Ad(l)(Fψ)
is a second solution of (22.12)(d). By the uniqueness, l fixes Fψ. Consequently l
commutes with Eψ , 2λ1, and Fψ, as we wished to show.

Part (e) follows from (d) exactly as in Lemma 7.5. Q.E.D.

23. Local geometry of constructible sheaves.

As preparation for the serious geometry of the next section, we present here
some trivial reformulations of material from section 7. The goal is to find local
results analogous to the microlocal ones we want. Constructible sheaves have a
local behavior analogous to the microlocal behavior of perverse sheaves, so we will
concentrate on them.
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We work in the setting of Definition 7.7, so that the pro-algebraic group H acts
on the smooth algebraic variety Y with finitely many orbits:

Y =
⋃

H-orbits S

S. (23.1)(a)

Each orbit S is smooth and locally closed. If y ∈ S, then

S ≃ H/Hy (23.1)(b)

Proposition 23.2. In the setting (23.1), suppose C is an H-equivariant con-
structible sheaf on Y . Then the restriction of C to an H-orbit S is an H-equivariant
local system QlocS (C) on S.

a) The rank of QlocS (C) is equal to the dimension of the stalks of C along S.
b) Suppose that ξ = (S,V) is a complete geometric parameter for H acting on Y

(Definition 7.1), and that µ(ξ) (the extension of ξ by zero — see (7.10(c)) is the
corresponding irreducible H-equivariant constructible sheaf. Then QlocS (µ(ξ)) =
ξ, and QlocS′ (µ(ξ)) = 0 for S′ 6= S.

c) QlocS is an exact functor from C(Y,H) to H-equivariant local systems on S.

This is entirely trivial. Using the description of equivariant local systems in
Lemma 7.3, we deduce

Corollary 23.3. In the setting (23.1), suppose C is an H-equivariant con-
structible sheaf on Y , and S ⊂ Y is an H-orbit. Attached to C there is a represen-
tation τ locS (C) of the equivariant fundamental group AlocS (Definition 7.1).

a) The dimension of τ locS (C) is equal to the dimension of the stalks of C on S.
b) Suppose that ξ = (S, τ) is a local complete geometric parameter for H acting

on Y (with τ an irreducible representation of AlocS ), and µ(ξ) is the correspond-
ing irreducible constructible sheaf (see (7.10)(c)). Then τ locS (µ(ξ)) = τ , and
τ locS′ (µ(ξ)) = 0 for S 6= S′.

c) The functor τ locS from C(Y,H) to representations of AlocS is exact. In particular, it
gives a well-defined map (also denoted τ locS ) from the Grothendieck groupK(Y,H)
(cf. (7.10)) to virtual representations of AlocS .

Definition 23.4. Suppose P ∈ P(Y,H) is an H-equivariant perverse sheaf on
Y . (In fact we could take for P any H-equivariant constructible complex on Y .)
Then the cohomology sheaves HiP are H-equivariant constructible sheaves on Y
(Lemma 7.8), so we can attach to each orbit S an H-equivariant local system

(QlocS )i(P ) = QlocS (HiP )

on S (Proposition 23.2), and a representation

(τ locS )i(P ) = τ locS (HiP )

of the equivariant fundamental group AlocS (Corollary 23.3). We write

τ locS (P ) =
∑

(−1)i(τ locS )i(P ),
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a virtual representation of AlocS .

Because of Lemma 7.8, this notation is consistent with that of Corollary 23.3(c).
We have already seen the virtual representation τ locS (P ), at least for P irreducible,
as the geometric character matrix. More precisely, suppose γ = (Sγ , τγ) and ξ =
(Sξ, τξ) are complete geometric parameters (Definition 7.1), with τγ an irreducible
representation of AlocSγ and τξ an irreducible representation of AlocSξ . Write P (γ) for

the irreducible perverse sheaf parametrized by γ (cf. (7.10)). Then

multiplicity of τξ in τ locSξ (P (γ)) = (−1)dimSξcg(ξ, γ) (23.5)

(notation (7.11)).

Definition 23.6. Suppose F ∈ K(Y,H) (notation (7.10)), S is an H-orbit on
Y , and σ ∈ AlocS . The local trace of σ on F is

χlocS (F )(σ) = tr(τ locS (F )(σ)). (23.6)(a)

(The trace of an element in a finite-dimensional virtual representation of a group
is well-defined.) If C is an H-equivariant constructible sheaf, or perverse sheaf,
or constructible complex representing F (cf. (7.10)(a)), then we write χlocS (C)(σ)
instead of χlocS (F )(σ). Explicitly, fix y ∈ S, so that AlocS is the group of connected
components of Hy, and choose a representative s ∈ Hy for σ. Then

χlocS (C)(σ) =
∑

(−1)itr(s on (HiC)y), (23.6)(b)

the alternating sum of the traces of s on the stalks of the cohomology sheaves of C.
The local multiplicity of F along S is

χlocS (F ) = χlocS (F )(1) (23.6)(c)

In the setting of (23.6)(b), this is the alternating sum of the dimensions of the
stalks of the cohomology sheaves. (In particular, it is non-negative for constructible
sheaves.)

We can use this notation to reformulate the result of Proposition 7.18.

Proposition 23.7. Suppose we are in the setting (7.17).

a) Suppose C ∈ Ob C(X,G) is a G-equivariant constructible sheaf on X, so that ǫ∗C
is an H-equivariant constructible sheaf on Y (Proposition 7.18). Fix an orbit S
of H on Y . Then the representation τ locS (ǫ∗C) (Corollary 23.3) is given by

τ locS (ǫ∗C) = Aloc(ǫ) ◦ τ locΦ(ǫ)S(C)

(notation (7.17)).
b) Suppose ξ′ = (S′, τ ′) ∈ Ξ(X,G) is a local complete geometric parameter for G

acting on X, with τ ′ an irreducible representation of AlocS′ (Definition 7.1). Then

ǫ∗µ(ξ′) =
∑

ξ=(S,τ)∈Ξ(Y,H)

S′=Φ(ǫ)S

(multiplicity of τ in Aloc(ǫ) ◦ τ ′)µ(ξ).
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c) Suppose F ∈ K(X,G) (cf. (7.10)(a)). Fix an H-orbit S ⊂ Y , and an element
σ ∈ AlocS (Definition 7.1). Define

S′ = Φ(ǫ)S ⊂ X, σ′ = Aloc(ǫ)(σ) ∈ AlocS′ .

Then the local trace of σ on ǫ∗F (Definition 23.6) is

χlocS (ǫ∗F )(σ) = χlocS′ (F )(σ′).

In particular, the local multiplicity of ǫ∗F along S is equal to the local multiplicity
of F along S′.

Proof. Part (a) is a reformulation of Proposition 7.18. Part (b) follows from
(a) and Corollary 23.3(b). If F is represented by a constructible sheaf C, then (c)
follows from (a) by taking the trace of the action of σ. The general case follows
from the fact that both sides are homomorphisms from K(X,G) to C. Q.E.D.

24. Microlocal geometry of perverse sheaves.

Up until now we have described the integers that are to be the dimensions of
the representations whose existence is predicted by Arthur’s conjectures (Theorem
22.7). Here the key idea was that of the multiplicity of a component of a charac-
teristic cycle. To produce the representations themselves, we must exhibit such a
multiplicity as the dimension of a natural vector space, on which something like the
Arthur component group can act. Now it is relatively easy to find a vector space
whose dimension is the multiplicity, and in this way to construct (in the notation of

Definition 22.4) a representation of something like ∨G
alg
ψ . (Something very similar

is done in [Assoc], Theorem 2.13.) The difficulty arises in showing that this repre-
sentation is trivial on the identity component. (The analogous result in [Assoc] is
Theorem 8.7.) Before going into further detail, we introduce some notation.

We work in the setting of Definition 7.7, so that the pro-algebraic group H acts
on the smooth algebraic variety Y with finitely many orbits. Recall from (19.1) the
conormal bundle

T ∗H(Y ) =
⋃

H-orbits S

T ∗S(Y ). (24.1)(a)

A covector (λ, y) ∈ T ∗S(Y ) is called degenerate if it belongs to the closure in T ∗Y
of some other conormal bundle T ∗S′(Y ) (cf. [GM], Definition I.1.8). (In this case

necessarily S ⊂ S′.) We indicate non-degenerate conormal covectors with the
subscript reg, so that

T ∗H(Y )reg =
⋃

H-orbits S

T ∗S(Y )reg. (24.1)(b)

The set of degenerate covectors at y is evidently a closed Hy-invariant cone in the
conormal space, so the complementary set is an open cone. It follows that

T ∗S(Y )reg ≃ H ×Hy T
∗
S,y(Y )reg, (24.1)(c)
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a smooth cone bundle over S ≃ H/Hy.
At this point things become much simpler if H has an open orbit on T ∗S(Y ) (or,

equivalently, if Hy has an open orbit on the vector space T ∗S,y(Y ). This is automatic

in the case of orbits attached to Arthur parameters (Proposition 22.9) but not in
general. Here are two examples.

Example 24.2. Suppose Y is the projective line CP1, and H is the additive
group C (acting by translation on the affine line, and fixing the point at infinity).
Then the conormal bundle to the fixed point y is just the cotangent space at y:
a one-dimensional vector space. The only degenerate covector is 0. The action of
H = Hy on this cotangent space is unipotent algebraic, and therefore trivial; so
there are infinitely many orbits of Hy, and none is open. (This example cannot be
realized as a geometric parameter space.)

For a more interesting example, take Y to be the complete flag variety of Borel
subgroups in SL(4), and H = B the standard Borel subgroup of upper triangular
matrices. (This example — or rather the essentially equivalent (Proposition 20.2)
SL(4) ×H Y — does occur as a geometric parameter space, in connection with
representations of PGL(4,C).) According to the Bruhat decomposition, B has 24
orbits on Y , corresponding to the various B-conjugacy classes of Borel subgroups.
Suppose B′ is such a subgroup, corresponding to a point y ∈ Y and an orbit S ⊂ Y .
Write N andN ′ for the corresponding unipotent radicals, and T for a maximal torus
in B ∩B′. Then

By = B ∩B′ = T (N ∩N ′), T ∗S,y(Y ) ≃ n ∩ n′ (24.2)(a)

(compare Proposition 20.14). Suppose now B′ is chosen so that N ∩N ′ is abelian.
Then the unipotent radical N ∩N ′ of B ∩B′ acts trivially on n ∩ n′, so

orbits of By on T ∗S,y(Y ) ≃ orbits of T on n ∩ n′. (24.2)(b)

Now let B′ be obtained from B by permuting the first two and the last two coor-
dinates. Then

n ∩ n′ =

(
0 A
0 0

)
; (24.2)(c)

here we use two by two block matrices. Consequently n ∩ n′ is abelian and four-
dimensional. Since T is three-dimensional, there can be no open orbits of T on
n ∩ n′. By (24.2)(b), there are no open orbits of By on T ∗S,y(Y ).

Lemma 24.3. Suppose the complex algebraic group G acts on the smooth irre-
ducible variety X. Write Gx for the stabilizer in G of the point x ∈ X.

a) There is a variety GX and a morphism f : GX → X (a group scheme over X)
with the property that the fiber over x is Gx.

b) Put m = dimGX − dimX. There is an open G-invariant subvariety U0 of X
with the property that dimGx = m for all x ∈ U0.

c) There is an open G-invariant subvariety U1 ⊂ U0 with the property that GU1 =
f−1(U1) is smooth, and the restriction of f to GU1 is a smooth morphism .

d) There is an open G-invariant subvariety U2 ⊂ U1 with the following property.
Put GU2 = f−1(U2), and let (GU2)0 be the union of the identity components
(Gx)0 (for x ∈ U2). Then (GU2 )0 is (the set of closed points of) an open and
closed subgroup scheme of GU2 .
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e) There is a an étale group scheme AU2 over U2, with the property that the fiber
Ax over x ∈ U2 is isomorphic to the component group Gx/(Gx)0.

f) There is an open G-invariant subvariety U3 ⊂ U2 over which the étale group
scheme of (e) is finite. The family of component groups Ax = Gx/(Gx)0 is in a
natural way a local system of finite groups over U3.

g) For each x ∈ U3, the (algebraic) fundamental group π1(U3;x) acts by automor-
phisms on Ax. If y is any other point of U3, then Ay is isomorphic to Ax by an
isomorphism that is canonical up to an automorphism coming from π1(U3;x).

Proof. The definition of the action provides a morphism a : G × X → X . We
define GX to be the subvariety of G×X

GX = { (g, x) | a(g, x) = x }.

Obviously this is a closed group subscheme of G×X . The morphism f is just the
restriction toGX of projection on the second factor. Part (b) is a general property of
morphisms of varieties ([Hartshorne], Exercise II.3.23). (More precisely, we choose
U ′ as in the general property, then let U0 = G · U ′.)

To prove (c), we work in the analytic topology; this does not affect the notion of
smooth points of a variety or a morphism. The strategy we use for showing that f is
smooth near some point (g0, x0) in GX is this. We look for a neighborhoodX0 of x0,
a neighborhood Z0 of 0 in Cm, and a holomorphic immersion γ : Z0×X0 → G×X ,
with the following properties: γ(z, x) ∈ GX , f◦γ(z, x) = x, and γ(z0, x0) = (g0, x0).
If such a map exists, then f is smooth of relative dimension m at (g0, x0), and the
image of γ is a neighborhood of (g0, x0) in GX . (We will call γ a local trivialization,
even though it is not really trivializing the whole bundle GX over X0.) Conversely,
if GX and f are smooth of relative dimension m at (g0, x0), then the implicit
function theorem guarantees the existence of a local trivialization.

For (c), we may as well assume X = U0, so that Gx has dimension m for all x.
We will first show that f is smooth near e×X ⊂ GX . The family of Lie algebras gx
may be regarded as a map from the smooth variety X to the Grassmanian variety
of m-dimensional subspaces of g. In an analytic neighborhood X0 of any point x0

on X , we can find m holomorphic functions

si : X0 → g (i = 1, . . . ,m)

so that {si(x)} is a basis of gx. For a sufficiently small neighborhood of zero Z0 in
Cm, the map

γe : X0 × Z0 → GX , γ(x, z) = (exp(
∑

zisi(x)), x) ∈ G×X

is a local trivialization at (e, x0); so f is smooth near e×X .
Next, fix an irreducible component C of GX , and suppose that the restriction of

f to C is dominant (that is, that f(C) contains an open set in X). Fix a smooth
point (g0, x0) of C at which the restriction of f to C is smooth; this is possible by
[Hartshorne], Lemma III.10.5. Then on an appropriate analytic neighborhood X0

of x0, we can choose a holomorphic section

σ : X0 → C, σ(x0) = (g0, x0).
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Now the group scheme structure µ (that is, the multiplication in G in the first
factor) gives a holomorphic map

γ : X0 × Z0 → V, γ(x, z) = µ(γe(x, z), σ(x)).

The map γ is a local trivialization at (g0, x0), and it follows that the restriction of
f to C is smooth of relative dimension m.

If C is an irreducible component of V on which f is not dominant, then f(C) is
contained in a Zariski-closed G-invariant proper subvariety of X . After removing
such subvarieties, we may as well assume that no such components exist. Write
V for the (Zariski open and dense) set of points of GX at which f is smooth of
relative dimension m. The argument of the preceding paragraph now shows that
V is a subgroup scheme in GX . (We multiply a local section at one smooth point
(g0, x0) by a local trivialization at another (g′0, x0) to get a local trivialization at the
product point (g0g

′
0, x0).) We also know that V contains the identity component

of Gx for every x. Write Z for the complement of V0. Every fiber Zx is a union
of cosets of Gx, so has dimension equal to m (if it is non-empty). Since Z has
dimension less than the dimension of GX , f(Z) must be contained in a proper
G-invariant subvariety of X . After removing this subvariety, we are left with f
smooth everywhere.

For (d), we replace X by U1 as in (c). Corollary VI-B 4.4 (page 349) of [SGA
3] guarantees the existence of an open subgroup scheme (GX)0 with the property
that the fibers of f on (GX)0 are the identity components (Gx)0. Let Z be the
complement of (GX)0 in its closure. Then dimZ < m+dimX . On the other hand,
the fibers of f on Z are unions of cosets of (Gx)0, and therefore have dimension
m. It follows that f(Z) is contained in a proper G-invariant closed subvariety of
X . After removing such a subvariety, we find that (GX)0 is closed, as we wished
to show.

We will not prove (e) in detail (but see [Artin], Lemma 1.17, where a related
result is also not proved in detail). Of course AX is the quotient of GX by (GX)0.
If we had not arranged for (GX)0 to be closed as well as open, this quotient would
exist only as an algebraic space, and not as a scheme.

For (f), an étale morphism must be finite over an open set ([Hartshorne], exercise
II.3.7). Part (g) is a general statement about local systems of finite groups. Q.E.D.

Example 24.4. Let G be the group of upper triangular two-by-two matrices of
determinant one, and X the Lie algebra of G (with the adjoint action). Then the
stabilizer of the origin is all of G, and so has dimension 2. Every other point has
a one-dimensional stabilizer. The stabilizers of the semisimple points (those with
non-zero diagonal entries) are the (connected) maximal tori of G. The stabilizer
of a non-zero nilpotent element is the subgroup of upper triangular matrices with
diagonal entries ±1; it has two connected components. Explicitly,

GX =

{((
a b
0 a−1

)
,

(
x y
0 −x

))
| 2xab− y(a2 − 1) = 0

}
, (24.4)(a)

a three-dimensional irreducible variety. The morphism f is projection on the second
factor. By the Jacobian criterion (that is, by inspection of the differential of the
defining equation)GX is smooth except at the two points (±I, 0). At smooth points
of GX , we can test for smoothness of f by determining whether df is surjective.



184

The conclusion is that f is smooth except at x = y = 0. In the notation of Lemma
24.3, we can therefore take U0 = U1 = X−0. The open subgroup scheme discussed
in the proof of (d) is GU1 − {x = 0, a = −1}. This is dense in GU1 , and the
complementary closed set is the two-dimensional variety

Z = { a = −1, x = 0, y 6= 0 }.

Its image in X is the one-dimensional cone of non-zero nilpotent elements; so we
take

U2 =

{(
x y
0 −x

)
| x 6= 0

}
.

The group scheme AU2 is trivial, so we can take U3 = U2.

Definition 24.5. In the setting of Lemma 24.3, the finite group Ax attached to
any x ∈ U3 is called the generic component group for the action of G on X . If G is
only assumed to be pro-algebraic, then Ax is pro-finite.

The hypotheses of Lemma 24.3 may be weakened slightly. For example, we need
not assume that X is smooth; there will in any case be a G-invariant open smooth
subvariety. We can allow X to be reducible, as long as G permutes the irreducible
components transitively. It would be nice to have a well-defined “generic isotropy
group,” but this is not possible. The difficulty is that the unipotent radical Ux of
Gx may vary continuously over an open set. Nevertheless the dimension of Ux and
the isomorphism class of the (reductive) quotient Lx = Gx/Ux will be constant on
an open set. We will make no use of these facts, however.

Lemma 24.6. Suppose the complex pro-algebraic group G acts on the smooth
irreducible variety X. Write A = G/G0 for the pro-finite component group of G.
Choose an open G-invariant subvariety U ⊂ X as in Lemma 24.3(f), so that the
pro-finite component groups Ax = Gx/(Gx)0 form a local system over U .

a) There is a locally constant family of natural homomorphisms

ix : Ax → A (x ∈ U).

The image of these homomorphisms is independent of x.
b) If G has an open orbit on X, then the homomorphisms of (a) are surjective.
c) Suppose V is a G-equivariant local system of complex r-dimensional vector spaces

on X. Then V defines a local system of r-dimensional representations of Ax.

Proof. The maps in (a) are just

ix : Gx/(Gx)0 → G/G0.

That they are locally constant is clear from the construction of the local system
AU in Lemma 24.3. Since U is connected, the image must be constant. Clearly the
image of ix consists of the classes of elements in G that preserve the orbit G0 · x.
If X has an open orbit S, then we may take x in S. Since X is irreducible, S must
be connected; so S = G · x = G0 · x, and ix is surjective. For (c), we apply Lemma
7.3 to the restriction of V to the orbit G ·x. That is, we take the isotropy action of
Gx on the fiber Vx. Q.E.D.
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Definition 24.7. Suppose Y is a smooth complex algebraic variety on which
the pro-algebraic group H acts with finitely many orbits. Fix an orbit S of H on
Y , and a point y ∈ S. Consider the action of Hy on the regular part T ∗S,y(Y )reg
of the conormal space (cf. (24.1)), and choose an open set US,y ⊂ T ∗S,y(Y )reg as in

Lemma 24.3(f). Notice that

US = H ×Hy US,y

is then an open set in T ∗S(Y )reg. Fix a point ν ∈ US,y. The (local) equivariant
micro-fundamental group at (y, ν) is the pro-finite group

Amicy,ν = Hy,ν/(Hy,ν)0.

Notice that this is just the generic component group for the action ofHy on T ∗S,y(Y ),

or for the action of H on T ∗S(Y ) (Definition 24.5). By Definition 7.1 and Lemma
24.6, it comes equipped with a natural homomorphism

iy,ν : Amicy,ν → Alocy ,

which is surjective if Hy has an open orbit on T ∗S,y(Y ) (or, equivalently, if H has

an open orbit on T ∗S(Y )).
The equivariant micro-fundamental group for S is

AmicS = Amicy,ν ((y, ν) ∈ US ⊂ T ∗S(Y )).

By Lemma 24.3, it is independent of the choice of (y, ν) up to automorphism;
if H has an open orbit on T ∗S(Y ), then it is independent of choices up to inner
automorphism. There is a natural homomorphism

iS : AmicS → AlocS ,

which is surjective if H has an open orbit on T ∗S(Y ).

Theorem 24.8 ([KK], [GM]). In the setting (24.1), suppose P is an H-equivariant
perverse sheaf on Y . Attached to P there is an H-equivariant local system Qmic(P )
of complex vector spaces on T ∗H(Y )reg (notation (24.1)(b)).

a) The rank of Qmic(P ) at any point (y, ν) of T ∗S(Y )reg is equal to the multiplicity
χmicS (P ) of P in the characteristic cycle of P (Proposition 19.12).

b) Suppose that P is supported on the closure of the H-orbit S. Then the restriction
of Qmic(P ) to T ∗S(Y )reg is the pullback of (QlocS )− dimS(P ) (Definition 23.4) by
the projection T ∗S(Y )reg → S.

c) Qmic is an exact functor from P(Y,H) to H-equivariant local systems on T ∗H(Y )reg.

Corollary 24.9. In the setting (24.1), suppose P is an H-equivariant perverse
sheaf on Y , and S ⊂ Y is an H-orbit. Attached to P there is a representation
τmicS (P ) of the equivariant micro-fundamental group AmicS (Definition 24.7).

a) The dimension of τmicS (P ) is equal to the multiplicity χmicS (P ).
b) Suppose that ξ = (S, τ) is a local complete geometric parameter for H acting on

Y (with τ an irreducible representation of AlocS ), and P (ξ) is the corresponding
irreducible perverse sheaf. Then τmicS (P (ξ)) = τ ◦ iS (Definition 24.7).
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c) The functor τmicS from H-equivariant perverse sheaves on Y to representations
of AmicS is exact. In particular, it gives rise to a map (also denoted τmicS ) from
the Grothendieck group K(Y,H) (cf. (7.10)) to virtual representations of AmicS .

This theorem is absolutely fundamental to “microlocal geometry,” and it is well-
known to all mathematicians working in the field. Nevertheless it appears to be very
difficult to find a complete proof in the literature. We are certainly not qualified to
fill this gap, but we will try to indicate what is involved.

There are several ways to define the local system Qmic(P ). Kashiwara and Kawai
begin with the H-equivariant D-module M corresponding to P under Theorem
7.9. By extension of scalars, they get a module Mmic for the sheaf E of micro-
differential operators. The restriction of Mmic to T ∗S(Y )reg can be understood
completely: it gives rise to the local system that we want ([KK], Theorem 1.3.1,
and [Kashiwara], Theorem 3.2.1). Unfortunately, even to formulate their definition
of the local system requires not only E , but also the much larger sheaf of algebras
ER. Some of the necessary proofs appear in [Kashiwara], but several key steps (like
the flatness results that make the extensions of scalars exact) may apparently be
found only in [SKK].

A closely related possibility is to work with the OT∗Y -module gr(M) (cf. (19.4)).
We first consider what can be done easily. If the filtration of M is chosen to be
H-invariant (as is possible on the geometric parameter space by Proposition 20.15)
then it follows easily that gr(M) is annihilated by the defining ideal of T ∗H(Y )
(see the proof of Propostion 19.12(b)). We may therefore regard gr(M) as a sheaf
of modules on T ∗H(Y ), which we may restrict to a single conormal space T ∗S(Y ).
Because it is H-equivariant, this restriction is of the form H ×Hy N for some
Hy-equivariant coherent OT∗

S,y
(Y )-module N (cf. (24.1)(c)). There is an open Hy-

invariant subvariety U of T ∗S,y(Y ) over which N is (the sheaf of sections of) an

Hy-equivariant vector bundle V (compare [Shaf], Proposition VI.3.1). Essentially
by definition, the rank of V is the multiplicity of T ∗S(Y ) in the characteristic cycle
of M. If ν ∈ U is arbitrary, we get an isotropy representation τy,ν of Hy,ν on the
stalk of V at ν. It is a consequence of Lemma 19.6 that the class of τy,ν in the
Grothendieck group of virtual representations of Hy,ν is independent of the choice
of good filtration on M. In order to prove at least Corollary 24.9 (which is all we
will use) the main difficulty is to prove that τy,ν must be trivial on the identity
component of Hy,ν. It seems likely that this can be done in a direct and elementary
way, as in the proof of Theorem 8.7 of [Assoc]. We have not done this, however. It
turns out that the “canonical” good filtration constructed in [KK], Corollary 5.1.11
has the property that gr(M) is actually a local system on T ∗H(Y )reg; but this uses
again the machinery of [SKK].

Another possibility is to use the vanishing cycles functor to construct Qmic.
One basic result is then [Ginsburg], Proposition 7.7.1. (The proof given there
appears to use analytic microlocal methods extensively.) This statement falls short
of Theorem 24.8, however, and it is not easy for a non-expert to evaluate the
difficulty of extending it.

The approach we will adopt is the Morse-theoretic method of [GM]. The results
actually proved in [GM] are not quite as general as we need, but at least one can find
there most of the statements and techniques needed in general (see in particular
sections II.6.3 and II.6.A). We outline the construction. Fix (y, ν) ∈ T ∗S(Y )reg.
First, we choose a (smooth) complex analytic submanifold N of Y that meets S
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transversally at y. Second, we choose a (real-valued smooth) function f on Y with
f(y) = 0 and df(y) = ν. (The assumptions on f and ν guarantee that f is Morse on
N near y, with respect to the stratification by H-orbits intersected with N ([GM],
I.2.1.) Finally, we choose a Riemannian metric on Y , and sufficiently small positive
numbers ǫ and δ ([GM], I.3.6). Write Bδ(y) for the closed ball of radius δ about y
in Y , and define a pair of compact spaces

J = N ∩Bδ(y) ∩ f
−1[−ǫ, ǫ] ⊃ K = N ∩Bδ(y) ∩ f

−1(−ǫ) (24.10)(a)

Then the stalk of the local system Qmic(P ) at the point (y, ν) is by definition

Qmic(P )y,ν = H− dimS(J,K;P ), (24.10)(b)

the hypercohomology of the pair (J,K) with coefficients in the constructible com-
plex P . That this is a local system on T ∗H(Y )reg is [GM], Proposition II.6.A.1.

We have not been able to find a good reference for Theorem 24.8(a) (which is
stated for example in [GM], II.6.A.4). One reasonable approach is to drop our old
definition of χmicS (P ) completely, replacing it by Theorem 24.8(a) as a definition.
We then need a proof of Theorem 1.31 using the new definition of χmicS . We will
outline such a proof at the end of this section.

Let us verify (b). By the transversality of the intersection of S and N , N ∩Bδ(y)
meets S (the support of P ) only in the point y. In particular, K does not meet the
support of P at all. Consequently

Qmic(P )y,ν = H− dimS({y}, ∅;P ) = stalk at y of H− dimS(P ).

By Definition 23.4, this is the stalk of (QlocS )− dimS(P ) at y, as we wished to show.
The exactness of Qmic(P ) in P (part (c)) is an immediate consequence of the

“purity” theorem of Kashiwara-Schapira and Goresky-MacPherson ([KS], section
7.2 and Theorem 9.5.2, or [GM], section II.6.A and Theorem II.6.4), which says
simply that

Hi(J,K;P ) = 0 (P perverse and i 6= − dimS). (24.10)(c)

(The proof in [KS] uses [SKK], and the definition of pure is formulated a little
differently.)

This concludes our discussion of Theorem 24.8. The construction allows us to
formulate an analogue of Definition 23.4.

Definition 24.11. Suppose C is anyH-equivariant constructible sheaf on Y . (In
fact we could take for C anyH-equivariant constructible complex on Y .) Then there
is attached to C a family (Qmic)i(C) of H-equivariant local systems on T ∗H(Y )reg,
as follows. Fix a point (y, ν) ∈ T ∗S(Y )reg) as in (24.10), and define J ⊃ K as in
(24.10)(a) . Then the stalk of (Qmic)i(C) at (y, ν) is

Hi−dimS(J,K;C).

That this is a local system is [GM], Proposition II.6.A.1. By Lemma 24.6, it carries
a representation (τmicS )i(C) of AmicS . (When we wish to emphasize the base point,
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we will write (τmicy,ν )i(C).) The virtual representation of AmicS in Corollary 24.9(c)
is

τmicS (C) =
∑

i

(−1)i(τmicS )i(C).

Definition 24.12. Suppose F ∈ K(Y,H) (notation (7.10)), S is an H-orbit on
Y , and σ ∈ AmicS . The microlocal trace of σ on F is

χmicS (F )(σ) = tr(τmicS (F )(σ)). (24.12)(a)

If C is anH-equivariant constructible sheaf, or perverse sheaf, or constructible com-
plex representing F (cf. (7.10)(a)), then we write χmicS (C)(σ) instead of χmicS (F )(σ).
Explicitly, fix (y, ν) ∈ T ∗S(Y )reg, so that AmicS is the group of connected components
of Hy,ν, and choose a representative s ∈ Hy,ν for σ. Then

χmicS (C)(σ) = (−1)dimS
∑

(−1)itr(s on Hi(J,K;C)).

(If s preserves the pair (J,K), then its action on the cohomology is the natural
one. In general it will carry (J,K) to another pair (J ′,K ′) of the same type, and
we need to use the canonical isomorphism Hi(J,K;C) ≃ Hi(J ′,K ′;C) explained
in [GM] to define the action of s.)

Definition 24.13. In the setting of Theorem 10.4, fix an equivalence class
φ ∈ Φz(G/R) of Langlands parameters (Definition 5.3), and write S = Sφ for
the corresponding orbit of ∨G on X(∨GΓ) (Definition 7.6). The micro-component

group for φ is by definition the ∨G
alg

-equivariant micro-fundamental group AmicS

(Definition 24.7):

Amic,algφ = AmicS .

By Definition 24.7, there is a natural homomorphism

iφ : Amic,algφ → Aloc,algφ ,

which is surjective if ∨G has an open orbit on T ∗S(X(∨GΓ)). To each irreducible
representation π ∈ Πz(G/R)micφ (Definition 19.15), we associate a (possibly re-

ducible) representation τmicφ (π), as follows. Let P (π) be the irreducible perverse
sheaf corresponding to π. Then

τmicφ (π) = τmicS (P (π))

(Corollary 24.9). This definition makes sense for any irreducible representation
π (not necessarily in the micro-packet of ψ). Corollary 24.9(a) guarantees that
τmicφ (π) 6= 0 if and only if π ∈ Πz(G/R)micφ . Following Definition 24.12, we write

for σ ∈ Amic,algφ

χmicφ (π)(σ) = tr(τmicφ (π)(σ)).

Theorem 24.14. Suppose (GΓ,W) is an extended group for G, and (∨GΓ,D)
is an E-group for the corresponding inner class of real forms, with second invariant
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z (Definition 4.6). Fix an equivalence class φ ∈ Φz(G/R) of Langlands parame-
ters, and define the map τψ (from irreducible representations in the micro-packet

Πz(G/R)micφ to representations of Amic,algφ ) as in Definition 24.13.

a) Suppose π belongs to the L-packet Πz
φ, and τ locφ (π) is the corresponding irreducible

representation of Aloc,algφ (Definition 5.11 and Theorem 10.4). Then

τmicφ (π) = τ locφ (π) ◦ iφ.

b) The dimension of τmicφ (π) is the multiplicity χmicφ (π) (Corollary 19.16).

This is immediate from Corollary 24.9 and the definitions. In the special case of
Arthur parameters, we get a solution to Problem B of the introduction. Here it is.

Definition 24.15. In the setting of Theorem 10.4, suppose ψ ∈ Ψ(∨GΓ) is an
Arthur parameter (Definition 22.4), and π ∈ Πz

ψ is an irreducible representation

in the corresponding Arthur packet (Definition 22.6). We define a (possibly re-

ducible) representation τψ(π) of the universal component group Aalgψ as follows. Let

x = p(φψ) ∈ X(∨GΓ) be the geometric parameter corresponding to the Langlands
parameter φψ , and S ⊂ X(∨GΓ) the corresponding orbit. Define Eψ ∈ T ∗S,x(

∨GΓ)

as in Proposition 22.9, so that the orbit of Eψ is open and dense in T ∗S(∨GΓ). By

Proposition 22.9 and Definition 24.7, Aalgψ is naturally identified with the equivari-

ant micro-fundamental group AmicS for the action of ∨Galg on X(∨GΓ); that is, with

Amic,algφψ
. We can therefore define

τψ(π) = τmic,algφψ
(π), χψ(π)(σ) = tr τψ(π)(σ)

(Definition 24.13).

We leave to the reader the formulation of a special case of Theorem 24.14 for
Arthur packets, in analogy with the deduction of Theorem 22.7 from Corollary
19.16.

We conclude this section with a proof of Theorem 1.31 using Theorem 24.8(a) as
the definition of χmicS . The main point is the following observation of MacPherson
taken from [Ch].

Proposition 24.16. Suppose X is a compact space with a finite Whitney strat-
ification S = {Sj} having connected strata, and C is a complex of sheaves on X
constructible with respect to S. Define Fij to be the dimension of the stalks of the
ith cohomology sheaf HiC at points of Sj, and set

Fj =
∑

i

(−1)iFij .

Then the Euler characteristic of the hypercohomology

χ(X ;C) =
∑

(−1)i dimHi(X ;C)

depends only on the integers Fj. More precisely, define

cj = χc(Sj) =
∑

i

(−1)i dimHi
c(Sj ; C),
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the Euler characteristic with compact supports of the stratum Sj. Then

χ(X ;C) =
∑

j

cjFj .

The elementary proof is sketched in [GMFP], 11.3. (Proofs that all the cohomology
groups are finite-dimensional may be found in [BorelIC], Lemma V.10.13.) Con-
nectedness of the strata is needed only to make Fij well-defined; we may replace
the Sj by arbitrary unions of strata, as long as the stalks of HiC have constant
dimension on each Sj .

To prove Theorem 1.31, fix S and any point (y, ν) ∈ T ∗S(Y )reg. Define J ⊃ K
as in (24.10). These compact sets have Whitney stratifications so that the various
J ∩ S′ and K ∩ S′ (with S′ an H-orbit containing S in its closure) are unions
of strata. The cohomology sheaves Hi(P ) are locally constant on these sets, of
constant rank dim(τ locS′ )i(P ) (Definition 23.4). The alternating sum of these ranks
is χlocS′ (P ) (Definition 23.6):

∑

i

(−1)i dimHi(P )x = χlocS′ (P ) (x ∈ J ∩ S′). (24.17)(a)

Define

c(S, S′) = (−1)dimSχc(J∩S
′,K∩S′) = (−1)dimS

∑

i

(−1)i dimHi
c(J∩S

′,K∩S′; C).

(24.17)(b)
Finally, recall that we are defining

χmicS (P ) = (−1)dimS
∑

i

dimHi(J,K;P ). (24.17)(c)

Then Theorem 1.31 is immediate from Proposition 24.16 and (24.17). Q.E.D.

25. A fixed point formula.

We alluded in the introduction to a fixed point formula relevant to the theory of
endoscopic lifting. In this section we will explain the formula; the connection with
endoscopy will appear in the next section.

We work in the setting of Definition 7.7, so that the pro-algebraic group G acts
on the smooth variety X with a finite number of orbits. We wish to study the
action of an automorphism of finite order on this situation. That is, we assume
that we are given compatible automorphisms of finite order

σ : G→ G, σ : X → X (25.1)(a)

(A little more formally, we could consider an action of some finite cyclic group
Z/nZ on everything, with σ the action of the distinguished generator 1+nZ.) The
compatibility means for example that

(σ · g) · (σ · x) = σ · (g · x). (25.1)(b)
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We fix a subgroup H of G, with the property that

(Gσ)0 ⊂ H ⊂ Gσ. (25.1)(c)

We fix also a subvariety Y of Xσ, with the property that

H · Y = Y , and Y is open and closed in Xσ. (25.1)(d)

We write
ǫ : Y → X, ǫ : H → G (25.1)(e)

for the inclusions. Typically we will also have an G-equivariant constructible com-
plex C on X . We will assume that C is also endowed with an automorphism σ of
finite order, compatible with those of (25.1)(a):

σ : C → C (25.1)(f)

According to Definition 24.11, we can attach to C a family of G-equivariant local
systems (Qmic)i(C) on T ∗G(X)reg; the stalks at a point (x, ν) are given by

(Qmic)i(C)x,ν = Hi−dimG·x(J,K;C), (25.1)(g)

with J ⊃ K as in (24.10). Accordingly we get an action of σ on (Qmic)i(C):

σ : (Qmic)i(C)x,ν → (Qmic)i(C)σ·(x,ν). (25.1)(h)

Assume finally that we are given a point x0 ∈ Y ⊂ X , and a conormal covector

(x0, ν0) ∈ T ∗G(X)reg, σ · (x0, ν0) = (x0, ν0), (25.1)(i)

so that σ defines an automorphism (denoted (τmicx0,ν0)
i(C)(σ), in analogy with Defini-

tion 24.11) of finite order of each of the finite-dimensional vector spaces (Qmic)i(C)x0,ν0 .
In analogy with Definition 24.12, we write

χmicx0,ν0(C)(σ) =
∑

(−1)itr(τmicx0,ν0)
i(C)(σ), (25.1)(j)

the microlocal trace of σ on C at (x0, ν0). The problem we consider is the calculation
of this microlocal trace. Because of (25.1)(g), it may be regarded as a Lefschetz
number — that is, as an alternating sum of traces on cohomology groups — so
we may hope to compute it on the fixed points of σ. That is what we will do in
Theorem 25.8.

For our purposes the most important examples of (25.1) arise in the following
way. Fix an element s ∈ G of finite order, and put

σ · g = sgs−1 (g ∈ G). (25.2)(a)

We make σ act on X and C as s does. In this case (τmicx0,ν0)
i(C)(σ) is just the action

of s on the stalk of the local system (Qmic)i(C) at the point (x0, ν0). Suppose in
addition that (x0, ν0) is sufficiently generic that

Gx0,ν0/(Gx0,ν0)0 = Amicx0,ν0 (25.2)(b)
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(Definition 24.7). Then the element s (which by assumption (25.1)(i) belongs to
Gx0,ν0) defines a coset

s = s(Gx0,ν0)0 ∈ Amicx0,ν0 (25.2)(c)

(Definition 24.7). It follows that

(τmicx0,ν0)
i(C)(σ) = (τmicx0,ν0)

i(C)(s) (25.2)(d)

(Definition 24.11). Taking the alternating sum of traces, we get

χmicx0,ν0(C)(σ) = χmicx0,ν0(C)(s). (25.2)(e)

Here the term on the left is defined in (25.1)(j), and that on the right by Definition
24.12.

In order to formulate the fixed point theorem, we need to know that the pair
(Y,H) of (25.1) satisfies the requirements of Definition 7.7.

Lemma 25.3. Suppose Z is a smooth algebraic variety, and σ is an algebraic
automorphism of Z of finite order. Write Zσ for the subvariety of fixed points.

a) Zσ is a closed smooth subvariety of Z.
b) The tangent space to Zσ at a fixed point of σ may be identified with the fixed

points of the differential of σ on the tangent space to Z:

Tz(Z
σ) = Tz(Z)dσ.

Proof. (This is well-known, and we have omitted many much more difficult
arguments; the reader may take it as an opportunity to relax a moment.) Every
point z of Zσ belongs to an open affine set U , and therefore to a σ-invariant affine
open set

⋂
n∈Z σ

n · U . (The intersection is finite since σ has finite order.) We may
therefore assume Z = SpecA is affine. Then σ arises from an automorphism (also
called σ) of A, also of finite order. The subvariety Zσ is defined by the ideal I
generated by elements f − σ · f , with f ∈ A. Since σ acts trivially on A/I and has
finite order, we have

A/I ≃ Aσ/(Aσ ∩ I). (25.4)(a)

Finally, write m for the maximal ideal of the point z; necessarily I ⊂ m. The Zariski
cotangent spaces to Z and Zσ at z are

T ∗z (Z) = m/m2, T ∗z (Zσ) = m/(m2 + I) ≃ mσ/(mσ ∩ (m2 + I)). (25.4)(b)

(The last isomorphism uses (25.4)(a).) The (equivalent) cotangent version of (b)
in the lemma therefore amounts to

mσ/(mσ ∩ m2) ≃ mσ/(mσ ∩ (m2 + I)). (25.4)(c)

Here the first space evidently maps surjectively to the second, so the isomorphism
is equivalent to

(m2 + I)σ ⊂ m2.

Since σ preserves both m2 and I, this in turn is equivalent to

Iσ ⊂ m2 (25.4)(d)
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(This says that a σ-invariant function vanishing on Zσ must actually vanish to first
order there.) To prove (25.4)(d), suppose f ∈ Iσ. By the definition of I, we can
write f =

∑
fi(gi − σ · gi). We can expand each fi and gi in eigenfunctions of σ.

This gives

f =
∑

fj(gj − σ · gj), σ · fj = λjfj , σ · gj = µjgj

for some roots of unity λj and µj . Consequently

f =
∑

(1 − µj)fjgj , σ · f =
∑

(1 − µj)λjµj(fjgj).

It follows that the terms in the expansion of f in eigenfunctions of σ may be found
by restricting to the summands with λjµj fixed. Since f is fixed by σ, we may
throw away all the terms with λj 6= (µj)

−1. Of course we may also throw away the
terms with µj = 1. This leaves

f =
∑

(1 − µj)fjgj , σ · fj = (µj)
−1fj , σ · gj = µjgj , µj 6= 1.

Therefore
f =

∑
(1 − µ−1

j )−1(fj − σ · fj)(gj − σ · gj),

which exhibits f as an element of I2 ⊂ m2. This proves (25.4)(d), and hence (b) of
the lemma.

For (a), we must show that the dimension of the Zariski cotangent space is locally
constant on Zσ; for the dimension must jump up at a singular point. If z ∈ Zσ,
choose functions f1, · · · , fn on Z so that (df1, · · · , dfn) is a basis of T ∗z Z. Clearly
we may assume that the fi are eigenfunctions for σ; say σ · fi = λifi. There is a
Zariski open set U ⊂ Z with the property that the differentials of the fi are a basis
of the tangent spaces at each point of U . By (b), it follows that

dimT ∗y (Zσ) = number of i such that λi = 1

for all y ∈ U ∩ Zσ. Thus this dimension is constant on a neighborhood of z in Zσ,
as we wished to show. Q.E.D.

This argument can be extended to the case of a reductive group action on a
smooth variety without essential change.

Lemma 25.5. Suppose S is a homogeneous space for an algebraic group G, and
σ is an automorphism of finite order of the pair (S,G). Then the orbits of the group
of fixed points Gσ on Sσ are both open and closed; they are finite in number.

Proof. The tangent space to S at a point x may be identified (using the action
mapping of (19.1)) with the quotient of Lie algebras

TxS ≃ g/gx.

Here Gx is the isotropy group of the action at x. If σ · x = x, then σ must preserve
Gx, and so act on gx. By Lemma 25.3(b),

Tx(S
σ) ≃ gσ/gσx.
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This is also the tangent space to the orbit Gσ · x. We conclude that the (smooth)
orbit Gσ · x has the same dimension at x as the (smooth) fixed point set Sσ, and
therefore that the orbit contains a neighborhood of x in Sσ. It follows that every
orbit of Gσ on Sσ is open. As Sσ is the disjoint union of orbits of Gσ, every orbit
must also be closed. Since an algebraic variety has only finitely many connected
components, the lemma follows. Q.E.D.

Theorem 25.6. Suppose we are in the setting (25.1)(a)–(e). Then Y is a
smooth algebraic variety on which H acts with finitely many orbits. In particular,
the map ǫ : (Y,H) → (X,G) of (25.1) has the properties considered in (7.17). Fix
a point y ∈ Y .

a) The conormal bundle to the H action on Y at y (cf. (19.1)) may be identified
naturally as

T ∗H,y(Y ) =
(
T ∗G,y(X)

)σ
.

b) In the identification of (a), we have

(
T ∗G,y(X)reg

)σ
⊂ T ∗H,y(Y )reg.

c) Suppose y ∈ Y . Then there is a natural homomorphism of equivariant funda-
mental groups (Definition 7.1)

Aloc(ǫ) : Alocy (Y,H) → Alocy (X,G).

d) Suppose (y, ν) ∈ T ∗H,y(Y ); use (a) to identify (y, ν) with a point of T ∗G,y(X).
Assume that these points belong to the open sets UH·y and UG·y of Definition
24.7. Then there is a natural homomorphism of equivariant micro-fundamental
groups

Amic(ǫ) : Amicy,ν (Y,H) → Amicy,ν (X,G).

Proof. Through (a), this is a straightforward consequence of Lemmas 25.3 and
25.5 and the definitions. For (b), suppose that the normal covector (y, ν) to H · y
fails to be regular. By (24.1), (y, ν) is a limit of normal covectors to orbits in Y
distinct from H · y. By (a), these may be identified with normal covectors to orbits
in X . By Lemma 25.5, the corresponding points of X must (except for finitely
many) belong to orbits of G distinct from G · y. Consequently (y, ν) fails to be
regular for X , as we wished to show. The homomorphisms in (c) and (d) arise from
the corresponding inclusions of isotropy groups; part (c) is just (7.17)(d), and part
(d) is similar. (The regularity hypothesis on ν is included only so that we can call
the component group a micro-fundamental group; it is not needed for the proof.)
Q.E.D.

In the setting (25.1), we can introduce categories

C(X,G;σ), P(X,G;σ), D(X,G;σ) (25.7)(a)

in analogy with Definition 7.7; we include in the objects an automorphism σ of finite
order, compatible with σ on (X,G). Thus for example an object of C(X,G;σ) is an
G-equivariant constructible sheaf on X , endowed with an automorphism σ of finite
order, and satisfying some obvious compatibility conditions. In the special case
(25.2), we simply use the categories of Definition 7.7. There are obvious analogues
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of Lemma 7.8 and Theorem 7.9 in this setting. In particular, the three categories
of (25.7)(a) have a common Grothendieck group

K(X,G;σ). (25.7)(b)

By Theorem 25.6 and Proposition 7.18, there are corresponding categories

C(Y,H ;σ), P(Y,H ;σ), D(Y,H ;σ) (25.7)(c)

and a homomorphism

ǫ∗ : K(X,G;σ) → K(Y,H ;σ). (25.7)(d)

Now the action of σ on (Y,H) is trivial. It follows that any object in one of
these categories is a direct sum of “eigenobjects” on which σ acts by scalar mul-
tiplication (necessarily by a root of unity). For example, a constructible sheaf
C ∈ Ob C(Y,H ;σ) can be written

C =
∑

λ∈C×

Cλ (25.7)(e)

using the eigenspace decomposition of the action of σ on each stalk. This decom-
position is inherited by K(Y,H ;σ). (An unnecessarily fancy way to say this is that
K(Y,H ;σ) is the tensor product of K(Y,H) with the group algebra of the group
of roots of unity.)

Theorem 25.8. Suppose we are in the setting (25.1). (Thus σ is an automor-
phism of finite order of a triple (X,G,C); here G has finitely many orbits on the
smooth variety X, and C is an G-equivariant constructible complex on X.) Then
the microlocal trace of σ at the σ-fixed point (x0, ν0) ∈ T ∗G(X)reg (cf. (25.1)(j))
may be computed along the fixed points of σ. More precisely, use Theorem 25.6(b)
to identify (x0, ν0) as a point of T ∗H(Y )reg. Write ǫ∗C for the restriction to Y of
C, with its inherited action of σ (Proposition 7.18). Then

χmicx0,ν0(C)(σ) = (−1)dimG·x0−dimH·x0χmicx0,ν0(ǫ
∗C)(σ) (25.9)(a)

(notation (25.1)(j)). (The trace on the left is for X, and on the right for Y .)
Suppose in particular that we are in the setting (25.2). Then

χmicx0,ν0(C)(s) = (−1)dimG·x0−dimH·x0χmicx0,ν0(ǫ
∗C)(Amic(ǫ)(s)) (25.9)(b)

(notation as in Theorem 25.6(d)).

We will be most interested in the last case, with C an irreducible perverse sheaf.
In that case the left side of (25.9)(b) is a value of a character of a representation.
The complex ǫ∗C need not be perverse, however, so the right side is only the value
of a character of a virtual representation.

Proof. Recall from (24.10) the construction of the pair of spaces J ⊃ K attached
to the regular conormal covector (x0, ν0). The normal slice N may be taken (near
x0) to be the set of common zeros of any set of holomorphic functions vanishing at
x0, whose differentials form a basis of the conormal space T ∗G,x0

(X). Obviously we
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may choose these functions to be eigenfunctions of σ; and in this case N will be
preserved by σ. Of course we can choose the Riemannian metric to be preserved
by σ. Since (x0, ν0) is assumed to be fixed by σ, we may replace the smooth
function f by the average of its (finitely many) translates by σ without affecting
the requirements f(x0) = 0 and df(x0) = ν0. That is, we may assume that σ ·f = f .
When the choices are made in this way, the automorphism σ preserves J ⊃ K, and
so we may interpret the microlocal trace directly as a Lefschetz number:

χmicx0,ν0(C)(σ) = (−1)dimG·x0

∑
(−1)itr (σ on Hi(J,K;C)). (25.9)(a)

By the long exact sequence for the pair, this is also the difference of the Lefschetz
numbers of σ on J and K with coefficients in C.

By the analysis of tangent spaces in Lemma 25.3, and the choice of N made
above, we see that Nσ is a smooth submanifold meeting H · x0 transversally in the
single point x0. The restriction of f to Y still has differential ν0; so we see that the
pair of spaces Jσ ⊃ Kσ may be taken as the ones constructed in Y using (x0, ν0)
(cf. (24.10)). Consequently

χmicx0,ν0(ǫ
∗C)(σ) = (−1)dimH·x0

∑
(−1)itr (σ on Hi(Jσ,Kσ; ǫ∗C)). (25.9)(b)

Again this is a difference of Lefschetz numbers for Jσ and Kσ separately.
We now apply to each of J and K the Lefschetz fixed point formula in the form

established in [GMFP]. We take for the “indicator map” needed in [GMFP] the
function

t(y) = (0, distance to Y );

this is σ-invariant (since the Riemannian metric is) and therefore satisfies Goresky
and MacPherson’s requirements

t−1(0, 0) = Y, t1(σ · y) ≥ t1(y), t2(σ · y) ≤ t1(y).

Their local group Ai3 ([GMFP], Definition 4.4) for J is precisely

Hi(Jσ; ǫ∗C),

and similarly for K. Their Theorem 1 ([GMFP], section 4.7) now says

∑
(−1)itr (σ on Hi(J ;C)) =

∑
(−1)itr (σ on Hi(Jσ; ǫ∗C)), (25.9)(c)

and similarly for K. Combining (25.9)(a), (b), and (c) gives the formula we want.
Q.E.D.

Most fixed point theorems (including the one in [GMFP]) are concerned with the
possibility of pathological behavior of the map whose fixed points are considered,
and this is what makes them difficult. For automorphisms of finite order things
are much simpler, and one should expect the most näıve results — for example,
that the Lefschetz number of the automorphism is the Euler characteristic of the
fixed point set — to hold under very mild hypotheses. To prove such a statement
for finite polyhedra is an easy exercise. Our topological skills were insufficient to
produce a direct elementary proof of Theorem 25.8, but we still believe that one
exists.
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26. Endoscopic lifting.

The theory of endoscopic lifting created by Langlands and Shelstad concerns
correspondences from stable characters of various smaller reductive groups into the
(unstable virtual) characters of real forms of G. We begin with a fairly general
setting for Langlands functoriality. Suppose (GΓ,W) and (HΓ,WH) are extended
groups (Definition 1.12). (Recall that this essentially means that G and H are
complex connected reductive algebraic groups endowed with inner classes of real
forms.) Suppose (∨GΓ,D) and (∨HΓ,DH) are E-groups for these extended groups
(Definition 4.6), say with second invariants z ∈ Z(∨G)θZ and zH ∈ Z(∨H)θZ

respectively. Suppose we are given an L-homomorphism

ǫ : ∨HΓ → ∨GΓ (26.1)(a)

(Definition 5.1). As in Definition 10.10, fix a quotient Q of π1(
∨G)alg, and form

the corresponding quotient

1 → Q→ ∨G
Q
→ ∨G→ 1 (26.1)(b)

of ∨G
alg

. As in (5.13)(b), we can pull this extension back by ǫ to

1 → Q→ ∨H
Q
→ ∨H → 1

Define QH to be the intersection of Q with the identity component (∨H
Q

)0, so that

1 → QH → ∨H
QH → ∨H → 1 (26.1)(c)

is a connected pro-finite covering of ∨H . It is easy to see that this is a quotient of
the canonical cover of ∨H , so QH is naturally a quotient of π1(

∨H)alg . Proposition
7.18 provides a natural homomorphism

ǫ∗ : KX(∨GΓ)Q → KX(∨HΓ)QH (26.1)(d)

(cf. (7.19)(d)).
As in Theorem 10.11, we now define a subgroup J ⊂ Z(G)σZ ,fin so that

Q̂ ≃ J, (26.1)(e)

and similarly for JH . Since QH is by its definition a subgroup of Q, JH may
be regarded as a quotient of J . The Langlands classification theorem provides
bijections

Πz(G/R)J ↔ Ξz(G/R)Q, Πz(H/R)JH ↔ Ξz(H/R)QH . (26.1)(f)

To formulate Langlands functoriality in this setting, we need to consider formal
complex-linear combinations of representations. Here is an appropriate modifica-
tion of Corollary 1.26.

Theorem 26.2. Suppose we are in the setting of Theorem 10.11. Write

KCΠz(G/R)J
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for the set of (possibly infinite) formal complex combinations of irreducible canonical
projective representations of type z (Definition 10.3) of strong real forms of G of
type J (Definition 10.10). Then KCΠz(G/R)J may be identified with the space of
complex-valued linear functionals on the Grothendieck group KX(∨GΓ)Q:

KCΠz(G/R)J ≃ HomZ(KX(∨GΓ)Q,C).

We will call elements of KCΠz(G/R)J formal complex virtual representations, or
simply virtual representations if no confusion can arise. As in Definition 18.6, we
write KC,fΠ

z(G/R)J for the virtual representations involving only finitely many
irreducible representations of each strong real form; these will have well-defined
characters (Definition 18.6).

Definition 26.3. Suppose we are in the setting (26.1). Langlands functorial-
ity is a linear map from formal complex virtual (canonical projective of type zH)
representations of (strong real forms of type JH of) H to formal complex virtual
representations of G,

ǫ∗ : KCΠzH (H/R)QH → KCΠz(G/R)Q. (26.3)(a)

It is by definition the transpose of ǫ∗ (cf. (26.1)(d)) with respect to the isomorphisms
of Proposition 26.2 for H and G. In terms of the pairing of Definition 15.11, this
means that the defining property is

〈ǫ∗ηH , FG〉G = 〈ηH , ǫ
∗FG〉H . (26.3)(b)

Here ηH is a formal complex virtual representation for H , and FG belongs to the
Grothendieck group of equivariant constructible sheaves on X(∨GΓ).

We can calculate the Langlands functoriality map ǫ∗ using Definition 15.11 and
Theorem 15.12. To see what it does to standard representations for H , we need to
see what the restriction map ǫ∗ does to irreducible constructible sheaves on X(∨G).
This is easy (Proposition 23.7). To see what it does to irreducible representations
for H , we need to see what ǫ∗ does to irreducible perverse sheaves. This is much
harder. Here is a precise statement.

Proposition 26.4. Suppose we are in the setting (26.1). Fix complete geometric
parameters ξH = (SH , τH) ∈ ΞzH (H/R)QH and ξG = (SG, τG) ∈ Ξz(G/R)Q. (Here
SH ∈ Φ(H/R) is an orbit of ∨H on X(∨HΓ), τH is an irreducible representation

of the corresponding QH-component group Aloc,QHSH
, and similarly for G.)

a) If Φ(ǫ)(SH) 6= SG (cf. (7.19)(b)) then the standard representation M(ξG) does
not occur in the expression of ǫ∗M(ξH) in terms of standard representations.

b) Suppose Φ(ǫ)(SH) = SG; recall from (7.19)(c) the induced map Aloc(ǫ) : Aloc,QHSH
→

Aloc,QSG
. Then the multiplicity of M(ξG) in the expression of ǫ∗M(ξH) in terms of

standard representations is equal to the multiplicity of τH in the representation

Aloc(ǫ) ◦ τG of Aloc,QHSH
, multiplied by the quotient e(ξG)/e(ξH) of the Kottwitz

invariants (Definition 15.8).
c) If Φ(ǫ)(SH) is not contained in the closure of SG, then the irreducible represen-

tation π(ξG) does not occur in the expression of ǫ∗π(ξH) in terms of irreducible
representations.
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d) Suppose Φ(ǫ)(SH) ⊂ SG. Recall from (7.10) the irreducible equivariant per-

verse sheaf P (ξG). Its restriction ǫ∗P (ξG) is a ∨HQH -equivariant constructible
complex on X(∨HΓ), and may therefore be written (in the Grothendieck group
KX(∨HΓ)) as a sum of irreducible equivariant perverse sheaves, with integer co-
efficents. Write m for the coefficient of P (ξH) in this sum. Then the multiplicity
of π(ξG) in the expression of ǫ∗π(ξH) in terms of irreducible representations is
equal to

m(e(ξG)(−1)dimSG)/(e(ξH)(−1)dimSH ).

Proof. According to Definition 15.11, the multiplicity ofM(ξG) in any formal vir-
tual representation ηG is equal to e(ξG)〈ηG, µ(ξG)〉G. Applying Definition 26.3(b),
we find that the multiplicity of M(ξG) in ǫ∗M(ξH) is equal to

e(ξG)〈ǫ∗M(ξH), µ(ξG)〉G = e(ξG)〈M(ξH), ǫ∗µ(ξG)〉H .

Applying Definition 15.11 for H , we find that the right side is e(ξG)/e(ξH) times
the multiplicity of µ(ξH) in ǫ∗µ(ξG). This last number is computed by Proposition
23.7(b), which gives (a) and (b). Parts (c) and (d) are proved in exactly the same
way, using Theorem 15.12 in place of Definition 15.11. Q.E.D.

In part (d) of the proposition, we could use the alternating sum of the perverse

cohomology groups pHi(ǫ∗P (ξG)) (see [BBD]) to represent the image of ǫ∗P (ξG) in
the Grothendieck group of equivariant perverse sheaves. These cohomology groups
are equivariant perverse sheaves, so m is the alternating sum of the non-negative
integers

mi = multiplicity of P (ξH) in pHi(ǫ∗P (ξG)).

This perhaps sounds a little more concrete, but seems to add nothing in the way
of computability to the formulation in the proposition.

The reader may wonder why we define Langlands functoriality in such generality,
when our applications will be to the very special case of endoscopy. One reason is
that it seems to us to be easier to understand the definition in a setting including
only what is needed. Another is that we expect to find applications more general
than endoscopy. For example, the cohomological induction functors used to con-
struct discrete series representations from characters of compact Cartan subgroups
implement some non-endoscopic examples of functoriality; this was critical to the
proof of the Langlands classification theorem. In any case, the reader is of course
welcome to think of H as an endoscopic group.

We now introduce some virtual representations that behave particularly well
under functoriality.

Definition 26.5. In the setting of Theorem 10.11, suppose φ ∈ P (∨GΓ) is
a Langlands parameter, and x ∈ X(∨GΓ) is the corresponding point of the geo-

metric parameter space. Write S for the orbit of x, so that the ∨G
Q

-equivariant
fundamental group of S is isomorphic to the Q-component group for φ (Definition
7.6):

Aloc,QS = Aloc,Qx ≃ Aloc,Qφ

(Definition 7.6). Fix σ ∈ Aloc,Qφ . The standard formal complex virtual representa-
tion attached to φ and σ is a sum of the standard final limit representations in the
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L-packet Πz(G/R)Qφ , with coefficients given by character values for the correspond-

ing representation of Aloc,Qφ . Specifically,

ηloc,Qφ (σ) =
∑

ξ=(φ,τ)∈Ξz(G/R)Q

e(ξ)tr τ(σ)M(ξ);

the sum is over complete Langlands parameters of type Q with φ fixed (Definition

5.11 and (5.13)). We may also write this as ηloc,QS (σ) or ηloc,Qx (σ). When we wish

to emphasize the group G, we will write ηloc,Qφ,G (σ). Incorporating the definition of

e(ξ) (Definition 15.8), we may rewrite the definition as

ηloc,Qφ (σ) =
∑

τ∈(Aloc,Q
φ

)̂

tr τ(σz(ρ))M(φ, τ),

a sum over the irreducible representations of the Q-component group.
This virtual representation is locally finite (Definition 18.6). If δ is a strong real

form of G of type J (Definition 10.10) we can write

ηloc,Qφ (σ)(δ) = e(G(R, δ))
∑

ξ=(φ,τ)∈Ξz(G/R)
δ(ξ)=δ

tr τ(σ)M(ξ)

for the part of ηlocφ (σ) living on G(R, δ). This is a finite combination of irreducible
representations with complex coefficients, so it has a well-defined character

Θ(ηloc,Qφ (σ), δ),

a generalized function on G(R, δ)can.

The term z(ρ) appears unnatural here; it is justified by Shelstad’s Theorem
18.12.

Lemma 26.6. In the setting of Definition 26.5, the isomorphism of Theorem

26.2 identifies the formal complex virtual representation ηloc,Qφ (σ) with the map

χloc,QS (·)(σ) (Definition 23.6) that assigns to a constructible equivariant sheaf C
the trace of σ acting on the stalk Cx. In terms of irreducible representations, we
therefore have

ηloc,Qφ (σ) =
∑

ξ∈Ξz(G/R)Q

e(ξ)(−1)d(ξ)χloc,QS (P (ξ))(σ)π(ξ).

Here as usual P (ξ) is the irreducible perverse sheaf and π(ξ) the irreducible repre-
sentation corresponding to the complete geometric parameter ξ.

This is proved in exactly the same way as Lemma 18.15; the z(ρ) has disappeared
because of its occurrence in Definition 15.11.

Proposition 26.7. Suppose we are in the setting (26.1). Fix a Langlands
parameter φH ∈ P (∨HΓ), so that φG = ǫ ◦ φH is a Langlands parameter for ∨GΓ.

Fix an element σH ∈ Aloc,QHφH
, and write

σG = Aloc(ǫ)(σH) ∈ Aloc,QφG
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(cf. (5.14)(d)). Then Langlands functoriality sends the virtual representation at-
tached to φH and σH to the one attached to φG and σG:

ǫ∗η
loc,QH
φH

(σH) = ηloc,QφG
(σG).

Proof. This is a reformulation of Proposition 23.7(c) in a special case. It may also
be deduced from Proposition 26.4(a) and (b), using the formulas in Definition 26.5
to express the standard virtual representations in terms of standard representations.
Q.E.D.

The reason this result is so easy is that it has so little content. We have shown
that Langlands functoriality is computable, but not that it has any nice properties.

Using the results of section 23, we can now give an unstable generalization of
the microlocal stable characters of section 19.

Definition 26.8. In the setting of Theorem 10.11, suppose φ ∈ P (∨GΓ) is a
Langlands parameter, and x ∈ X(∨GΓ) is the corresponding point of the geomet-
ric parameter space. Write S for the orbit of x, so that the equivariant micro-
fundamental group of S is isomorphic to the micro-component group for φ (Defini-
tion 24.13):

Amic,QS ≃ Amic,Qφ .

Fix σ ∈ Amic,Qφ . The formal complex virtual representation attached to φ and σ

is a sum of the irreducible representations in the micro-packet Πz(G/R)micJ,φ , with

coefficients given by character values for the corresponding representation ofAmic,Qφ .
Specifically,

ηmic,Qφ (σ) =
∑

(π,δ)∈Πz(G/R)mic
J,φ

e(δ)(−1)d(π)−d(φ)
(
χmicφ (π)(σ)

)
π

(notation 24.13). As in Definition 26.5, we may replace the Kottwitz invariant e(δ)

with an extra factor z(ρ) next to σ. We may also separate the terms ηmic,Qφ (σ)(δ)
corresponding to each strong real form, and attach a generalized function to each
of these.

Suppose ψ ∈ Q(∨GΓ) is an Arthur parameter (Definition 22.4). We identify the

Q-component group AQψ with Amic,Qφψ
(Definition 24.15). This allows us to define

ηQψ (σ) = ηmic,Qφψ
(σ)

for any σ ∈ AQψ . Using the notation of Definitions 22.6 and 24.15, this amounts to

ηQψ (σ) =
∑

(π,δ)∈Πz(G/R)J,ψ

e(δ)(−1)d(π)−d(ψ) (χψ(π)(σ)) π.

Lemma 26.9. In the setting of Definition 26.8, fix a sufficiently generic point
(x, ν) ∈ T ∗S(X(∨GΓ))reg (Definition 24.7). The formal complex virtual repre-

sentation ηmic,Qφ (σ) corresponds in the isomorphism of Theorem 26.2 to the map

(−1)d(φ)χmic,Q(x,ν) (·)(σ) (Definition 24.12) that assigns to a ∨G
Q
-equivariant perverse
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sheaf P the trace of σ acting on the stalk of Qmic(P ) at (x, ν), multiplied by
(−1)d(φ). In terms of standard representations, we therefore have

ηmic,Qφ (σ) = (−1)d(φ)
∑

ξ∈Ξz(G/R)

e(ξ)χmicS (µ(ξ))(σ)M(ξ).

Proof. We use Theorem 15.12 to compute the pairing of ηmic,Qφ (σ) with the

irreducible perverse sheaf P (π). The result is

e(δ)(−1)d(π)−d(φ)
(
χmicφ (π)(σ)

)
〈π, P (π)〉 = (−1)d(φ)χmicφ (π)(σ).

The first assertion follows. The second is a consequence, because of Definition
15.11. Q.E.D

We should make here a few remarks about the computability of these virtual
characters. The parametrization of standard final limit representations in Theorem
10.11 is fairly concrete; there is no difficulty in listing all the induced from limits
of discrete series representations corresponding to a given Langlands parameter φ,

or in describing the associated characters of Aloc,Qφ . In this sense the virtual rep-

resentations ηloc,Qφ (σ) are very well understood. The characters of standard limit
representations are computable as well, although it is not quite so easy to get an-

swers in closed form. Nevertheless the generalized functions Θ(ηloc,Qφ (σ), δ) may be

regarded as known. To describe ηloc,Qφ (σ) in terms of irreducible representations is
not very different from describing the composition series of the standard represen-
tations. This is accomplished in principle by the Kazhdan-Lusztig algorithms (see
sections 15 – 17), although one can get useful answers in closed form only under
very special circumstances.

The situation for ηmic,Qφ (σ) is less satisfactory. We do not know even in principle
how to compute characteristic cycles of perverse sheaves, so we cannot compute
even the size of the micro-packets of Definition 19.15 in general. Nevertheless, we
expect them to be moderately small — larger than L-packets, but not too much. It
should actually be simpler to compute characteristic cycles for irreducible perverse
sheaves than for irreducible constructible sheaves (or at least the answer should be

simpler). The expression of ηmic,Qφ (σ) in terms of standard representations (which

would provide explicit formulas for its character) therefore promises to be very
complicated.

We would like a version of Proposition 26.7 for the virtual representations ηmic,Qφ (σ).
It is immediately clear that some additional hypotheses are required: there is no
homomorphism of equivariant micro-fundamental groups Amic(ǫ) attached to a gen-
eral L-homomorphism, so we cannot even formulate an analogous statement. But
we found in section 24 geometric conditions under which such a homomorphism
does exist, and even leads to a result like Proposition 23.7 (which was the geomet-
ric part of Proposition 26.7). In the present context, these conditions lead directly
to the Langlands-Shelstad theory of endoscopic groups. Before we discuss that
theory, it is convenient to develop a small extension of the results of section 18.

Definition 26.10. Suppose we are in the setting (5.14). Recall from Proposition

4.4 the group Z(∨G)θZ ; write Z(∨G)θZ ,Q for its preimage in ∨G
Q

, so that we have
a short exact sequence

1 → Q→ Z(∨G)θZ ,Q → Z(∨G)θZ → 1.
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If φ is any Langlands parameter for ∨GΓ, then this group centralizes the image of
φ:

Z(∨G)θZ ,Q ⊂ ∨G
Q
φ (26.10)(a)

(notation as in (5.14)). The universal Q-component group for ∨GΓ is

AQuniv(
∨GΓ) = Z(∨G)θZ ,Q/(Z(∨G)θZ ,Q)0. (26.10)(b)

The map of (26.10)(a) provides a natural homomorphism

ilocuniv : AQuniv(
∨GΓ) → Aloc,Qφ (26.10)(c)

for every Langlands parameter φ; similarly we get maps into the various geomet-
rically defined groups of section 7, into the Q-component group for an Arthur
parameter, and into the micro-component groups of Definition 24.13.

Suppose now that we are in the setting of Theorem 10.10, and that (π, δ) is
an irreducible canonical projective representation of type z of a strong real form
δ of type J . Theorem 10.10 associates to (π, δ) a complete Langlands parameter

(φ(π, δ), τ(π, δ)), with τ(π, δ) an irreducible representation of Aloc,Qφ . Define

τuniv(π, δ) = τ(π, δ) ◦ ilocuniv : AQuniv(
∨GΓ) → C×, (26.10)(d)

a one-dimensional character of AQuniv . In terms of geometric parameters, τuniv(π, δ)
is the character by which Z(∨G)θZ ,Q acts on the stalks of the equivariant local
system (or the equivariant perverse sheaf) corresponding to (π, δ).

We have already considered several cases of this definition. The element z(ρ)
belongs to Z(∨G)θZ ,Q, and Definition 15.8 says that

τuniv(π, δ)(z(ρ)) = e(δ), (26.11)(a)

the Kottwitz invariant of the real form. As another example, let z0 ∈ Z(G)σZ ,fin

be the second invariant of the extended group (GΓ,W) (cf. (3.5)). Then Lemma
10.9(b) says (in the notation defined there)

τuniv(π, δ)(zQ) = χz0δ2(z
Q) (zQ ∈ Q). (26.11)(b)

These examples are special cases of the following general fact.

Lemma 26.12. In the setting of Definition 26.10, the character τuniv(π, δ) of
Z(∨G)θZ ,Q depends only on the G-conjugacy class of δ, and not on the representa-
tion π. We may therefore write it as τuniv(δ).

We have not found a particularly compelling proof of this result, but one can
proceed along the following lines. The group Z(∨G)θZ ,Q must act by scalars on

an irreducible ∨G
Q

-equivariant perverse sheaf on the geometric parameter space.
By Theorem 15.12, it follows that τuniv(π, δ) is unchanged if π is replaced by any
composition factor of the standard limit representation having π as a quotient. In
this way (using the subquotient theorem) we can reduce to the case of ordinary
principal series representations of G(R, δ)can. Since all of these may be regarded as
associated to the same Cartan subgroup and set of positive imaginary roots, it is
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fairly easy to apply the definition of τ(π, δ) directly (see section 13) and verify the
lemma. We leave the details to the reader.

Definition 26.13. Suppose we are in the setting of Definition 26.10, and σ ∈
AQuniv(

∨GΓ). Using the notation of (18.3), we now define a function ζσ onG(R, ∗)canSR

by
ζσ(g, δ) = τuniv(δ)(σ) (26.13)(a)

The locally finite formal complex virtual representation η ∈ KC,fΠ
z(G/R)J is said

to be strongly σ-stable if the function

ΘSR(η, ∗)(ζσ)
−1 (26.13)(b)

is constant on the fibers of the first projection p1 : G(R, ∗)QSR → GQ (Definition
18.6). Define

KC,fΠ
z(G/R)σ−stJ (26.13)(c)

to be the vector space of these virtual representations.

Theorem 26.14. Suppose we are in the setting of Theorem 10.11, and σ ∈
AQuniv(

∨GΓ) (Definition 26.10).

a) The restriction of a strongly σ-stable formal complex virtual representation to
single strong real form is stable (Definition 18.2).

b) Suppose δ0 is a strong real form of G of type J , and η0 is a stable virtual rep-
resentation of G(R, δ0)

can (Definition 18.2). Then there is a strongly σ-stable
locally finite formal complex virtual representation η of G with the property that

ΘSR(η, ∗)(g, δ0) = ΘSR(η0)(g)

for every strongly regular element g ∈ G(R, δ0)
can. If δ0 is quasisplit, then η is

unique.

c) The vector space KC,fΠ
z(G/R)σ−stJ has as a basis the set { ηloc,Qφ (ilocuniv(σ)) }

(Definitions 26.5 and 26.10), as φ varies over Φ(∨GΓ).

d) The vector space KC,fΠ
z(G/R)σ−stJ has as a basis the set { ηmic,Qφ (imicuniv(σ)) }

(Definitions 26.8 and 26.10), as φ varies over Φ(∨GΓ).

Proof. Part(a) follows from Lemma 18.5. The function ζσ is constant on strong
real forms and nowhere zero, so (b) is a formal consequence of Theorem 18.7.
Similarly (c) follows from Theorem 18.14. For (d), Theorem 1.31 shows that this
set is related to the basis of (c) by an upper triangular matrix with ±1 in each
diagonal entry. Q.E.D.

In the setting of Example 19.17, it is not difficult to see that the function ζσ is

nothing but the character of the complex formal virtual representation ηmic,Qφ0
(σ).

Definition 26.15. Suppose ∨GΓ is a weak E-group (Definition 4.3), and Q is
any quotient of π1(

∨G)alg (Definition 10.10). A weak endoscopic datum for ∨GΓ is
a pair (sQ, ∨HΓ), subject to the following conditions.

i) sQ ∈ ∨GQ is a semisimple element, and ∨HΓ ⊂ ∨GΓ is a weak E-group. Write
s for the image of sQ in ∨G.

ii) ∨HΓ is open in the centralizer of s in ∨GΓ.
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In (i), it is understood that the weak E-group structure ∨HΓ → Γ is the restric-
tion of that for G; that is, that the inclusion

ǫ : ∨HΓ → ∨GΓ

is an L-homomorphism (Definition 5.1). An endoscopic datum is a weak endoscopic
datum endowed with an E-group structure on ∨HΓ (Definitions 4.6, 4.14). That is,
it is a triple (sQ, ∨HΓ,DH), subject to the conditions above and

iii) DH is a ∨H-conjugacy class of elements of finite order in ∨HΓ−∨H , each acting
by conjugation on ∨H as a distinguished involution.

Endoscopic data (sQ, ∨HΓ,DH) and ((sQ)′, (∨HΓ)′, (DH)′) are equivalent if there

is an element gQ ∈ ∨GQ with the property that

g(∨HΓ)′g−1 = ∨HΓ, g(DH)′g−1 = DH , gQ(sQ)′(gQ)−1 ∈ sQ(Z(∨H)θZ ,Q)0.

Here g is the image of gQ in ∨G. The last condition says that sQ and gQ(sQ)′(gQ)−1

should have the same image in AQHuniv(
∨HΓ).

This definition of endoscopic data is compatible with the one given by Langlands
and Shelstad in [LS], 1.2 (although of course they do not use a covering group);
their element s satisfies slightly weaker conditions, but can obviously be modified
within their notion of equivalence to satisfy the conditions here. What is more
serious is that the notion of equivalence in [LS] is substantially less stringent: they
replace our coset sQZ(∨HQ)0 by sZ(∨HΓ)0Z(∨G). This is part of the reason that
the endoscopic lifting of [Shelstad] is defined only up to a sign. In any case, we find
a natural surjective correspondence from equivalence classes of endoscopic data in
our sense to those of [LS].

Notice first of all that every element sQ ∈ Z(∨G)θZ ,Q (notation as in Proposition
4.4) defines an endoscopic datum (sQ, ∨GΓ,D). Two of these are equivalent if and

only if sQ and (sQ)′ have the same image in AQuniv (Definition 26.10). In general,

suppose sQ is any semisimple element of ∨G
Q

; write s for its image in ∨G. Define

S = centralizer of s in ∨GΓ, S1 = centralizer of s in ∨G,

and write S0 for the identity component of S. Then the number of weak endoscopic
data corresponding to sQ is the number of elements of order 2 in the finite group
S/S0 not belonging to S1/S0.

Here is an important construction for weak endoscopic data. Suppose φ ∈
P (∨GΓ) is a Langlands parameter, and sQ ∈ ∨GQφ is a semisimple element (Defi-

nition 5.11). (One should think of sQ as representing an element σ ∈ Aloc,Qφ .) Let
∨H be the identity component of the centralizer of s in ∨G. Then

∨HΓ = (∨H)φ(WR) (26.16)

is a weak E-group, and the pair (sQ, ∨HΓ) is a set of weak endoscopic data.
We can now describe the setting for endoscopic lifting. We begin in the setting of

Theorem 10.11, with an extended group (GΓ,W) a corresponding E-group (∨GΓ,D)
with second invariant z, and a quotient Q of π1(

∨G)alg. Fix a set of endoscopic
data

(sQ, ∨HΓ,DH) (26.17)(a)
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for ∨GΓ as in Definition 26.15, say with second invariant zH . (We may also call
this endoscopic data for G.) An extended endoscopic group attached to this set of
data is an extended group

(HΓ,WH) (26.17)(b)

with E-group ∨HΓ (Definition 4.3) and second invariant 1 (Proposition 3.6). Recall
from Definition 1.12 that the extended group structure WH includes an equivalence
class of quasisplit strong real forms of H . Fix one of these δ0. In the terminology
of [LS], H(R, δ0) is an endoscopic group attached to the endoscopic data. The
L-homomorphism

ǫ : ∨HΓ →֒ ∨GΓ (26.17)(c)

now places us in the setting (26.1), so we can make use of all the constructions
introduced there. (It is easy to check that in the present situation the group QH of
(26.1)(c) is actually equal to Q; but this is something of an accident that disappears
in the case of twisted endoscopy, so we will make no use of it.) In particular, we
have a restriction homomorphism

ǫ∗ : KX(∨GΓ)Q → KX(∨HΓ)QH (26.17)(d)

and Langlands functoriality

ǫ∗ : KCΠzH (H/R)QH → KCΠz(G/R)Q. (26.17)(e)

With these definitions, it is easy to check that the element sQ from the endoscopic
datum belongs to Z(∨H)θZ ,QH , and therefore defines a class

σH ∈ AQHuniv(
∨HΓ) (26.17)(f)

(Definition 26.10).

Definition 26.18. Suppose we are in the setting (26.17). Endoscopic lifting
is the restriction of Langlands functoriality to σH -stable virtual representations.
That is,

Lift : KC,fΠ
zH (H/R)σH−stJH

→ KC,fΠ
z(G/R)J .

Fix a quasisplit strong real form δ0 of H from the distinguished class given by WH ,
and write

KC,fΠ
zH (H(R, δ0))

st

for the Grothendieck group of stable complex virtual representations (projective
of type zH) of the group H(R, δ0). By Theorem 26.14 (which relies on Shelstad’s
Theorem 18.7), restriction to H(R, δ0) defines an isomorphism

KC,fΠ
zH (H/R)σH−stJH

≃ KCΠzH (H(R, δ0))
st.

Using this identification, we may regard lifting as defined on stable virtual (canon-
ical projective) representations of the endoscopic group H(R, δ0):

Lift0 : KCΠzH (H(R, δ0))
st → KC,fΠ

z(G/R)J .

If we fix a strong real form δ of G of type J (that is, satisfying δ2 ∈ Jz0, with z0
the second invariant of the extended group GΓ), then we may project the image of
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lift on the complex virtual (projective of type z) representations of G(R, δ). This
gives a map

Lift0(δ) : KCΠzH (H(R, δ0))
st → KCΠz(G(R, δ)).

It is essentially this restricted map that Langlands and Shelstad use.

Lemma 26.19. Endoscopic lifting depends only on the equivalence class of en-
doscopic data. More precisely, suppose (sQ, ∨HΓ,DH) and ((sQ)′, (∨HΓ)′, (DH)′)
are endoscopic data for G (Definition 26.15), say with second invariants zH and z′H.
Fix associated extended endoscopic groups (HΓ,WH) and ((HΓ)′,W ′H) (cf. (26.17)).
Fix an equivalence ∨j from (sQ, ∨HΓ,DH) to ((sQ)′, (∨HΓ)′, (DH)′), implemented

by conjugation by an element gQ ∈ ∨GQ (Definition 26.15). Finally, choose distin-
guished (quasisplit) strong real forms δ0 and δ′0 for H and H ′.

a) The isomorphism ∨j carries σH to σH′ (cf. (26.17)(f)).
b) The isomorphism ∨j induces an isomorphism

j : (HΓ,WH)
∼
→ ((HΓ)′,W ′H)

unique up to an inner automorphism from H.
c) The isomorphism j allows us to identify equivalence classes of irreducible canon-

ical projective representations of strong real forms of H and H ′:

j : ΠzH (H/R)JH
∼
→ ΠzH′ (H ′/R)JH′ .

d) The isomorphism j induces an isomorphism

j0 : H(R, δ0)
∼
→ H ′(R, δ′0)

unique up to an inner automorphism from the normalizer of H ′(R, δ0) in H.
e) The isomorphism j0 allows us to identify stable virtual representations of H(R, δ0)

and H ′(R, δ′0):

j0 : KCΠzH (H(R, δ0))
st ∼→ KCΠzH′ (H ′(R, δ′0))

st.

This isomorphism depends only on ∨j.
f) If ηH is a σH -stable formal complex virtual (canonical projective of type zH)

representation of strong real forms of H of type JH , then

Lift(ηH) = Lift(j(ηH)).

g) If (η0)H is a complex virtual (canonical projective of type zH) representation of
H(R, δ0), then

Lift0((η0)H) = Lift0(j0((η0)H)).

Proof. Part (a) is immediate from the definition of equivalence and the definition

of AQHuniv (Definition 26.10). Part (b) is Proposition 3.6, and then (c) is immediate.
For (d), j(δ0) must be a distinguished strong real form coming from WH′ . Since
these strong real forms constitute a single conjugacy class, conjugation by an ele-
ment of H ′ carries j(δ0) to δ′0. The composition of this inner automorphism with
j gives j0. For (e), we need only know that the normalizer of H ′(R, δ′0) in H ′ acts
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trivially on stable virtual representations. This is obvious from the definition of
stability (Definition 18.2). Parts (f) and (g) are clear from the definitions. Q.E.D.

The first serious problem we face is showing that Definition 26.18 agrees with
the definition of [Shelstad], up to a multiplicative constant (which can be chosen
more or less arbitrarily in Shelstad’s formulation, and which depends on the choice
of strong real form δ in ours). To do this, notice that both kinds of lifting can

be computed explicitly on the basis elements ηloc,QHφH
(σH)(δ0): this is Proposition

26.7 in our case and Theorem 4.1.1 of [Shelstad] in hers. In each case the answer is
a sum over the final standard limit representations in the L-packet Πz(G(R, δ)φG ,
with coefficients given in an explicit combinatorial way in terms of a single Cartan
subgroup. Comparing the definitions is a tedious but straightforward exercise (to
which Proposition 13.12 is particularly relevant). We omit the details.

Our main theorem on endoscopic lifting concerns the virtual representations of
Definition 26.8. In order to apply the results of section 25, we need an element of
finite order.

Lemma 26.20. Suppose G is a (possibly disconnected) complex algebraic group,
and a0 ∈ G is a semisimple element. Define H = Ga0 to be the centralizer of a0 in
G, Z(H) the center of H, and Z(H)s the group of semisimple elements in Z(H).

a) The set of elements of finite order is Zariski dense in Z(H)s.
b) The set

U = { a ∈ Z(H)s | dimGa = dimH }

is Zariski open in Z(H)s and contains a0.
c) There is an element a′ ∈ a0(Z(H)s)0 of finite order such that H is open in the

centralizer of a′ in G.

Proof. The identity component (Z(H)s)0 is a product of copies of C×. The
elements of finite order are therefore dense in it. We need only show that they
meet every other component. Suppose b ∈ Z(H)s. Since the group of connected
components of Z(H) is finite, bn ∈ (Z(H)s)0 for some positive integer n. Since C×

is a divisible group, there is an element b0 ∈ (Z(H)s)0 with bn0 = bn. Then bb−1
0 is

an element of order n in the component b(Z(H)s)0.
For (b), we have Ga ⊃ H for every a ∈ Z(H)s. Consequently

U = { a ∈ Z(H)s | det(Ad(a)|g/h) 6= 0 }.

This is obviously an open set. Part (c) follows from (a) and (b). Q.E.D.
Suppose we are in the setting (26.17). By Lemma 26.20, we can find an element

s′ ∈ sZ(∨HΓ)0 so that s′ has finite order, and

∨HΓ is open in the centralizer of s′ in ∨GΓ. (26.21)(a)

Now Z(∨HΓ)0 is just Z(∨H)θZ0 . We may therefore find a preimage

(sQ)′ ∈ sQ(Z(∨H)θZ ,QH )0 ⊂ ∨G
Q

(26.21)(b)

for s′. When the pro-finite group Q is infinite, this preimage may not itself have

finite order; but it will have finite order in every algebraic quotient of ∨H
Q

, and
this is all we need to apply the results from section 25. (For example, any particular
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∨G
Q

-equivariant constructible sheaf on X(∨GΓ) will actually be equivariant for an

algebraic quotient of ∨GQ.) By Definition 26.15,

((sQ)′, ∨HΓ,DH) (26.21)(c)

is again an endoscopic datum, equivalent to (sQ, ∨HΓ,DH) by the identity map on
∨HΓ. In this setting, we will write σ for the action of s′ on X(∨GΓ) or on ∨G (by
conjugation); these are compatible automorphisms of finite order. By the choice of
s′,

(∨G
σ
)0 ⊂ ∨H ⊂ ∨G

σ
. (26.21)(d)

Lemma 26.22 In the setting (26.21), X(∨HΓ) is open and closed in X(∨GΓ)σ.

Proof. It is immediate from the definition of the geometric parameter space that

X(∨GΓ)σ = { (y,Λ) | y ∈ ∨G
σ
, Ad(s′)Λ = Λ }.

Because a canonical flat Λ is an affine space, and therefore convex, it contains a
fixed point of each linear automorphism of finite order preserving it. (Take the
center of mass of an orbit.) Hence

X(∨GΓ)σ = { (y,Λ) | y ∈ ∨G
σ
,Λ ∩ h 6= 0 }.

On the other hand, the image of the closed immersion X(ǫ) (Corollary 6.21) is

{ (y,Λ) | y ∈ ∨H,Λ ∩ h 6= 0 }.

Since ∨H is open and closed in ∨G
σ
, the lemma follows. Q.E.D.

Proposition 26.23. In the setting (26.17), suppose x ∈ X(∨HΓ); write ǫ(x)
for the corresponding point of X(∨GΓ).

a) The element s ∈ ∨G from the endoscopic datum defines an automorphism σ of
the conormal space T ∗∨G,ǫ(x)(X(∨GΓ)) to the ∨G-orbit of ǫ(x).

b) There is a natural isomorphism

ǫ : T ∗∨H,x(X(∨HΓ))
∼
→

(
T ∗∨G,ǫ(x)(X(∨GΓ))

)σ
.

c) In the isomorphism of (b),

(
T ∗∨G,ǫ(x)(X(∨GΓ))reg

)σ
⊂ ǫ

(
T ∗∨H,x(X(∨HΓ))reg

)
.

d) Suppose (x, ν) ∈ T ∗∨H,x(X(∨HΓ)), so that (ǫ(x), ǫ(ν)) ∈ T ∗∨G,ǫ(x)(X(∨GΓ)). With

notation as in Definition 24.7, assume that

(x, ν) ∈ U∨H·x, (ǫ(x), ǫ(ν)) ∈ U∨G·ǫ(x).

(This is automatic if the orbit ∨G · (ǫ(x), ǫ(ν)) is open in the conormal bundle.)
Then there is a natural homomorphism of micro-component groups

Amic(ǫ) : Amic,QHx,ν → Amic,Qǫ(x),ǫ(ν).
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Proof. This result is true, and not difficult to prove, in exactly the form stated.
For our applications, however, it is enough to know that it is true after the en-
doscopic datum is modified in accordance with (26.21). (This will change the
automorphism σ, but not its subspace of fixed points.) In that case it follows from
Theorem 25.6, which we are allowed to apply by Lemma 26.22. Q.E.D.

Theorem 26.24. Suppose we are in the setting (26.17). Fix a Langlands pa-
rameter φH ∈ P (∨HΓ), so that φG = ǫ ◦ φH (that is, φH regarded as a map into
the larger group ∨GΓ) is a Langlands parameter for G. Write x0 ∈ X(∨HΓ) for
the point corresponding to φH , so that ǫ(x0) ∈ X(∨GΓ) corresponds to φG. Fix
a generic conormal covector ν0 ∈ U∨H·x0 (Definition 24.7), so that the micro-
component group for φH may be computed at (x0, ν0):

Amic,QHφH
= Amic,QH(x0,ν0)

(Definition 24.13). Using Proposition 26.23, regard (ǫ(x0), ǫ(ν0)) as a conormal
covector to ∨G · ǫ(x0). Assume that this covector is also generic, so that

Amic,QφG
= A(ǫ(x0), ǫ(ν0))

mic,Q,

and Proposition 26.23 provides a homomorphism

Amic(ǫ) : Amic,QHφH
→ Amic,QφG

.

Define σH ∈ AQHuniv(
∨HΓ) as in (26.17)(f). We write also

σmicφH = imicuniv(σH) ∈ Amic,QHφH
, σmicφG = Amic(ǫ)(σmicφH ) ∈ Amic,QφG

.

Then endoscopic lifting (Definition 26.18) sends the σH -stable formal complex vir-
tual representation attached to φH and σmicφH

to the one attached to φG and σmicφG
:

Lift(ηmic,QHφH
(σmicφH )) = ηmic,QφG

(σmicφG ).

In terms of the restricted map of Langlands and Shelstad, we have

Lift0(δ)(η
mic,QH
φH

(δ0)) = e(δ)
∑

π∈Πz(G(R,δ))mic
φG

(−1)d(π)−d(φG)(χmic,QφG
(π)(σmicφG ))π

for each strong real form δ of type J .

Proof. By Lemma 26.19, we may replace the endoscopic datum by an equivalent
one without changing Lift. By (26.21), we may therefore assume that s has finite

order. Now regardLift(ηmic,QHφH
(σmicφH

)) as a linear functional on constructible ∨G
Q

-

equivariant sheaves (Theorem 26.2), and evaluate it on such a sheaf C. By Lemma
26.9, the result is (−1)d(φH) times the alternating sum of the traces of σmicφH

on the on

the stalks at (x0, ν0) of (Qmic)i(ǫ∗C). By Theorem 25.8, this is equal to (−1)d(φG)

times the alternating sum of the traces of σmicφG
on the stalks at (ǫ(x0), ǫ(ν0)) of

(Qmic)i(C). By Lemma 26.9 again, this alternating sum is ηmic,QφG
(σmicφG

) evaluated
at C, as we wished to show. Q.E.D.
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Here is the solution to Problem D from the introduction.

Theorem 26.25. Suppose we are in the setting (26.17). Fix an Arthur param-
eter ψH ∈ Q(∨HΓ) (Definition 22.4), so that ψG = ǫ ◦ψH (that is, ψH regarded as
a map into the larger group ∨GΓ) is an Arthur parameter for G. Write

AArthur(ǫ) : AQHψH → AQψG

for the induced map on component groups. Define

σψH = iArthuruniv (σH) ∈ AQHψH , σψG = AArthur(ǫ)(σψH ) ∈ AQψG .

Then endoscopic lifting satisfies

Lift(ηψH (σψH )) = ηψG(σψG ).

In terms of the restricted lifting map of Langlands and Shelstad,

Lift0(δ)(ηψH (σψH )(δ0)) = e(δ)
∑

π∈Πz(G(R,δ))ψG

(−1)d(π)−d(ψG)(χψG(π)(σψG ))π

for each strong real form δ of G of type J .

In light of the discussion at Definition 24.15, this is just a special case of Theorem
26.24.

27. Special unipotent representations.

Arthur’s parameters are in many respects most interesting when they are as far
as possible from being tempered; that is, when the tempered part of the parameter
is as trivial as possible. The corresponding representations are the special unipotent
representations. These were defined already in [BVunip]. (The theorems of that
paper are proved only in the complex case, but the basic definition works in general.)
In this section we will consider the unipotent case in more detail, and prove that
our new definition of Arthur’s representations agrees with the old one (Corollary
27.13).

The reader may wonder about the qualifying adjective “special” in the termi-
nology. Arthur’s representations should include all the unitary representations of
real forms of G that can appear in spaces of square-integrable automorphic forms
(with respect to congruence subgroups). They do not, however, include all the
interesting unitary representations; perhaps the simplest example of one which is
omitted is (either irreducible component of) the metaplectic representation of the
complex rank two symplectic group. This representation should be an example of
a (still undefined) larger class of interesting unitary representations, for certain of
which we are optimistically reserving the term “unipotent.” A longer discussion (if
not a more illuminating one) may be found in [Orange].

Definition 27.1. Suppose ∨GΓ is a weak E-group. An Arthur parameter ψ
(Definition 22.4) is said to be unipotent if its restriction to the identity component
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C× of WR is trivial. Write Qunip(
∨GΓ) for the set of unipotent Arthur parame-

ters, and Ψunip(
∨GΓ) for the corresponding set of equivalence classes. Following

Definition 22.4, write

Punip(
∨GΓ) ⊂ PArthur(

∨GΓ) ⊂ P (∨GΓ)

for the corresponding Langlands parameters φψ, and

Φunip(
∨GΓ) ⊂ ΦArthur(

∨GΓ) ⊂ Φ(∨GΓ)

for their equivalence classes.

Proposition 27.2. Suppose ∨GΓ is a weak E-group. The set of unipotent Arthur
parameters for ∨GΓ (Definition 27.1) may be identified naturally with the set of L-
homomorphisms (Definition 5.1) from the L-group of PGL(2) to ∨GΓ. Suppose
that ψ corresponds to ǫ. Then the Langlands parameter associated to ψ (Definition
22.4) is the lift by ǫ of the Langlands parameter of the trivial representation of
PGL(2,R) (Proposition 5.4).

Proof. The dual group of PGL(2) is SL(2). Since PGL(2,R) is split, the
corresponding automorphism a of the based root datum (Corollary 2.16) is trivial.
The L-group is therefore the direct product of the dual group and the Galois group
Γ (section 4):

L-group of PGL(2) = SL(2) × Γ.

The L-homomorphisms in question are therefore certain homomorphisms from SL(2)×
Γ to ∨GΓ. On the other hand, the Weil group WR modulo its identity component
is just Γ, so it is immediate from Definitions 22.4 and 27.1 that unipotent parame-
ters are certain homomorphisms from Γ × SL(2) to ∨GΓ. One checks immediately
that the additional conditions imposed on these homomorphisms by Definition 22.4
correspond precisely to those imposed on L-homomorphisms by Definition 5.1.

Now write γ : WR → Γ for the natural quotient map (Definition 5.2). The
Langlands parameter of the trivial representation of PGL(2,R) is represented by
the homomorphism

φ : WR → SL(2)× Γ, φ(w) =

((
|w|1/2 0

0 |w|−1/2

)
, γ(w)

)
.

(This is well-known: in addition to the definitions of sections 11–14, one must
understand exactly which standard representation of PGL(2,R) contains the trivial
representation.) Comparing this with the definition of φψ in Definition 22.4 gives
the last assertion. Q.E.D.

Corollary 27.3. Suppose ∨GΓ is a weak E-group. Fix an algebraic homomor-
phism

ψ1 : SL(2,C) → ∨G,

and define

S = centralizer of ψ1(SL(2,C)) in ∨GΓ

S0 = S ∩ ∨G, S1 = S − S0, S
(2)
1 = { y0 ∈ S1 | y2

0 = 1 }.
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Then the set of unipotent Arthur parameters ψ restricting to ψ1 on SL(2,C) may be

naturally identified with S
(2)
1 . Two such parameters are equivalent if and only if the

corresponding elements of S
(2)
1 are conjugate under S0. If the Arthur parameter ψ

corresponds to y0 ∈ S
(2)
1 , then the Arthur component group for ψ is the component

group of the centralizer S0(y0) of y0 in S0:

Aψ = S0(y0)/(S0(y0))0, Aalgψ = S0(y0)
alg/(S0(y0)

alg)0

(Definition 22.4).

This is immediate from the definitions.

Corollary 27.4. Suppose ∨GΓ is a weak E-group. Then the set Ψunip(
∨GΓ) of

equivalence classes of unipotent Arthur parameters is finite.

Proof. According to a classical result of Dynkin, the number of H-conjugacy
classes of algebraic homomorphisms of SL(2,C) into a complex reductive algebraic
group H is finite. Applying this to ∨G, we find that there are only finitely many
possible ψ1 up to equivalence. Now Corollary 27.3 completes the proof. Q.E.D.

Example 27.5. Suppose G = GL(n), endowed with the inner class of real forms
including GL(n,R). Then the L-group is

∨GΓ = GL(n,C) × Γ. (27.5)(a)

A homomorphism ψ1 of SL(2) into ∨G is therefore an n-dimensional representation
of SL(2). Such a representation may be decomposed as a direct sum of irreducible
representations of various dimensions p1 > p2 > · · · > pr; say the representation of
dimension pi occurs mi times, so that n =

∑
mipi. It follows from Schur’s lemma

that the centralizer in GL(n) of the image of ψ1 is isomorphic to the product of the
various GL(mi); so in the notation of Corollary 27.3,

S0 = GL(m1)×· · ·×GL(mr), S = S0×Γ, S
(2)
1 = (elements of order 2)×{σ};

(27.5)(b)
here σ is the non-trivial element of Γ. The equivalence classes of ψ associated to
ψ1 therefore correspond to conjugacy classes of elements of order 2 in S0. Now an
element of GL(m) has order 2 if and only if it is diagonalizable with all eigenvalues
1 or −1. There are exactly m+1 such conjugacy classes (indexed by the multiplicity
of the eigenvalue −1); so we find finally (m1 + 1) · · · (mr + 1) different unipotent
Arthur parameters associated to ψ1.

It turns out that the Arthur packet of each of these parameters contains exactly
one representation of GL(n,R). We now describe these representations. Let P =
MN be the standard parabolic subgroup of GL(n) with Levi factor

M = GL(p1)
m1 × · · · ×GL(pr)

mr . (27.5)(c)

For each i, fix an integer ki between 0 and mi. Consider the one-dimensional
character πi of GL(pi)

mi defined by

πi(g1, . . . , gmi) = sgn(det(g1g2 . . . gki)). (27.5)(d)
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Set
π = Ind

GL(n,R)
P (R) (π1 ⊗ · · · ⊗ πr) (27.5)(e)

Then π is a unipotent representation attached to the Arthur parameter specified
by ψ1 and the various ki. (This can be verified by computing φψ; what is also true,
but not so immediately clear, is that there are no other representations of GL(n,R)
in the Arthur packet of ψ.)

Example 27.6. Suppose G = G1 × G1, endowed with the inner class of real
forms including G1 (regarded as a real group). The L-group of G is

∨GΓ = (∨G1 ×
∨G1) o {1, δ}, (27.6)(a)

with δ acting on the first factor by interchanging the two factors ∨G1. A homo-
morphism ψ1 of SL(2) into ∨G is specified by a pair ψL1 , ψR1 of such homomor-
phisms into ∨G1; the centralizer S0 of its image is a product SL0 × SR0 . An element
(gL, gR)δ ∈ ∨GΓ − ∨G conjugates (ψL1 , ψ

R
1 ) to (Ad(gL)ψR1 , Ad(g

R)ψL1 ). It follows

at once that the set S
(2)
1 of Corollary 27.3 is empty (and so there are no unipotent

Arthur parameters) unless ψL1 is conjugate to ψR1 . So we assume that they are
conjugate; after replacing ψ1 by a conjugate, we may even assume

ψL1 = ψR1 , SL0 = SR0 . (27.6)(b)

An elementary calculation now shows that

S
(2)
1 = { (x, x−1)δ | x ∈ SL0 }, (27.6)(c)

and that this set is precisely the S0 conjugacy class of δ. There is therefore ex-
actly one equivalence class of unipotent Arthur parameters associated to ψ1. The
corresponding representations are (as we will see) the ones considered in [BVunip].

Fix now an algebraic homomorphism

ψ1 : SL(2,C) → ∨G. (27.7)(a)

Define λ = λ1 as in (22.8). Write Λ for the canonical flat through λ (Definition
1.7 and (6.4)), and O for the orbit of λ in ∨g. Representations in Arthur packets
attached to unipotent Arthur parameters extending ψ1 must have infinitesimal
character O, and we wish to apply to them the results of section 21. We therefore
use the notation of (21.1) and (21.5). In particular,

e(Λ) = ψ1(−I). (27.7)(b)

The automorphism Ad e(λ) acts by +1 on the integer eigenspaces of ad(λ), and by
−1 on the half-integer eigenspaces. The map ψ1 is called even if e(λ) is central;
that is, if ad(λ) has no half-integral eigenspaces. Define

E = dψ1

(
0 1
0 0

)
∈ n(Λ) ⊂ ∨g(Λ) (27.7)(c)

as in (22.8). As in Proposition 22.9, we can use an invariant bilinear form to identify
(∨g(Λ)/p(Λ))∗ with n(Λ), and so regard E as an element of T ∗eP (Λ)(P(Λ)0) or of

N ∗P(Λ)0 (cf. (21.5)).



215

Lemma 27.8. In the setting (27.7), the element E is P(Λ)0-regular (Definition
20.9); that is, it belongs to the Richardson class ZP(Λ)0 in ∨g(Λ) associated to Y
(Proposition 20.4). The moment mapping µ has degree 1; equivalently, the only
conjugate of p(Λ) to which E belongs is p(Λ) itself.

Proof. This is very well-known, but we sketch an argument. We begin with a
direct construction of the parabolic subalgebra p(Λ) of ∨g(Λ) from E. Now p(Λ)
is the sum of the non-negative eigenspaces of λ on ∨g(Λ). Suppose (π,W ) is any

finite-dimensional representation of SL(2), with E = dπ

(
0 1
0 0

)
. Then the sum

of the non-negative weight spaces of W is

WE +WE2

∩ E ·W +WE3

∩ E2 ·W + · · · (27.9)(a)

(It suffices to check this in an irreducible representation W , where it is immediate.)
Consequently

p(Λ) = ∨g(Λ)AdE + ∨g(Λ)(AdE)2 ∩ (AdE)∨g(Λ) + · · · (27.9)(b)

The first consequence of this description is that the centralizer of E in ∨G(Λ) must
normalize p(Λ), and consequently must belong to P (Λ):

∨G(Λ)E ⊂ P (Λ). (27.9)(c)

In the setting of (27.9)(a), the operator E must carry the sum of the non-negative
weight spaces onto the sum of the positive weight spaces. In our case the sum of
the positive weight spaces is just the nil radical n(Λ) of p(Λ), so

ad(E)p(Λ) = n(Λ). (27.9)(d)

This says that the P (Λ) orbit of E is open in n(Λ), which certainly implies that E is
in the Richardson class for P (Λ). Proposition 20.4 now says that the containment
(27.9)(c) is equivalent to the assertion about the degree of µ. Q.E.D.

We can now reorganize the classification of unipotent parameters in Corollary
27.3 to be consistent with Proposition 6.24 and Theorem 21.2. Expressed in terms
of the corresponding Langlands parameters φψ = φ(y, λ) (cf. (5.8) and (22.8)) the
difference is this. In Corollary 27.3, we fix ψ1 (and therefore λ1 = λ and y1)
and look for possible elements y0 = yy−1

1 to go with it. In Theorem 21.2, we fix
representatives for the possible y, and then look for λ.

Now the equivalence classes of unipotent Arthur parameters ψ of infinitesimal
character O are in one-to-one correspondence with the equivalence classes of as-
sociated Langlands parameters φψ (Definition 22.4). These in turn correspond
to certain ∨G orbits on X(O, ∨GΓ) (Proposition 1.10) and therefore to certain Kj

orbits on P(Λ)0 (Proposition 6.24). It is these latter orbits that we wish to identify.

Theorem 27.10. Suppose we are in the setting (21.1), and that the orbit O
arises from a homomorphism of SL(2,C) as in (27.7). The following sets are in
one-to-one correspondence.

1) Equivalence classes of unipotent Arthur parameters supported on Xj(O, ∨GΓ).
2) Kj-conjugacy classes of parabolic subgroups P ′ ∈ P(Λ)0 with the following two

properties:
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a) θjP
′ = P ′; and

b) n′ ∩ sj ∩ ZP(Λ)0 6= ∅. Here n′ is the nil radical of the Lie algebra of P ′.
3) Kj orbits on sj ∩ ZP(Λ)0 .

The Arthur (respectively canonical) component group for a parameter may be
identified with the component group for the stabilizer of a point in the corresponding

orbit of Kj (respectively Kalg
j ) on sj ∩ ZP(Λ)0 .

Notice that the Kj-conjugacy classes in (2) are precisely the “regular orbits” of Kj

on P(Λ)0 in the sense of Definition 20.17; the bijection between (2) and (3) is a
consequence of Theorem 20.18, although we will prove it again here.

Proof. Suppose S is an orbit onXj(O, ∨GΓ) corresponding to a unipotent Arthur
parameter. According to Proposition 6.24, we may choose a point (yj ,Λ

′) in S,
with yj one of the representatives chosen in (21.1)(g) (uniquely determined) and
P ′ = P (Λ′) ∈ P(Λ)0 (determined up to conjugation by Kj). We want to show that
P ′ satisfies the conditions in (2). By the assumption on S, we can find a unipotent
Arthur parameter ψ′ for which the corresponding elements y′, λ′, and E′ = Eψ′

(cf. (22.8)(c)) satisfy
y′ = yj , λ′ ∈ Λ′. (27.11)(a)

Since E′ is in the +1 eigenspace of adλ′, it follows that E′ ∈ n(λ′). Since
Ad(y′)E′ = −E′, E′ must also be in the −1 eigenspace sj of θj . By Lemma
27.8, E′ ∈ ZP(Λ)0 . This gives (2)(b). Since y′ and λ′ commute, θj fixes P (λ′) = P ′.
This is (2)(a).

Next, suppose we are given a parabolic P ′ as in (2); we associate to it the unique
Kj orbit on sj ∩ ZP(Λ)0 that is dense in sj ∩ ZP(Λ)0.

Finally, suppose we are given an orbit of Kj on sj ∩ ZP(Λ)0 . Fix a point E′ of
this orbit, and construct a homomorphism ψ′1 from SL(2) to ∨G(λ) satisfying

dψ′1

(
0 1
0 0

)
= E′, ψ′1(θSL(2)x) = θjψ

′
1(x). (27.11)(b)

(Here θSL(2) is the involutive automorphism conjugation by

(
i 0
0 −i

)
.) That this

is possible is proved in [KR]. From [KR] one can also deduce that ψ′1 is unique up
to conjugation by Kj (more precisely, by the unipotent radical of the stabilizer of
E′ in Kj). Since E′ is conjugate by ∨G(λ) to our original E, it follows that the
element λ′ attached to ψ′1 must be conjugate to λ. Because e(λ) is central in ∨G(λ),
it follows that

ψ′1(−I) = e(λ). (27.11)(c)

Define

y0 = yjψ
′
1

(
−i 0
0 i

)
. (27.11)(d)

Because of (27.11)(b), y0 commutes with the image of ψ′1. Because of (27.11)(c),
y2
0 = 1. By Corollary 27.3, the pair (y0, ψ

′
1) gives rise to a unipotent Arthur

parameter; by construction it depends (up to conjugacy by Kj) only on the Kj

orbit from which we began.
We leave to the reader the easy verification that performing any three of these

correspondences in succession recovers the equivalence class from which one started.
Q.E.D.



217

Theorem 27.12. Suppose we are in the setting (21.1), and that the orbit O
arises from a homomorphism of SL(2,C) as in (27.7). Fix an equivalence class of
unipotent Arthur parameters supported on Xj(O, ∨GΓ), say corresponding to a ∨G
orbit S on Xj(O, ∨GΓ). Write SK for the corresponding orbit of Kj on Y , and
ZS for the corresponding orbit of Kj on sj ∩ ZP(Λ)0 (Theorem 27.10). Then the
bijections of Theorem 21.2 identify the following sets:

1) irreducible (∨g(Λ),Kalg
j )-modules M annihilated by IP(Λ)0 , with the property that

ZS ⊂ Ch(M) (notation (20.5));

2) irreducible Kalg
j -equivariant DP(Λ)0-modules M, with the property that T ∗SK (P(Λ)0) ⊂

Ch(M) (Definition 19.9); and

3) irreducible ∨G
alg

-equivariant D-modules N on Xj(O, ∨GΓ), with the property
that T ∗S(Xj) ⊂ Ch(N ).

Suppose in addition we are in the setting of Theorem 10.4. Then each of these
sets is in bijection with

4) Πz(G/R)ψ; that is, equivalence classes of irreducible canonical projective repre-
sentations of type z of strong real forms of G, belonging to the Arthur packet for
ψ.

In cases (1)–(3), the bijections identify the corresponding multiplicities in char-
acteristic cycles. Their common value (a positive integer) is equal to the weight
χψ(π) of Theorem 22.7 for the representation in (4).

Proof. The equivalence between (1) and (2) is given by Theorem 20.18; between
(2) and (3) by Proposition 21.4; and between (3) and (4) by Definition 22.6 (see
Definitions 19.13 and 19.15). Q.E.D.

One can extend Theorem 27.12 from multiplicities to the component group rep-
resentations discussed in Definition 24.15. For the relation between (3) and (4)
this is a matter of definition again, and for (2) and (3) it is straightforward. For
the relation between (1) and (2) there is a problem, however. In the setting of (1)
we have referred to [Assoc] for a definition of the component group representation.
That definition is most easily related to the microdifferential operator definition in
the setting of (2), which we elected in section 24 not to discuss. For this reason we
will not formulate (or use) such an extension.

The bijection between (1) and (4) in Theorem 27.12 can be formulated using
just the results of [IC4]. In this form it was proposed several years ago by Barbasch
and Vogan (in various lectures) as the definition of the Arthur packet attached to a
unipotent parameter. They also observed the following corollary, which appeared
in [BVunip], Definition 1.17 as the definition of special unipotent representations
in the complex case.

Corollary 27.13. Suppose that the infinitesimal character O (cf. Lemma 15.4)
arises from a homomorphism of SL(2,C) into the dual group as in (27.7). Write
Jmax(O) for the maximal primitive ideal in U(g) of infinitesimal character O. Sup-
pose π is an irreducible canonical projective representation of type z of a strong real
form of G, having infinitesimal character O. Then π is a special unipotent repre-
sentation — that is, π belongs to an Arthur packet Πz(G/R)ψ for some unipotent
parameter ψ — if and only if π is annihilated by Jmax(O).

Proof. This follows from Theorem 27.12, Theorem 21.6, and Theorem 21.8.
Q.E.D.
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To say that a representation has a large annihilator amounts to saying that the
representation is small (see [GKDim]). The condition in Corollary 27.13 is therefore
equivalent to requiring the Gelfand-Kirillov dimension of π to be minimal, or to
requiring the associated variety of the Harish-Chandra module of π to be contained
in the closure of a certain complex nilpotent orbit in g∗ (namely the associated
variety of Jmax(O)). The techniques of [BVPC] make it possible to compute exactly
how many such representations exist; that is, to find the order of the union of the
various unipotent Arthur packets for a single real form and infinitesimal character.
Different Arthur packets may overlap, however, and we do not know in general how
to calculate the cardinality of an individual one.

Example 27.14. Suppose G = Sp(4) (by which we mean a group of rank 2),
endowed with the inner class of real forms including Sp(4,R). The L-group is

∨GΓ = SO(5,C) × Γ. (27.14)(a)

Henceforth we will drop the C; since we consider only complex orthogonal groups,
no confusion should arise. The group SL(2) is a double cover of SO(3); composing
the covering map with the inclusion of SO(3) in SO(5) gives a homomorphism

ψ1 : SL(2) → SO(5) ≃ ∨G. (27.14)(b)

The centralizer in SO(5) of the image of ψ1 is evidently

S0 =

{(
ǫI3 0
0 A

)
| A ∈ O(2), detA = ǫ

}
≃ O(2). (27.14)(c)

Here I3 is the 3 by 3 identity matrix, and ǫ = ±1. Just as in Example 27.5, we
find that the equivalence classes of unipotent Arthur parameters ψ associated to
ψ1 correspond to conjugacy classes of elements of order 2 in S0. There are exactly
three such classes, represented by the elements

s++ =

(
1 0
0 1

)
, s+− =

(
1 0
0 −1

)
, s−− =

(
−1 0
0 −1

)
(27.14)(d)

in O(2) ≃ S0. Write ψ++, etc., for the corresponding Arthur parameters. The
corresponding centralizers are just the centralizers inO(2) of these elements, namely

Sψ++ = O(2), Sψ+−
= O(1) ×O(1), Sψ−−

= O(2). (27.14)(e)

The component groups are therefore

Aψ++ = Z/2Z, Aψ+−
= Z/2Z × Z/2Z, Aψ−−

= Z/2Z. (27.14)(f)

We also want to calculate the various Aalgψ . The algebraic universal cover ∨G
alg

is the double cover Spin(5), which is also isomorphic to Sp(4). Perhaps the easiest

way to calculate Salg0 is to identify the lift ψalg1 : SL(2) → Sp(4). This turns out to
be the diagonal map of Sp(2) (which is isomorphic to SL(2)) into Sp(2) × Sp(2),
followed by the obvious embedding of Sp(2)×Sp(2) into Sp(4). From this one can

deduce that Salg0 ≃ O(2); the covering map

O(2) ≃ Salg0 → S0 ≃ O(2) (27.15)(a)
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is the double cover of SO(2) on the identity component. It follows that

Salgψ++
= O(2), Salgψ+−

= quaternion group of order 8, Salgψ−−
= O(2)

(27.15)(b)

Aalgψ++
= Aψ++ , Aalgψ+−

= quaternion group of order 8, Aalgψ−−
= Aψ−−

.

(27.15)(c)
We do not know any entirely elementary way to calculate the Arthur packets,

but (using Theorem 27.12) this is not too difficult once one knows something about
Harish-Chandra modules for SO(5). We will simply record some of the results.
It turns out that there are exactly four equivalence classes of strong real forms
of G, having representatives that we denote δs, δ(1,1), δ(2,0), and δ(0,2). The last
two of these represent the compact real form, which can have no representations
of the (singular) infinitesimal character associated to ψ1. The other two represent
the inequivalent real forms Sp(4,R) and Sp(1, 1). It turns out that δ2(1,1) = −I,

so representations of Sp(1, 1) correspond to ∨G
alg

-equivariant perverse sheaves on
which π1(

∨G)alg acts non-trivially (Lemma 10.9(b)). It follows from (27.15)(c) that
the Arthur packets for ψ++ and ψ−− can contain no representations of Sp(1, 1).

Furthermore, the representation τψ+−
(π) of Aalgψ+−

attached to any irreducible rep-

resentation π ∈ Π(G/R)ψ+−
(Definition 24.15) must satisfy

τψ+−
(π)(−I) =

{
1, if π is a representation of Sp(4,R);

−1, if π is a representation of Sp(1, 1).
(27.16)

We mentioned after Corollary 27.13 that one can count unipotent represen-
tations using the ideas of [BVPC]. In this way (or any of several others) one
finds that Sp(4,R) has exactly eight unipotent representations attached to ψ1.

They are the three irreducible constituents of Ind
Sp(4,R)
GL(2,R)(| det |); the three irre-

ducible constituents of Ind
Sp(4,R)
GL(2,R)(det); and the two irreducible constituents of

Ind
Sp(4,R)
GL(1,R)×Sp(2,R)(sgn(det) ⊗ 1). These representations may be distinguished by

their lowest K-types; the maximal compact subgroup is U(2), so its representa-
tions are parametrized by decreasing pairs of integers. The lowest K-types of the
three sets of representations described above are (0, 0), (2, 2), and (−2,−2); (1, 1),
(−1,−1), and (1,−1); and (1, 0) and (0,−1). We denote the representation of
lowest K-type (m,n) by πs(m,n).

An even simpler calculation shows that Sp(1, 1) has a unique irreducible unipo-
tent representation attached to ψ1, namely the unique spherical representation of
the correct infinitesimal character. (It lies one-third of the way along the comple-
mentary series.) We denote this representation π(1,1)(0).

Here are the Arthur packets.

Π(G/R)ψ++ = {πs(0, 0), πs(1,−1)} (27.17)(a)

Π(G/R)ψ−−
= {πs(1, 0), πs(0,−1)} (27.17)(b)

Π(G/R)ψ+−
= {πs(1, 1), πs(−1,−1), πs(2, 2), πs(−2,−2), π(1,1)(0)} (27.17)(c)

In each case the map π 7→ τψ(π) is a bijection from the packet onto the set of

equivalence classes of irreducible representations of Aalgψ ; we have listed the repre-

sentations so that the one with τψ(π) trivial is first. In particular, τψ+−
(π(1,1)(0)) is

the irreducible two-dimensional representation of the quaternion group (cf. (27.16)).
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We conclude with a careful study of the case of one-dimensional representations.
One of the points of this is to understand the failure of injectivity of the map π 7→
τψ(π). (Failure of surjectivity appears already in the complex case; it corresponds to
the fact that we had to use Lusztig’s quotient of the component group in [BVunip],
rather than just a component group.) All of the examples that we know of this
failure seem to arise finally from this very special case. (Part (e) of the following
theorem is taken from [Langlands], Lemma 2.11.)

Theorem 27.18. Suppose (GΓ,W) is an extended group, and (∨GΓ,D) is an
L-group for GΓ. Fix a principal three-dimensional subgroup

ψ1 : SL(2) → ∨G.

a) The centralizer S0 of ψ1 in ∨G is Z(∨G).
b) The set of equivalence classes of unipotent Arthur parameters attached to ψ1 may

be identified with

{ z ∈ Z(∨G) | zθZ(z) = 1 }/{wθ−1
Z (w) | w ∈ Z(∨G) } = H1(Γ, Z(∨G)).

c) If ψ is any unipotent Arthur parameter attached to ψ1, then

Aalgψ = Z(∨G)θZ ,alg/(Z(∨G)θZ ,alg)0.

This is precisely the universal component group Aalguniv(
∨GΓ) of Definition 26.10.

d) The unipotent representations (of some real form G(R, δ)) attached to ψ1 are
precisely the representations trivial on the identity component G(R, δ)0.

e) Suppose δ is any strong real form of GΓ. Then there is a natural surjection

H1(Γ, Z(∨G)) “ Hom(G(R, δ)/G(R, δ)0,C
×).

If G(R, δ) is quasisplit, this is an isomorphism.

Suppose ψ is a unipotent Arthur parameter attached to ψ1, and δ is a strong real
form of GΓ. Write π(ψ, δ) for the character of G(R, δ)/G(R, δ)0 attached to ψ by
composing the bijection of (b) with the surjection of (e).

f) Suppose π is an irreducible unipotent representation (attached to ψ1) of a strong
real form G(R, δ). Then the integer χψ(π) of Theorem 22.7 is given by

χψ(π) =

{
1 if π ≃ π(ψ, δ)

0 otherwise.

The character τψ(π) of Aalgψ ≃ Aalguniv(
∨GΓ) (see (c) above) is

τψ(π, δ) = χψ(π)τuniv(δ).

If we fix the unipotent parameter ψ attached to ψ1, we therefore find exactly one
unipotent representation for each strong real form. The correspondence π 7→ τψ(π)
therefore fails to be injective as soon as the number of strong real forms exceeds the

cardinality of Aalgψ = Z(∨G)θZ ,alg/(Z(∨G)θZ ,alg)0. The simplest example of this is

perhaps for PGL(n) endowed with the class of inner forms including the projective
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unitary groups PU(p, q). There are [(n + 2)/2] real forms. The dual group is

SL(n), with θZ acting on the center by inversion. Consequently Aalgψ consists of
the elements of order 2 in the cyclic group of order n; injectivity fails for n ≥ 3.
For simple groups not of type A the situation is even clearer: typically the number

of real forms is on the order of the rank, but Aalgψ has order at most four.

Proof of Theorem 27.18. Define E, F , and λ for ψ1 as in (22.8). Because ψ1 is
principal, λ is a regular element with integral eigenvalues. It follows that P (λ) is a
Borel subgroup of ∨G; write it as dB, and write dT for the unique maximal torus
containing λ in its Lie algebra. Then the centralizer of λ in ∨G is dT , so S0 ⊂ dT .
The element E is the sum of certain root vectors {Xα} for the simple roots, so the
centralizer of E in dT is the intersection of the kernels of the simple roots, which
is Z(∨G). This proves (a). For (b), write S for the centralizer of ψ1 in ∨GΓ. By
Definition 4.6, we can find an element ∨δ ∈ D so that

∨δ ∈ Aut(∨G, dB, dT , {Xα}) (27.19)(a)

(see Proposition 2.11). In particular, ∨δ centralizes E. Now λ belongs to [∨g, ∨g],
and α(λ) = 1 for each simple root α. These properties characterize λ, and they are
preserved by ∨δ. Consequently ∨δ also centralizes λ. Finally, it follows from the
representation theory of SL(2) that F is characterized by the property [E,F ] = 2λ,
so ∨δ also centralizes F . Therefore

∨δ ∈ S, S = Z(∨G) ∪ Z(∨G)∨δ (27.19)(b)

Since ∨GΓ is an L-group, ∨δ
2

= 1. Part (b) therefore follows from Corollary 27.3
and (27.19)(b). Part (c) follows from (b) and Corollary 27.3.

For (d), we have already observed that λ belongs to the derived algebra and
takes the value 1 on each simple root. The corresponding infinitesimal character is
therefore ρ, half the sum of a set of positive roots for G. This is the infinitesimal
character of the trivial representation, so the corresponding maximal ideal in U(g)
is the augmentation ideal, the annihilator of the trivial representation. Now (d)
follows from Corollary 27.13.

For (e), we begin with the isomorphism

Z(∨G) ≃ Hom(π1(G),C×) (27.20)(a)

of Lemma 10.2(a). Along the lines of Lemma 10.2(d), we deduce that

H1(Γ, Z(∨G)) ≃ Hom(H1(Γ, π1(G)),C×) (27.20)(b)

To prove (e), it is therefore enough to exhibit an injection

G(R, δ)/G(R, δ)0 →֒ H1(Γ, π1(G)). (27.20)(c)

For this, we begin with the short exact sequence of groups with Γ actions

1 → π1(G) → Gsc → G→ 1. (27.20)(d)

(Here we make complex conjugation act by δ on G, and pull this automorphism
back to Gsc.) The corresponding exact sequence in cohomology includes

H0(Γ, Gsc) → H0(Γ, G) → H1(Γ, π1(G)). (27.20)(e)
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Now H0 is just the Γ-invariant subgroup; that is (for G and Gsc) the group of real
points. Hence

Gsc(R, δ) → G(R, δ) → H1(Γ, π1(G)). (27.20)(f)

Since Gsc is simply connected, its group of real points is connected. The image of
the first map is therefore G(R, δ)0. The second map provides (by the exactness of
(27.20)(f)) the inclusion in (27.20)(c).

To see that the map of (e) is surjective when G(R, δ) is quasisplit, it suffices
to find |H1(Γ, Z(∨G))| linearly independent functions on G(R, δ)/G(R, δ)0. The
functions we use are the stable characters Θ(ηψ(δ)) (notation as in Theorem 22.7
and (18.1)), with ψ a unipotent Arthur parameter attached to ψ1. The strongly
stable characters ηψ are part of the basis { ηmicφ } of strongly stable virtual characters

(Corollary 19.16), and are therefore linearly independent. By Shelstad’s theorem
18.7, the stable characters Θ(ηψ(δ)) are also linearly independent. By (d), these
characters may be regarded as functions on G(R, δ)/G(R, δ)0. By (b), there are
|H1(Γ, Z(∨G))| such functions, as we wished to show.

For (f), suppose first that G(R, δ) is quasisplit. The L-packets attached by the
Langlands classification to the parameters φψ (with ψ unipotent attached to ψ1) are
disjoint, and each is a non-empty set of representations of the component group of
G(R, δ). It follows from (e) that the L-packet Πφψ contains exactly one representa-
tion, and that these exhaust the representations of the component group. We leave
to the reader the verification from the definitions that this single representation
is actually π(ψ, δ). Because the integer d(π) (the dimension of the corresponding
orbit on the geometric parameter space) is the same for all finite-dimensional ir-
reducible representations of a fixed group, it follows from Corollary 19.16 that the
only representation of G(R, δ) in the Arthur packet Πψ is π(ψ, δ). Now the two
assertions of (f) are immediate.

Finally we consider the general case of (f). Because of the naturality of the
surjection in (e), one can check easily that the virtual representation

η′ψ =
∑

δ

π(ψ, δ)

is strongly stable. By the preceding paragraph, it agrees with the Arthur character
ηψ on each quasisplit real form. By Theorem 18.7, η′ψ = ηψ . This is the first claim

of (f). The second follows immediately. Q.E.D.
We leave to the reader the formulation of an analogous result in the case of a

general E-group. What happens there is that some real forms (possibly all) will
have no projective representations of type z trivial on the identity component. The
set of equivalence classes of unipotent Arthur parameters attached to ψ1 may be
empty; if not, then it is a principal homogeneous space for H1(Γ, Z(∨G)).

REFERENCES

[AV2] J. Adams and D. Vogan, “L-groups, projective representations, and the Lang-
lands classification,” to appear.

[Arthur1] J. Arthur, “On some problems suggested by the trace formula,” in Proceedings
of the Special Year in Harmonic Analysis University of Maryland, R. Herb, R.
Lipsman, and J. Rosenberg, eds. Lecture Notes in Mathematics 1024, Springer-
Verlag, Berlin-Heidelberg-New York, 1983.



223

[Arthur2] J. Arthur, “Unipotent automorphic representations: conjectures,” 13–71 in Or-
bites Unipotentes et Représentations II. Groupes p-adiques et Réels, Astérisque
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