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IF {w, ,: ¥, } is any other choice, then since each ¥, (w) is one & the X {w), j= 1.
# » ¥, and consequently £(Y,) = £(¥,). In particular, E(¥,) = 1,.
Now E(¥) is casily computed (see {*) below) and is m?ra 3

E(L) =1~ [ () i
so that
F{w" dw

ylu_r.w.ﬁ_m

This can also be seen analytically by noting that if G, denotes the jih iterate of . &

{d el “
L, = 8 N@ﬂg w) dw = '\M. It AG {(w)) dw Wh [ G w )] "

since G(w) > w. This in turn gives a sharpening of Coroltary 1(b}, namely,

21~ q, = wo provided \
1

:_ W

We conclude by asking how the best a priori chaices of the w,, nmmely w, = y
corresponding expecied values, 7, compare with the best strategy using hindsight, -
g2
For fixed n, let X}, X7...., X* be the order statistics associated with the X7s. Tl
o
X, =min{ X,,..., X,), and X/ = the jth smallest X

(see 3, Chapter 9, for a wreatment of order statistics). The expectation of X} is o+
formula, A

. -1 o . u
(=) E( X} = :AH L.\... Foaa L - u)"
Consider the family of distsibutions £, (w) given by
E{w) =
The asympiotic nature of », for the corresponding G {w) is known:
T
—

H

{1 =), p=a.

A neat proof of this is given in {4, p. 223). Pulling F, inte (*), rouline calculations g

Ai »v MA ‘y\\.,w i :A: wv\;: : — _"Cuxmv:» L: ...... :v._ >:€

k=114,
W,A: - ko L + L
4

Mo+ 1)
ﬁﬁ: + 1 N L Ple—k+1)
P
Thinking of n — & as fixed, say » — & + 1 = §, and using the fact that
Pln+zy~nw'T{n} [2,p 212].

we took for & so that 1 — E(X*) ~ 1 ~ 9, or, using (+) and (* =}, we iy 1o solve

_JT + S
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we a fow solutions {the last three being approximate):

p =1 (usniform), k=n-—1,

p=1/2 ko= pn-— 150,
p=1/3 o= a8,
p=2 ko= o - LT3

« uniform distribution, using the best a priori choices, we do surprisingly well: namely as
expectation of the second largest X; for p = 1/3 we do almost as well as the third
and so on. The moral seems to be that the utility of hindsight becemes more

od 2s the probability of getting a large number increases.
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NOTHER NOTE ON THE ENCLUSION L7 () < L¥(g)

ALFONSO VILLAN]
seds i Casaniv, Viale A, Doria o, ¥31 25 Catwniv, biady
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wghout this note (&, &, 1) will be a positive measure space and, for each p & E o,
wili denote the space of all w-measurable real [unctions [ on € such that 7§, < oo,

‘ N
Wl = | [ du)  orp € 00) and 1 = bl

szt we identify wo functions which differ only on 2 set of meususe zero. When endowed
- metric d, of convergence in pth mean, Le.,

LS gy =1F— gl forp & [t,00] and d,(f.8) =1~ glif for p & {0,1),

becomes a complete metric space. We obtain a new chacacterization of the spaces
«) for which the inclusion £7¢p) € £.9¢p) holds. This result simplifies both the conditions
- proofs atready given in [1} and {4].

hegin with a well-known lemma,

wia 1. Let p, g € {1, 00]. The set theoretic inclusion 1.7} < L7 (p) inglies that the nclission

Ly = LI p) is continuous.

i f = f in LF(u), then {f,} has & subscquence which converges pointwise aluosl
here 1o f; see {3}, Theorem 3.12. The desired result now follows easily from the Clused
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Graph Theorem; see (2], Theorem 2.15. m

REMARK. Lemma 1 also holds for pog €40, 0], with the same proof, even thot
not a normed space for 6 < p < 1.

Let s, denote the collection of all sets 4 € & with positive measure. Then we

THEOREM 1. The foilowing conditions on the measure space (8,9, iy are equivalen:
(1) LP(pyc Lé(u)  for some p.g € (0, o0] withp < g,

(2} infy g, p(£) >0,

() Lpy < Lépu)y forallp, g € (0, o] with p < g

Proof. (1) = (2). Siace LP(p) © L¥p) implies LAy < LY p)y for every ¢ € (0,
assume p 2> 1. Then L#(p)and L9(u} are normed spaces, aznd by Lemma 1 there exist
constani £ such that Hitl, < KkIFY, forevery f & LP¢u). In particular we have

(nCE) <k (n(E))'",
and hence p( E) » kP97 70 for every £ & o with () < w{EY < oo, This proves (2,

@)= (3. Let f&€ L?(p) and let £, = {I/1=n} n== 1,2, ... By Chebyshevs
w0} - G as n — oo, hence, by condition (2), there is an index n, such that g/
2z Hg e, fl € ny poae Thus £7() © L¥(p). and this casity implies that L7{p) ¢
every g € [ p, ool.

(33 = (1% This is trivial. &

Let w, denote the eollection of all sets 4 € &' with finite measure. Then we have
THEOREM 2, The following conditions on the meusure spoce (82, 9, ) are equivalen
) L2(p) 3 L%p)  for some p, g € (0,00} with p < g,

(2) supy g o HUE) < oo,

() LAy > L) foralip, g € (0,00} with JRS

Proof. (1) = (23 As in Theorem 1, we can assume p 2 1.so by Lemma | othere i
constant & such that i}, < ENfH, for every f € L9(u), Tt follows that

#(E} < k9™ m forevery F & o

o
and hesee condition (2) holds.

(2y= (31 Let f & L4p) and Jet

E, = {1/(n+ Bslft<1/un}, T B
Then

plLE) < (o :.ﬁ\w‘m_b.‘n_.: < o forevery w= 1,2, .,

and hence, by condition (2), T%, w{ E, ) < oo, because the Es are pairwise disjoin
P < ¢ we have

Jyiean = \n

{3) == (1). This is trivial. m

B3

Mdu s X f s 1 an e Y Ll E,) < o

N N )
s g H woy M
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SPACES WHERE ALL CONTINUITY 18 UNIFORM

M. Arara Craaves
Depariaienin de Matemiiica, Feaddade de Cicnvias, 3000 Poria Po

lementary tepology courses normally include a prool that all contnuous functions from a
Wl metric space 10 a metric space are uniformiy continnous. We abbreviated this by su
or compact metric spaces all continuity is uniform. The aim of this note is 1o give several
alent conditions, which are necessary and sufficient for all conunuity to be untform. It is
10 check that compactness is not such a condition, because necessity fais.

e conditions are stated formally in the following theorem.

{HEOREM. For a metric spuce (X, d Y, the following conditiony are equivalent:

Fvery continuous function from X to any metric space is uniformdy continuous;

ctrery apen covering of X has o Lebesgue number;

for every sequence (x,,) into X which hus no convergent subsequetice, the only sequences (1)}
wich that im d(x,,, x) = O are those which are almost equad 1o {x)), in the sense thai x,) =
AU bur a finite ser of indices;
« Aor gny infinite subset A of X without accunadation poinry (in X)), the infinem of the distaices
n {different}y poims of A s greater than G.
‘he [ollowing observations will help 10 explain how the theorem comes about and how the
I'is constructed. Conditions 2 znd 3 of the theorem were motivated by a careful snalysis of
ndasd prools of uniform continuity on compact metrie spaces. In fact, one of these prools
1.4, p. 234] merely uses the property of compact metric spaces that every open covering has o
ue number, 1.e., a number § > O such that each 3-ball is contained in a set of the covering.
* property, which is precisely our Condition 2, is strictly weaker than compactness, as can be
» seen by considering an infinite set with the discrete metric. 1t turns out, in fact, that uniform
uuity of all continuous functions is equivalent to the assertion that every open covering has a
wue number. The other proof of the uniform continuity on compact metric spaces fi; 3.16.3,
{ uses the characieristic property of compaet {metric} spaces that every sequence hias a
crgent subsequence. 1l is casy 1o see that the proof still works if we assume the weaker
lition 3. The interesting point is that osce more we have a conditicn—the third one of our
wm—which is not only sufficient, but alse necessary for all continuity to be wmform.
-htion 4 1$ a stightly different and perhaps more suggestive version of Conditon 3.

waf. We shall prove our theorem by showing that 1 =» 4 = 3 == 2 = [,

- prove that 1 imphes 4, we will begin by assuming the existence of an infinite subset A of X

o accumulation point in X and such that the infimum of the distances between different
+of 4 Is zero, The existence of such a set will enabie us 10 define a continuous funcion from
#. which is not uniforsly continucus. The general Hnes for the delinition of such a funviion
o follows:

S lirst construct o locally finite sequence of balls (B(x, , R ) such that: (1) v, € A for ol
awoh badt BOx,, R, ) bas at least one point x), of 4 distinct from x,, 1 (153} the seguence (R of

converges to 0. For each #, we then deline a real function f, with support contmned in

R,y and such that £ (x,) =1 and f, (x;) = 0. These choices can be made in such a way
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that each function vanishes on all points xj,. The sum of these f, is the continuous Tunction -
wanted to define: the fact that (of{x,, x)) vonverges 10 zero, and that f(x,) = L and f{x))
ensures that f is not uniformly continuo

Lot us now look inte the technical details. Lel r, = 11 assuming r, > § 1o be definc
R, = min{r., L Ai + 1)). By hypothesis, there cxistin A two distinct points x;, and x[. .
that d(x, .. %/, 1< R, ;1 we choose a positive ¢, < d{x;, ¥/, ) such that the r
nn:?.:um at x,,, and x/,, intersect 4 precisely in :F: centers. Such an r, |, exists, bocause
and /., are not accumulation points of 4. Let us now see why the choices made fmph
x,oxfoxxf are all different for % j In fact x, ) (and x,. ) were chosen distina
symmetry it is then sufficient to show that, il i < j, the poings x;, v, are different. Now, if «
we have R, < r, and so the ball B(x . r) will have at least two points of 4, v, and x:
B{(x,,#) has just one point of A, we have x, # x,. Lel us prove that the sequence { B(x, . f
locally finite. We first remark that, for each & € X, there exists an R > 0. such that B{a, Ry
does not intersect 4. H g = x, [or some ny., then the balls B{x,. R,) and B(a, R/ arc dis
for n > max{n,.2/R}. If no lerm of the sequence cquals o, then the same assertion iy trug
take s, = }. This concludes the proof that (B{x,. R, )} is locally linite. By defining, for »
and x € X,

F0x) = mad0.1 ~ d(x, . x)/r )

we have a continuous real function f, on X whose support Ef r) ts included i B{x, .7
As the scquence of these supports is tocally finite, it makes semse (o define [~ Ef, and

function f is continueus. To finish the proof that 1 implics 4, we prove that f is not unil
continuous. As d{x,, x,) < B, < 1/u, it is suflicient to check that, for each n, d(f{x,) f

> 1, From f{x,) =1 it results triviaily that fix, )2 1 (and it is casy Lo see that in

J(x,y = 1, although this is not essential 1o the proof). Let us now fw:sﬁ that f{x)y = 0. For.
i N, the only poini of 4 in the ball B(x,, r,). Therefore 1] does not belong o By

since it 15 a point of A distinet from x, as we have seen. But, as > is zevo outside By,
vonclude that f{x)) = 0,50 f{x) =0

To prove that {4) implies (3), let (x,) and (x)) be sequences such that () (x,)
convergent subsequence; (i) {d(x,. x, 1} = U. We want to show that the two sequences are
equal, We first remark that {x)) w&. no convergent subsequence either. Let 4 be the union
ranges of the two sequences. A is an infinite subset of X with no accumulation poiats (s
Condition {4) appiied to this subset 4 ensures the existence of an ¢ > 0, such thal the dist
between different points of 4 is m_.n.s:ua or equal 1o ¢ For this ¢, there exists a & € N, such
d{x, . x)) <& i o>k But dix,, x)) < e implics x, = x5 50 the two sequences e
equal.

Assuming now that X satisfies Condition (3) It us prove that every open covering of X
f.ebesgue number (Condition (1)) Suppose the contrary: let (4), ., be an open coveriag «
with no Lebesgue number. Then, for each n & N 1/n is not a Lebesgue number of this cove
therefore there exists a ball of radius 1 /7 — B(x,,1/n)—nol included in any of the open sl
Let i, be such that x, & U ; the relation Bix,.1/m & U, implies the existence in B(x,
of an element x disiinet from x,. The sequences {x,) and {x)) are not almost cqual
(e x,. x! 1y converges to zero. Fo rc:w_:mn the proofl that (3) implies (2) it is suflicient to o
that {x, V has no convergent subsequence. If ¢ were the limit of a subsequence {x, ). we o
choose an open set U such that ¢ & U and a § > 0 such that Ba. &)< Uy there would 1
P €N such that a, V 2/6 and x, € B{a,8/7) Thercfore we would ?:} B(x, 1/u
Bla, 8)c U, contradicting the way the v, were chosen. i

For the sake of completeness, we reproduce here the ussal prool that the
implies the first one. Given a continuous lunction i X - ¥ and an ¢ = 0, let &> 0
Lebesgue number of the open covering (/7 ' B{y,2/23) .y of X. Each &-ball in X is include
an open set of this covering, so that the distance between ihe images of two points of that b
less than e s0 d{x, ¥y < & will imply J(f{x)L f(N <=

L
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UNIQUE RIGHT INVERSES ARE TWO-S1DED

W
Bepartment of Mathenaics, University of Wisconsin, Madisen, W33

v theorem may be hard to discover, even though, once discovered. 115 casy 1o prove, The

1 of this note is to emphasize that completely nonsigorous (some may say nonsensical)

ng is perfectly acceptable in the discovery stage, and that it may lurnish clues that enable
o make a good guess. Proofs can come later,

i+t R be an associative ring, not necessarily commutative, with unit element £, Recall that an
Bt g of R is said 1o be inverrible if there exists & in R so that b = 1 and fe = 1. The

ness of the inverse & is obvious: in fact, if ab = 1 and cq = 1, the

= {cu) b= clab} = c.
cader the following two guestions:
If1 -~ xy is invertible, must 1 — yx be inveruble?
T the answer to {1} is yes, is there a simple universal relation between these two invenes.
aiwe that holds in every ring?

fetus Lry to tackle this by thinking ol say, the complex numbers in place of cur ring, where
relation oxists between inverses and geometric series, namely

et 4

st when [x] < 131U may be nonsense to talk of inlinite series whose terms are members of
perfectly arbitrary ring R, but never mind. Pretend that the inverse = of T~ xy i given by
cometric series
e kb () H(apr) i (xe?) +

=)y b apay b A

aceept this, then the inverse w of 1 — yx, il there is one. cught to be

FX b PARX FOrNpXyN t o

, gone this [ur, we might as well do a bit of factoring (i.e., assume that the distributive laws
10 our possibly nonexistent infinite series), write

w1+ p(l+ 0+ oy -+ -
shserve that the series in parentheses is the postulated expansion ol 1. We are thus lud w0
wo= 1+ yrx.

o far, we have proved nothing. But we have found & candidate for w. and cun test whether it
ihe job. Indeed,

supported by the Nutional Science Poundation and by the Witliom F. Vilas Trust Este
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(1 pe)w = (k= pe)(l + p2x)
1 = yx o pIx - axpax
R LE S EA B

which is 1, because the quantity in brackets is 1.

4

]

A closer look at this computation shows something else: we have ondy used the assumption ©

£ is a right inverse of 1 — xy and have deduced that w is then a right inversc of 1 — px. #
same is true with left in place of right, because

(L+yzx)(1—px}=1—px+ vhz(i - o]

“Thus we get the following result, which actually does more than just answer our two que

THEOREM 1. If z is a right {left] inverse of 1 — Xy, then 1+ yzx is a right {lefi} fnwer
1 - px.

As we just saw, the proof of this theorem is a total triviality. But if we had been unwillin
use infimite series in 4 context where they may make no sense, how difficult would it have buw
discover 1 4+ yzx?

When y = 1, our twa questions are of course pointless, but Theorem 1 wils us something .
then that we might not have noticed otherwise, namely:

I zis a right inverse of ¥ — x, sois 1 + zx.

Let us now assume that § — x has a unigue right invesse 2. Then it lollows that 1 + o
I'his implies z(1 — x) = 1, so that z is alse ¢ left inverse of 1 — x' In other words, oo
invertible. Since every clement of R cun be writien in the form 1 - x, we hove arrived
result 1o which the title of this note alludes.

THEoREM 2. The invertible elements of R are precisely those that e unique Fight ing

OF course, the same is true with lell in place of right.
The following well-known fact from lincar algebra is also an immediate consegue:
Theorem 1:

If 4 and B are n-by-n mairices over some field, then A B wind BA have the same eigenvalion

#5 Alter vompleting this note, | was told that the geanettic series vk of Gnding | vax ix deseribed
and [2]. However, no conclusions about one-sided inverses are drawn there. In the content of Bunaeh algebras ¢
sericy do make sensed 1+ p2x occurs in an exereise on p. 159 of (4] The referee has pointed out that Th
appears as Excreise 6 on p. 89 of (3
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