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Abstract

For the groups G = Sp(p, q), SO∗(2n), and U(m,n), we consider degenerate prin-
cipal series whose infinitesimal character coincides with a finite-dimensional represen-
tation of G. We prove that each irreducible constituent of maximal Gelfand-Kirillov
dimension is a derived functor module. We also show that at an appropriate “most
singular” parameter, each irreducible constituent is weakly unipotent and unitariz-
able. Conversely we show that any weakly unipotent representation associated to a
real form of the corresponding Richardson orbit is unique up to isomorphism and can
be embedded into a degenerate principal series at the most singular integral parameter
(apart from a handful of very even cases in type D). We also discuss edge-of-wedge-
type embeddings of derived functor modules into degenerate principal series.
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1 Introduction

In the representation theory of real reductive Lie groups, there are two fundamental con-
structions of representations: parabolic induction and cohomological induction. For the
purposes of this introduction, we call a representation parabolically induced (respectively,
cohomologically induced) from a one-dimensional representation a degenerate principal
series (respectively, derived functor module). Each construction has a natural geometric
interpretation and the geometry involved often suggests a relationship between the two
kinds of representations. The situation can become quite complicated (in the case of a
split group like Sp(2n,R), for instance) and it is difficult to extract simple, clean state-
ments. However for groups whose Cartan subgroups are always connected, the situation
turns out to be rather more simple. In this article, we study the relation between degener-
ate principal series and derived functor modules for such groups. Our first main theorem
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is as follows. (We call a weight G-integral if it appears as a weight of a finite-dimensional
representation of G.)

Theorem A (Corollary 6.13, Theorem 7.3). Let G be Sp(p, q), SO∗(2n), or U(m,n).
Let P be a parabolic subgroup of G and let X be a representation of G parabolically
induced from a one-dimensional representation of P . Assume that X has a G-integral
infinitesimal character. Then any irreducible constituent V of X of maximal Gelfand-
Kirillov dimension is a derived functor module in the weakly fair range (in the sense of
[V4]). Moreover, the multiplicity of V in X is one.

Among the degenerate principal series representations induced from P , those with the
smallest possible integral infinitesimal character (among all degenerate principal series
induced from P ) are particularly interesting, and so we turn our attention to them. We
call such representations integrally weakly unipotent degenerate principal series. This is
a completely naive definition, but the terminology is potentially dangerous since the more
sophisticated notion of weakly unipotent representations has already been defined in [V5]
(Definition 5.1 below). According to the results below, the definitions are consonant.

For G = U(m,n), an integrally weakly unipotent degenerate principal series represen-
tation is unitarily induced and its precise structure is known from [Ma3] and [T1]. On the
other hand, for G = Sp(p, q) and SO∗(2n), the situation is a little more complicated. Such
representations are not unitarily induced, for instance. Moreover an integrally weakly
unipotent degenerate principal series representation for a given parabolic subgroup need
not be unique. However, the distribution characters of two such representations coincide,
and thus they have the same composition factors. We have the following result.

Theorem B (Theorem 6.10). Let G be Sp(p, q) or SO∗(2n). Let P be a parabolic
subgroup of G and let X be an integrally weakly unipotent degenerate principal series
representation induced from P . Then each irreducible constituent of X is unitarizable.
Moreover, if the Richardson orbit corresponding to P is not very even, then each irre-
ducible constituent of X is weakly unipotent in the sense of [V5].

Here “the Richardson orbit corresponding to P” means the complex nilpotent orbit
induced from the zero orbit of the Levi factor of the complexification of the Lie algebra
of P . In particular, the Richardson orbit corresponding to P is very even if and only if
G = SO∗(4n) and the Levi factor of P is isomorphic to a direct product of general linear
groups over the quaternionic field H.

For G = Sp(p, q) and SO∗(2n), we characterize the integrally weakly unipotent rep-
resentations associated to a Richardson orbit corresponding to a parabolic subgroup as
follows.

Theorem C (Theorem 6.12). Retain the setting of Theorem B. Let O denote the complex
Richardson orbit associated to P . Suppose X is a weakly unipotent representation attached
to O (Definition 5.1). In addition suppose X has integral infinitesimal character. Then
X is isomorphic to a derived functor module which arises as an irreducible constituent of
an integrally weakly unipotent degenerate principal series representation induced from P .
In particular, the associated variety of X is the closure of a unique KC orbit OK on O∩ s

(where g = k ⊕ s denotes the complexified Cartan decomposition).

Conversely, for any KC orbit OK on O∩ s, there exists a unique (up to isomorphism)
weakly unipotent representation with an integral infinitesimal character whose associated
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variety is the closure of OK .

We now turn to the details of the interaction between the geometric interpretations of
parabolic and cohomological induction. Let G be a real linear reductive Lie group and let
GC denote its complexification. Write g0 (resp. g) for the Lie algebra of G (resp. GC) and
let σ denote the complex conjugation on g with respect to g0. We fix a maximal compact
subgroup K of G and let θ denote the corresponding Cartan involution. We write k for
the complexified Lie algebra of K.

We fix a parabolic subgroup P of G with a θ-stable Levi part M and nilradical N .
We let p, m, and n denote the complexified Lie algebras of P , M , and N , respectively,
and denote the corresponding analytic subgroups of GC by PC, MC, and NC. For Y ∈ m,
we define

δP (Y ) =
1

2
tr (adg(Y )|n) .

Then δP is a one-dimensional representation of m and 2δP lifts to a holomorphic group
homomorphism ξ2δ : MC → C×. Defining ξ2δP

|NC
to be trivial, we may extend ξ2δP

to PC.
Let Lχ be the holomorphic line bundle on GC/PC corresponding to a holomorphic char-
acter χ of MC. For a character η : P → C×, we consider the unnormalized parabolically
induced representation uIndG

P (η). Namely, uIndG
P (η) is the K-finite part of the space of

the C∞-sections of the G-homogeneous line bundle on G/P associated to η. uIndG
P (η) is

a Harish-Chandra (g,K)-module.

If G/P is orientable, then the trivial representation of G is the unique irreducible
quotient of uIndG

P (ξ2δ). If G/P is not orientable, there is a character ω on P such that ω
is trivial on the identity component of P and the trivial representation of G is the unique
irreducible quotient of uIndG

P (ξ2δ⊗ω). This motivates the first of the following definitions.

Definition 1.1 (Definitions 4.2 and 4.6 below). (a) We call a holomorphic character
χ of MC good if uIndG

P (ξ2δ ⊗χ) has a finite-dimensional representation of G as a quotient.
In particular, if G/P is orientable, the trivial character is good.

(b) Let V be an openG-orbit on GC/PC. We say V is fine if there is a θ-stable parabolic
subalgebra q of g such that q ∈ V. For example, if G has a compact Cartan subgroup,
any open G-orbit on GC/PC is fine.

(c) For each fine open G-orbit V on GC/PC, we put

AV(χ) = Hdim u∩k(V,Lχ ⊗ L2δP
)K-finite.

From [Wo], AV(χ) is a derived functor module [VZ]. If χ is good, AV(χ) is in the good
range in the sense of [V4]. We call an open G-orbit V in GC/PC good if the Gelfand-
Kirillov dimension of AV(11) equals that of uIndG

P (ξ2δ).

Recall that if G is of Hermitian type and P is a Siegel parabolic subgroup of G, there
are two open G-orbits in GC/PC each isomorphic to G/K (the Siegel upper and lower half
planes). For such orbits, AV(χ) are holomorphic or anti-holomorphic discrete series for a
good character χ, and it is well-known that we can embed AV(χ) into uIndG

P (ξ2δ ⊗ χ) by
taking boundary values at the Shilov boundary.

Our purpose here is to consider other orbits. In this case, the corresponding embedding
should be a higher cohomological analog of boundary value maps. We begin with an
example.
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Example 1.2. Let G = SO0(n, 2) with n ≥ 3 and let P be a parabolic subgroup whose
Levi factor has semisimple part isomorphic to SO0(n− 1, 1). For simplicity set L = L2δP

.
In this case X = GC/PC has three open G-orbits. Two of them (say O+ and O−) are
Hermitian symmetric spaces (symmetric domains of type IV). The remaining one (say
O0)is non-Stein and isomorphic to G/(SO(2) × SO0(n − 2, 2)). Let O+ and O− be the
closures of O+ and O−, respectively. In this case, we have (X −O+) ∩ (X − O−) = O0

and (X − O+) ∪ (X − O−) = X −XR where XR = G/P . Hence we have the following
Mayer-Vietoris exact sequence:

H2n−2(X −O+,L) ⊕H2n−2(X −O−,L) → H2n−2(O0,L) → H2n−1(X −XR,L).

We also have the following exact sequences:

H2n−2(X,L) → H2n−2(X −O+,L) → H2n−1
O+

(X,L),

H2n−2(X,L) → H2n−2(X −O−,L) → H2n−1
O−

(X,L).

From [Ko], we have H2n−2(X,L) = 0. We can regard O+ and O− as closed convex set in
an open cell of X. Hence, from the edge-of-wedge theorem (see [KaL] Théorème 1.1.2), we
have H2n−1

O+

(X,L) = H2n−1
O−

(X,L) = 0. Hence, H2n−2(X−O+,L) = H2n−2(X−O−,L) =

0. We also have the following exact sequence:

0 = H2n−1(X,L) → H2n−1(X −XR,L) → H2n
XR

(x,L).

Hence, we have

H2n−2(O0,L) →֒ H2n−1(X −XR,L) →֒ H2n
XR

(x,L).

In this caseXR is orientable if and only if n is even. Hence, the local cohomologyH2n
XR

(x,L)
is the space of hyperfunction sections of the degenerate principal series of G with respect
to L (resp. L ⊗ ω) if n is even (resp. odd). Taking the K-finite part, we have

AO0
(11) →֒ uIndG

P (ξ2δ) (if n is even,)

AO0
(11) →֒ uIndG

P (ξ2δ ⊗ ω) (if n is odd.)

Such a relatively easy construction of embeddings as in Example 1.2 seems to be dif-
ficult to imitate in the general case. However, [Ma1], [SaSt], [Gi], etc. suggests some
evidences of the existence of the edge-of-wedge embeddings in greater generality. There-
fore, we consider the following problem in the setting of Harish-Chandra modules.

Problem D. Let G be a real linear reductive Lie group and let P be a parabolic subgroup.
In the terminology of Definition 1.1, suppose O is a good open G-orbit in X = GC/PC

and let χ be a good character of MC. Does there exist a character ω of P which is trivial
on the identity component of P such that AO(χ) →֒ uIndG

P (ξ2δ ⊗ χω)?

If the nilradical of P is commutative, the answer is known by [Sa1], [SaSt], [Sa2], and
[Zh]. For instance, suppose G is the rank n symplectic group Sp(n,R) and P is the Siegel
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parabolic subgroup. If n is even, then the cited references give an affirmative answer to the
question posed in Problem D. However, if n is odd, Problem D admits a negative answer,
except of course for the holomorphic and antiholomorphic discrete series as mentioned
above.

For quaternionic discrete series, an affirmative answer to Problem D is established in
[W].

Here is the affirmative answer to Problem D for an arbitrary parabolic subgroup of
U(m,n).

Theorem E (Theorem 7.5). Let G = U(m,n) and let P be a parabolic subgroup. Recall
the terminology of Definition 1.1. Let χ be a good holomorphic character of MC and let G
denote the set of the good orbits in XP = GC/PC. Then we have the following description
of the socle

Socle(uIndG
P (ξ2δP

⊗ χ)) =
⊕

V∈G

AV(χ).

For Sp(p, q) and SO∗(2n), the situation is similar.

Theorem F (Theorem 6.18, Theorem 6.19). Let G = Sp(p, q) (respectively SO∗(2n))
and let P = MN be a parabolic subgroup. Suppose M has the following form

M = GL(k1,H) × · · · × GL(ks,H) × Sp(p′, q′)

(respectively,
M = GL(k1,H) × · · · × GL(ks,H) × SO∗(2n′)).

For each positive integer ℓ, letmM (ℓ) denote the number of i such that ki = ℓ. Furthermore
assume that for each ℓ > p′ + q′ (respectively ℓ 6 p′ + q′ ), mM (ℓ) is even. Let χ be a
good holomorphic character of MC. Again let G denote the set of the good orbits in
XP = GC/PC. Then,

Socle(uIndG
P (ξ2δP

⊗ χ)) =
⊕

V∈G

AV(χ).

We also consider the analogous problem for GL(n,H) and for complex semisimple
groups in Sections 8 and 9.
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2 Background and notation

2.1 General notation

As usual we denote the quaternionic field, the complex number field, the real number field,
the rational number field, the ring of integers, and the set of non-negative integers by H,
C, R, Q, Z, and N respectively. For a ring A and a left A-module M , we let AnnA(M)
denote the annihilator of M in A.

Let H be a real linear Lie group and let HC denote its complexification. We write
h0 for its Lie algebra and h for its complexification. Given a subalgebra h′0 of h0, we let
H ′ denote the corresponding analytic subgroup of H, and adopt analogous conventions
for subalgebras of h and analytic subgroups of HC. We let U(h) denote the universal
enveloping algebra of h.

We let G denote a real reductive linear Lie group with a Cartan involution θ. We
write K for the maximal compact subgroup of G corresponding to θ. The corresponding
complexified Cartan decomposition is denoted g = k ⊕ s. KC acts via Ad on s.

For a complex reductive Lie algebra g and its Cartan subalgebra h, we let ∆(g, h)
denote the root system for (g, h). For α ∈ ∆(g, h), we let α∨ denote the corresponding
coroot in h∗.

We let P denote the set of integral weights,

P = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z for all α ∈ ∆(g, h)}.

For a connected reductive complex linear group GC whose Lie algebra is g, we set

PGC
= {λ ∈ h∗|λ appears as a weight of some finite dimensional representation of GC.} .

2.2 Nilpotent orbits

Let G be a linear reductive Lie group. We frequently use an invariant form to identify
g0 and g∗0 (or g and g∗) without comment. We let N0 denote the nilpotent cone in g0,
and write N for the nilpotent cone in g. There are only a finite number of GC orbits on
N and a finite number of G orbits on N0. Let N (s) = N ∩ s. The action of KC on s

preserves N (s), and there are only a finite number of KC orbits on N (s).

Fix an orbit O of GC on N . A K-form of O is defined to be a KC orbit on O∩ s. We
denote the set of K forms of O by Irr(O ∩ s). If K is connected, this notation causes no
confusion since it is indeed the case that the irreducible component of O∩ s are precisely
the KC orbits on O ∩ s. But if K is disconnected, a typical KC orbit is a union of such
irreducible components. According to [V7], each K form of O is a Lagrangian subvariety
of O and hence Irr(O ∩ s) is equidimensional.

On the other hand, a real form of O is defined to be an orbit of G on O∩g. We denote
this set by Irr(O ∩ g0) and a similar caveat applies to this notation.

The Kostant-Sekiguchi correspondence provides a bijection between the set of KC

orbits on N (s) and the set of G orbits on N0 (e.g. [CMc, Chapter 9]). Given a KC orbit
OK , we write KS(OK) for the corresponding real orbit. In fact, for a fixed complex orbit
O, the correspondence restricts to a bijection of Irr(O ∩ g0) and Irr(O ∩ s), the real and
K forms of O.
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2.3 Primitive ideals

Let g denote a complex reductive Lie algebra. Let h denote a Cartan subalgebra in
g and write W for the Weyl group of h in g. Each infinitesimal character λ ∈ h∗/W
parameterizes a maximal ideal Zλ in the center Z(g) of U(g).

Recall that a two-sided ideal in U(g) is called primitive if it is the annihilator of a
simple U(g) module. If we write Prim(g) for the set of primitive ideals in U(g) then we
have

Prim(g) =
∐

λ∈h∗/W

Primλ(g),

where Primλ(g) consists of the subset of primitive ideals containing Zλ. If I ∈ Primλ(g),
then I is said to have infinitesimal character λ. For each λ there is a unique maximal
ideal Jmax(λ) ∈ Primλ(g).

Given a primitive ideal I in U(g), one may consider its associated variety AV(I) ⊂ g∗.
AV(I) is defined to be the closed points of the support of the S(g) = grU(g) module grI
where the gradings are provided by the degree filtration on U(g). In fact AV(I) is the
closure of a single nilpotent orbit in g∗ ([Jo3]).

2.4 Associated varieties, asymptotic supports, and the Barbasch-Vogan

conjecture.

Let g be a complex reductive Lie algebra and let X be a finitely generated U(g)-module
and let (Xj) be a good filtration of X. The corresponding graded object grX is a finitely
generated grU(g)-, hence S(g)-, module. The associated variety AV(X) of X is defined to
be the support of grX; see [V7].

Hereafter, we assume X is a Harish-Chandra (g,K)-module. It is not difficult to show
that AV(X) is a union of closures of KC orbits on N (s), and we may write

AV(X) = O1
K ∪ · · · ∪ Oj

K

with each Oj
K a KC orbit on N (s). By keeping track of the rank of grX along each

irreducible component Oj
K , we obtain an integral linear combination

AV(X) =
∑

OK

nOK
[OK ],

where the sum is over KC orbits on N (s) and each n is an integer. AV(X) is called
the associated cycle of X. The associated cycle construction is additive on short exact
sequences, and hence descends to the Grothendieck group of virtual Harish-Chandra mod-
ules. If X is annihilated by a primitive ideal I — for instance, if X is irreducible — then
(in the terminology of Section 2.2) each of the orbits Oj

K appearing in AV(X) is in fact a
K form of the complex orbit O which is dense in the associated variety of the annihilator
of X ([V7]).

Nilpotent orbits also enter the representation theory of X as follows. According to
[BaV1], the distribution character of X has an asymptotic expansion whose leading term
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is a linear combination of Fourier transforms of canonical measures of orbits of G on N0.
This linear combination is called the asymptotic cycle of X and is denoted AS(X).

Recall the Kostant-Sekiguchi correspondence KS of Section 2.1. The Barbasch-Vogan
conjecture (now a theorem due to Schmid and Vilonen ([SV])) asserts that

AV(X) =
∑

nOK
[OK ]

if and only if

AS(X) =
∑

nOK
[KS(OK)].

For a finitely generated U(g)-module X, we let Dim(X) denote the Gelfand-Kirillov di-
mension of X (cf. [V1],[V7]). It is well-known that Dim(X) = dim AV(X).

For a Harish-Chandra (g,K)-module V , we let [V ] denote the distribution charac-
ter of V . Let V and M be Harish-Chandra (g,K)-modules. We write V t M , if a
virtual character [V ] − [M ] is a linear combination of the distribution characters of irre-
ducible Harish-Chandra modules whose Gelfand-Kirillov dimensions are strictly smaller
than Dim(V ).

2.5 Induced representations

Let G be a real reductive Lie group. For a parabolic subgroup P of G, we define (unnor-
malized and normalized) induction as follows. Write P = MN for the Levi decomposition
of P (and assume that M is θ-stable). Let Z be a (l,M ∩K)-module and (π,H)a Hilbert
space globalization of Z. Define uIndG

P (Z) to be the K-finite part of

{f ∈ C∞(G) ⊗H | f(gℓn) = π(ℓ−1)f(g) (g ∈ G, ℓ ∈M,n ∈ N)}.

We regard uIndG
P (Z) as a Harish-Chandra (g,K)-module as usual. In addition, we also

consider the normalized induction:

nIndG
P (Z) = uIndG

P (Z ⊗ CδP
)

where (δP ,CδP
) is a one-dimensional representation of P defined as follows. LetM = oMA

be the Langlands decomposition of M such that oM and A are θ-stable. We let a0 denote
the Lie algebra of A and log : A→ a0 the inverse of the exponential map. We put

δP (man) = e
1

2
tr(ad(loga)|n) (m ∈ oM,a ∈ A,n ∈ N).

2.6 Harish-Chandra cells

For Harish-Chandra (g,K)-modules X and Y , we write X . Y if there exists a finite-
dimensional irreducible G-representation E such that Y is isomorphic to a subquotient
of X ⊗ E. We write X ∼ Y if the both X . Y and Y . X hold. It is not hard to show
that X . Y implies that AV(Y ) ⊆ AV(X), and so X ∼ Y implies that AV(Y ) = AV(X).

We fix a positive system of ∆(g, h) and let ρ denote the half-sum of all the positive
roots; so ρ is the infinitesimal character of the trivial representation. We let E denote the
space of invariant eigendistribution on G of the infinitesimal character ρ. E has a basis

B = {[V ] | V is an irreducible Harish-Chandra module with infinitesimal character ρ.}.
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We let W denote the Weyl group for (g, h). W acts on E via the coherent continuation
representation ([Zu]).

For each [V ] ∈ B, we write Cone(V ) for the C-subspace of E spanned by {[X] ∈ B |
V . X}. Then Cone(V ) is a W -submodule of E . Moreover, if V . X then Cone(X) ⊆
Cone(V ). Set

Cell(V ) = Cone(V )/
∑

X∈B, V „X

Cone(X).

If we write [Y ] again for the image of [Y ] ∈ Cone(V ) in Cell(V ), Cell(V ) has a basis
{[Y ] ∈ B | V ∼ Y }. A Harish-Chandra cell is a subquotient of E which is of the form
Cell(V ) for some [V ] ∈ B. Let V be any irreducible Harish-Chandra (g,K)-module whose
infinitesimal character is in PGC

. A standard application of the translation principle
implies that there exists some [X] ∈ B such that V ∼ X. We write Cell(V ) for Cell(X).

3 Associated cycles of degenerate principal series

We begin by recalling how to compute the asymptotic cycle of a parabolically induced
representation. A much more general statement is contained in [Ba, Corollary 5.0.10].
We extract only what we need for applications.

Theorem 3.1 (Barbasch). Suppose G is a real reductive linear group with parabolic
subgroup P = MN . Let χ denote a character of M , and consider the parabolically induced
representation IndG

P (χ).

1. Let O0 denote a real nilpotent orbit for g0. Then O0 appears in the asymptotic
support of IndG

P (χ) if and only if O0 ∩ n0 is non-empty and open in n0.

2. Let PC denote the complexification of P in GC. Suppose that the moment map from
the cotangent bundle T ∗(GC/PC) is birational onto its image. Then if O0 appears
in the asymptotic support of IndG

P (χ), its multiplicity is exactly one.

We immediately obtain a multiplicity one result.

Corollary 3.2. Retain the setting of Theorem 3.1(2); in particular assume the indicated
moment map is birational. If X is an irreducible constituent of IndG

P (χ) of maximal
Gelfand-Kirillov dimension, then X appears with multiplicity one. Moreover, if X and Y
are irreducible constituents of IndG

P (χ) of maximal Gelfand-Kirillov dimension such that
AV(X) = AV(Y ), then we have X = Y .

For certain groups, the above results give a complete description of associated cycles
of degenerate principal series. The main result of this section is as follows.

Proposition 3.3. Recall the notation of Section 2.2.

1. Let G be U(p, q), Sp(p, q), or SO∗(2n). Let P be a parabolic subgroup of G and χ be
a one-dimensional representation of P . Then

(3.1) AV(IndG
P (χ)) =

∑

OK∈Irr(O∩s)

[OK ].
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and
AS(IndG

P (χ)) =
∑

OR∈Irr(O∩g0)

[OR].

2. Let G be GL(n,R) or GL(n,H). Let P be a parabolic subgroup of G and χ be a
one-dimensional representation of P . Then O ∩ s consists of a single KC orbit O1

K

and likewise O ∩ g0 consists of a simple G orbit O1
R, and

(3.2) AV(IndG
P (χ)) = [O1

K ]

and
AS(IndG

P (χ)) = [O1
R]

Proof. The equivalence of the associated cycle and asymptotic cycle statements follows
from the Barbasch-Vogan Conjecture (Section 2.4). The statement in (2) asserting that
O ∩ s and O ∩ g0 are single orbits follows essentially from the existence of Jordan canon-
ical form (see also [CMc, Chapter 9]). Finally using [He], it is easy to verify that the
birationality hypothesis in Theorem 3.1(2) is satisfied for each of the degenerate principal
series considered in the proposition. Thus if an orbit OK contributes to the associated
cycle in(3.1) and (3.2), it necessarily appears with multiplicity one.

Combining the above statements gives a proof of part (2) of the proposition. To finish
the proof of part (1), it only remains to prove that each orbit indicated in (3.1) actually
appears.

We suppose G = U(p, q). Let P be a parabolic subgroup of G. Since AV(IndG
P (χ))

does not depend on χ, we assume that χ is a one-dimensional unitary representation of
P such that nIndG

P (χ) has an integral infinitesimal character. Then, nIndG
P (χ) is decom-

posed into a direct sum of derived functor modules ([Ma5, Theorem 3.3.1]) explicitly. We
may calculate the associated variety of each irreducible constituent of nIndG

P (χ) via an
algorithm described in [T1]. It is straightforward to check the desired conclusion in this
case.

For G = Sp(m,n) or SO∗(2n), using Theorem 3.1(1), we are reduced to the following
computation.

Lemma 3.4. Let G be Sp(m,n), or SO∗(2n). Let P = MN be a parabolic subgroups for
the real group G. Write O for the Richardson orbit with respect to the complexified Lie
algebra p of P . Let O0 be a real form of O with respect to G (Section 2.2). Then, O0 ∩n0

is non-empty and open in n0.

To prove Lemma 3.4, we first develop a general result (Lemma 3.7). So let G be an
arbitrary real reductive Lie group, and let X ∈ g0 be a nilpotent element. Extend X
to a sl2-triple (X,H, Y ). Let p0(X) denote the parabolic subalgebra consisting of the
nonnegative eigenvalues of ad(H) on g0. Recall that X is even if the eigenvalues of ad(H)
are all even.

Definition 3.5. A parabolic subalgebra p0 of g0 is called even if there exists an even
nilpotent element X such that p0 = p0(X). A parabolic subalgebra p0 of g0 is called
quasieven if there exists an even parabolic subalgebra p′0 such that p0 and p′0 have a
common Levi part. Finally, a parabolic subgroup P of G is called quasieven if its Lie
algebra is quasieven.
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Example 3.6. Consider the parabolic subgroups appearing in Definition 6.6.

1. The parabolic subgroup for Sp(p, q) is quasieven if ni ≤ p′ + q′ for all i.

2. The parabolic subgroup for SO∗(2n) is quasieven if ni ≤ n′ for all i or n′ = 0.

Lemma 3.7. Let p0 = m0 ⊕ n0 be any quasieven parabolic subalgebra of g0. Let O denote
the complex Richardson orbit induced from l. Then each real form of O intersects n0 in a
dense set.

Proof. If p0 is an even parabolic subalgebra, then the conclusion of the lemma follows
immediately from the Dynkin-Kostant theory. (Here it is important to remark that the
Jacobson-Morozov Theorem holds for real reductive Lie algebras and real sl(2) triples.)
Let p0 be any quasieven parabolic subalgebra. Let p′0 be an even parabolic subalgebra
such that p0 and p′0 have a common Levi part. We write n0 (respectively n′

0) for the
nilradical of p0 (respectively p′0). Arguing as in [CMc, Theorem 7.1.3], it follows that
Ad(G)n0 = Ad(G)n′

0. The lemma follows.

Example 3.8. For g0 = sp(2,R) (rank 2), there are two maximal parabolic subalgebras
(up to the conjugation), namely the Siegel and Jacobi parabolics. The Siegel parabolic
subalgebra is even; the Jacobi is not even quasieven. In this case, the corresponding
Richardson orbit is subregular nilpotent orbit and there are three real forms. The nilrad-
ical of the Jacobi parabolic subalgebra intersects only one of them. Thus the conclusion
of the lemma fails for the Jacobi parabolic subalgebra indicating the necessity of the
quasieven hypothesis in general.

Lemma 3.7 together with Example 3.6 provides a proof of Lemma 3.4 many, but not
all, cases for Sp(p, q) and SO∗(2n). For the remaining cases, we must supply an additional
argument.

Suppose first that G = Sp(p, q). Let P = MN with

M = Sp(p′, q′) × GL(n1,H) × · · · × GL(nk,H).

Set n′ = p′ + q′ and let

n0
i = min(ni, n

′)

n1
i = ni − n1

i .

of M . Set p0 = p′ +
∑

i n
0
i , q

0 = q′ +
∑

i n
0
i , and p1 = q1 =

∑

i n
1
i . Set Gj = Sp(pj , qj)

and consider the parabolic subgroups P j = M jN j of Gj with

M0 = Sp(p′, q′) × GL(n0
1,H) × · · · × GL(n0

k,H)

M1 = GL(n1
1,H) × · · · × GL(n1

k,H).

Let Oj denote the orbit for gj induced from there zero orbit of mj. According to Exam-
ple 3.6(2), P 0 is quasieven, and hence every real form of O0 meets n0. The key observation
from the classification of real forms ([CMc, Chapter 9]) is the the number of real forms of
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O equals the number of real forms of O0. So we can deduce the statement of Lemma 3.4
for O from the corresponding one for O0. We offer a few more details.

Notice P 0 × P 1 embeds in P in a natural way such that

(3.3) n0
0 ⊕ n1

0 ⊂ n0.

As we remarked, P 0 is quasieven, so we can find representative N1, . . . , Nr ∈ n0
0 for each of

the r real forms of O0. On the other hand, from the classification of real forms, O1 has a
single real form. We may find a representative of it, say N , in n1

0. With the decomposition
of Equation (3.3) in mind, consider the r elements

(Ni, N) ∈ n0.

From the classification of real forms, one may deduce that since the Ni are not conjugate
by G1, none of the r elements (Ni, N) are conjugate by G. The italicized remark of the
previous paragraph thus implies that they are a complete set of representative of real
forms of O. Lemma 3.4 follows for Sp(p, q). A very similar argument works for SO∗(2n).
We omit the details.

This completes the proof of Lemma 3.4 and hence Proposition 3.3.

To conclude, we introduce some notions in the general setting.

Definition 3.9. Let G be an arbitrary real reductive Lie group. An irreducible Harish-
Chandra (g,K)-module V is called quasi P -cofinite if there exists some irreducible finite-
dimensional representation F ofM such that V is isomorphic to a subquotient of nIndG

P (F ).

The following lemma is easily obtained from the fact that parabolic induction com-
mutes with tensoring with a finite-dimensional (the “Mackey isomorphism”) together with
the exactness of parabolic induction.

Lemma 3.10. Let V be a quasi P -cofinite irreducible Harish-Chandra (g,K)-module and
let X be an irreducible Harish-Chandra (g,K)-module such that V . X (with notation as
in Section 2.6). Then X is quasi P -cofinite.

4 Correspondence of orbits

Let G be a real reductive linear Lie group and retain the notation of Section 2.1. Let q

be a parabolic subalgebra of g and let Q be the corresponding parabolic subgroup of GC.
The generalized flag manifold GC/Q is identified naturally with the set of the parabolic
subalgebras of g which are GC-conjugate to q, and we often regard a point of GC/Q as a
parabolic subalgebra.

The following proposition is a special case of the Matsuki duality theorem.

Proposition 4.1 ([M2]). For each open G-orbit V in GC/Q, there is a unique closed
KC-orbit C such that C ⊆ V. This correspondence gives a bijection of the set of the open
G-orbits in GC/Q onto the set of the closed KC-orbits.
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In order to associate a derived functor module to an open G-orbit (or a closed KC-
orbit), the following property of the orbit is required.

Definition 4.2. A closed KC-orbit C in GC/Q is called fine if there is a θ-stable parabolic
subalgebra contained in C. An open G-orbit V in GC/Q is called fine if the corresponding
KC-orbit is fine. We say that a parabolic subgroup Q of GC is fine with respective to G
if all the open G-orbits in GC/Q are fine.

Since the KC action commutes with θ, all points of a fine closed KC-orbit are θ-stable
parabolic subalgebras. Also notice that if q is a Borel subalgebra, then all open G-orbits
are fine ([M1]); in other words, Q is fine. Our aim here is to discuss other sufficient
conditions ensuring that a particular open G-orbit is fine. We begin with the following
easy fact.

Lemma 4.3. Let C be a closed KC-orbit in GC/Q and let q′ be a parabolic subalgebra
contained in C. Then there exists a θ-stable Borel subalgebra b such that b ⊆ q′.

Proof. Let B be a Borel subgroup of GC such that B ⊆ Q. We consider the natural
projection p : GC/B → GC/Q. Since p−1(C) is a closed KC-stable subset of GC/B, there
is a closed KC-orbit C′ such that C′ ⊆ p−1(C). Since p is KC-equivariant, there is a Borel
subalgebra b′ such that b′ ∈ p−1(q′) ∩ C′. But b′ ∈ p−1(q′) means that b′ ⊆ q, and since
C′ is fine (by the comment in the paragraph preceding the lemma), b′ is θ-stable. The
lemma thus follows.

Proposition 4.4. Retain the notation of Definition 4.2. If G has a compact Cartan
subgroup, then any parabolic subgroup of GC is fine with respect to G.

Proof. Let C be a closed KC-orbit in GC/Q and let q′ be a parabolic subalgebra contained
in C. We take a θ-stable Borel subalgebra b′ ⊆ q′ as in Lemma 4.3. The we can choose
a compact Cartan subalgebra h such that h ⊆ b′. Thus q′ corresponds to a subset S of
the set of simple roots for (b′, h). Since θ acts trivially on h, S is θ-stable. Hence q′ is
θ-stable.

We discuss another sufficient condition.

Definition 4.5. Let q be a parabolic subalgebra of g. We choose a Borel subalgebra b

such that b ⊆ q. We call q neat if q is stable under any automorphism of g preserving b.
It is easy to see that the condition of being neat does not depend on the choice of b. A
parabolic subgroup Q is called neat if its Lie algebra q is neat. (Lemma 4.3 implies that
any neat parabolic subgroup is fine.)

We next introduce a little more notation. We let µQ denote the moment map for
the cotangent bundle T ∗GC/Q to g∗. For a closed KC-orbit C, we consider the conormal
bundle T ∗

CGC/Q of C in GC/Q. We let C∨ denote the image of T ∗
CGC/Q under µQ. Let

q′ ∈ C and write u′ for the nilradical of q′. After unwinding the definitions, it is easy to
see that C∨ = Ad(KC)(u ∩ s); here we are implicitly identifying g∗ and g.

Definition 4.6. Retain the notation above. Let O be the Richardson orbit in g with
respect to q. A closed and fine G-orbit C is called good if dim C∨ = dim s ∩ O. An open
G-orbit is called good if the corresponding closed KC-orbit is good.
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For a good closed KC-orbit C, C∨ is the closure of an element of Irr(O ∩ s) (with
notation as in Section 2.2). If the moment map µQ is birational to its image, µQ gives
bijection of µ−1

Q (O) onto O, and so we have the following lemma.

Lemma 4.7. Assume that the moment map µQ is birational onto its image. Then the
map C 7→ C∨ of the set of the good closed KC-orbits in GC/Q to closures of elements of
Irr(O ∩ s) is injective.

For our purposes, it is important to describe the map C  C∨. The proof of the
following proposition is straightforward.

Proposition 4.8. Retain the notation above. Let X be an even nilpotent element of
g0. Choose a sl2-triple (X,H, Y ) such that X,H, Y ∈ g0. Let q denote the parabolic
subalgebra consisting of the nonnegative eigenvalues of ad(H) on g. Define the Cayley
element CX ∈ GC by CX = exp

(
πi
4 (X + Y )

)
. Then Ad(CX)q is a θ-stable parabolic

subalgebra of g. Let OK(X) denote the KC-nilpotent orbit in s which corresponds to
Ad(G)X via the Kostant-Sekiguchi correspondence. Let C(X) be the closed KC-orbit in
GC/Q such that Ad(CX)q ∈ C(X). Then we have

C(X)∨ = OK(X).

In general, we do not know a good conceptual description of the correspondence C  
C∨. However, for classical groups, some combinatorial algorithms computing Richardson
orbits in real groups are obtained by [T1] and [T2] (see also [Y]). Examining those
algorithms we obtain the following proposition.

Proposition 4.9. Let G be U(m,n), Sp(p, q), or SO∗(2n). Consider the following Levi
subalgebra l of the complexified Lie algebra g of G,

l ≃ gl(n1,C) ⊕ · · · ⊕ gl(nk,C) if G = U(m,n);

l ≃ gl(2n1,C) ⊕ · · · ⊕ gl(2nk,C) ⊕ sp(2n′,C) if G = Sp(p, q); and

l ≃ gl(2n1,C) ⊕ · · · ⊕ gl(2nk,C) ⊕ so(2n′,C) if G = SO∗(2n).

Let O denote the complex Richardson orbit induced from l. Let q be an arbitrary parabolic
subalgebra of g whose Levi part is l and let Q denote the analytic subgroup of GC corre-
sponding to q. In this case, Q is fine by Proposition 4.4.

Then the map C 7→ C∨ from the set of the good closed KC-orbits in GC/Q to Irr(O∩s) is
bijective. Moreover, the correspondence C  C∨ is described explicitly by the combinatorial
data described in [T1] and [T2].

5 Weakly unipotent primitive ideals associated to a Richard-

son orbit

We briefly recall some features of the theory of unipotent primitive ideals. The contents
of this section is more or less known (but not collected in one place). Definitions 5.1
and 5.3 provide the notion of weak unipotence and distinguished unipotence for primitive
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ideals. Propositions 5.5 gives a nice characterizing of distinguished unipotence for prim-
itive ideals whose associated variety is Richardson. Again in the context of Richardson
orbits, Proposition 5.7 shows that indeed the notions of weak and distinguished unipo-
tence coincide. (In general, the latter implies the former, but not conversely.) We then
turn to specific examples. The main results needed for applications below are Proposi-
tion 5.10, 5.12, and 5.14. These may be also deduced from the classification of primitive
ideals for classical algebras, but we prefer to avoid invoking the classification.

Let g denote a complex reductive Lie algebra and recall the notation of Section 2.3.
Set hss = h∩ [g, g] and let Gss

C denote the analytic subgroup of GC corresponding to [g, g].

Definition 5.1 ([KnV, Definition 12.3], [V5, Definition 12.10]).

(1) An irreducible U(g)-module X with an infinitesimal character λ is called weakly
unipotent if

(a) the restriction of λ to hss is in the R-linear span of the roots;

(b) for each finite-dimensional U(g) module F , X⊗CF has finite length (as a U(g)
module); and

(c) if there exists a nonzero subquotient of X ⊗ F annihilated by an ideal of the
form Zµ, then 〈λ|hss , λ|hss〉 6 〈µ|hss , µ|hss〉.

If in addition O is dense in AV(Ann(X)), then we say that X is weakly unipotent
attached to O.

(2) A two-sided ideal of I in U(g) is called a weakly unipotent primitive ideal if it is the
annihilator of a weakly unipotent irreducible U(g)-module.

If we apply results in [V6, Section 7], it is not difficult to deduce the following result.

Corollary 5.2. If an irreducible U(g)-module X with a weakly unipotent annihilator
satisfies condition (b) in Definition 5.1, then X is a weakly unipotent U(g)-module.

Definition 5.3 (Compare [V5, Definition 12.6]). Let λ ∈ h∗ be such that λ|hss be
contained in the real linear span of the roots. Let I ∈ Primλ(g). Let AV(I) = O and set

Prim(O) = {I ′ ∈ Prim(g) | AV(I ′) = O},

and
IC(O) = {λ′ | Primλ′(g) ∩ Prim(O) 6= ∅}.

Finally set
ICGC

(O, λ) = {λ′ ∈ IC(O) | λ′ − λ ∈ PGC
}.

Then I is called GC-distinguished unipotent if 〈λ|hss , λ|hss〉 6 〈λ′|hss , λ′|hss〉 for all λ′ ∈
ICGC

(O, λ). In this case, we say that I is attached to O. If the infinitesimal character
of I is in PGC

, we say that I is GC-integral distinguished unipotent attached to O. We
let DistGC

(O) denote the set of the GC-integral distinguished unipotent primitive ideals
attached to O. Finally, if X is an irreducible Harish-Chandra module whose annihilator
is an element of DistGC

(O), we say that X is distinguished unipotent attached to O.
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We now describe a general method of constructing GC-integral distinguished unipotent
primitive ideals attached to Richardson orbits. So suppose that O is induced from the
zero orbit of a Levi factor l. Let h be a Cartan subalgebra in l (and hence in g) and
fix a positive system ∆+(g, h) for ∆(g, h). Let b be the Borel subalgebra containing h

corresponds to ∆+(g, h). Put ∆+(l, h) = ∆+(g, h) ∩∆(l, h). Write δ(l) ∈ h∗ (respectively,
ρ ∈ h∗) for the half-sum of positive roots of h in l (respectively, g). Fix a parabolic
subalgebra q of g with Levi decomposition q = l + u such that b ⊆ q. Set

P++(l) = {λ ∈ h∗ | 〈λ, α∨〉 ∈ {1, 2, 3, ...} (α ∈ ∆+(l, h))}

and
(5.1)
SGC

(l) = {λ ∈ P++(l) ∩ PGC
| 〈λ|hss , λ|hss〉 6 〈µ|hss , µ|hss〉 for all µ ∈ P++(l) ∩ PGC

}.

For µ ∈ P++(l), let El(µ− ρ) denote the irreducible finite-dimensional U(l)-module with
highest weight µ − ρ. Introducing the trivial action of the nilradical of q, we regard
El(µ−ρ) as a U(q)-module. We define the generalized Verma module induced from E via

Mq(µ) = U(g) ⊗U(q) El(µ− ρ).

For µ ∈ h∗, write L(µ) for the irreducible U(g)-module with a highest weight λ − ρ. A
U(g)-module X is called q-finite if dim U(q)v <∞ holds for each v ∈ X. For µ ∈ P++(l),
L(µ) is q-finite. Conversely, each q-finite irreducible U(g)-module is isomorphic to L(µ)
for some µ ∈ P++(l). In other words, a q-finite irreducible U(g)-module is a (unique)
quotient of a generalized Verma module.

Lemma 5.4. Let O denote the Richardson orbit induced from a parabolic subalgebra q of
g. Let I and J be primitive ideals in U(g) with integral infinitesimal character λ such that
I ⊆ J . Assume that I ∈ Prim(O). Then there exists some irreducible q-finite U(g)-module
E such that J is the annihilator of E in U(g).

Proof. The translation principle easily reduces matters to the case of regular infinites-
imal character. Since the q-finite irreducible U(g)-modules with a given regular integral
infinitesimal character form a single right cone in category O, the lemma follows from
[LX, Theorem 3.2]. (Actually, Lusztig-Xi’s result is stated in the context of affine Weyl
groups but the same proof is applicable to the case of finite Weyl groups. We also remark
that we may of course interchange “L” and “R” in the statement of their result.)

Lemma 5.4 gives the follows two results.

Proposition 5.5. Fix a Richardson orbit O induced from l and Retain the above notation
(especially that of Definition 5.3 and Equation (5.1)). Then

DistGC
(O) = Prim(O) ∩

⋃

λ∈SGC
(l)

Primλ(g)

Proposition 5.6. Let λ ∈ P++(l) be such that P++(l) ∩Wλ = {λ}. Then

(1) Mq(λ) is irreducible and Jmax(λ) = AnnU(g)(Mq(λ)).
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(2) Primλ(g) ∩ Prim(O) = {Jmax(λ)}.

Next we consider the weakly unipotent primitive ideals attached to a Richardson orbit.

Proposition 5.7. Retain the above notation. In particular, assume that O is induced
from the zero orbit of a Levi factor l. Further assume that Gss

C is simply connected. Let
λ ∈ SGC

(l) (with notation as in (5.1). Fix I ∈ Primλ(g) and assume there exists some
I ′ ∈ Prim(O) such that I ′ ⊆ I. Then I is weakly unipotent. In particular, each element
of DistGC

(O) is weakly unipotent. Conversely, if I ∈ Prim(O) is weakly unipotent then
I ∈ DistGC

(O). Consequently the notions of weakly unipotent and distinguished unipotent
coincide for Prim(O).

Proof. Fix I ∈ Primλ(g) and assume there exists some I ′ ∈ Prim(O) such that I ′ ⊆ I.
Then it follows from Lemma 5.4 that I is the annihilator of an irreducible q-finite U(g)-
module, say X. For any finite-dimensional U(g)-module F , X ⊗C F is q-finite. Thus the
infinitesimal character of any irreducible subquotient of X ⊗C F belongs P++(l) (up to
the action of the Weyl group). Since X is isomorphic to L(µ) for some µ ∈ SGC

(l), it
follows from Definition 5.1 and the definition of Equation (5.1) that I is weakly unipotent.

Consider the converse. Let I ∈ Prim(O) be weakly unipotent. If I 6∈ DistGC
(O), then

there exists some µ ∈ P++(h) such that µ 6∈ SGC
(l) and so that I is the annihilator of L(µ)

(by Lemma 5.4). Since the q-finite irreducible U(g)-modules with a given regular integral
infinitesimal character form a single right cone for category O, it follows that an irreducible
generalized Verma module with respect to q (say V ) is an irreducible subquotient of
L(µ)⊗CF1 for some finite-dimensional U(g)-module F1. Thus any irreducible q-finite U(g)-
module with an integral infinitesimal character is an irreducible constituent of V ⊗CF2 for
some finite-dimensional U(g)-module F2. Since Gss

C is assumed to be simply connected,
SGC

(l) is nonempty. So for η ∈ SGC
(l), there is some finite-dimensional U(g)-module F3

such that L(η) is an irreducible constituent of L(µ)⊗CF3. This contradicts the assumption
that I is weakly unipotent.

We now consider examples. Suppose first that g = gl(n,C), GC = GL(n,C), and
l ∼= gl(n1,C) ⊕ · · · ⊕ gl(nk,C); in coordinates

δ(l) =

( n1
︷ ︸︸ ︷

(n1 − 1)/2, · · · ,−(n1 − 1)/2, · · · · · ·

nk
︷ ︸︸ ︷

(nk − 1)/2, · · · ,−(nk − 1)/2

)

.

Write O for the Richardson orbit induced from the zero orbit of l. We put

εi =

{

0 if ni is odd,

1 if ni is even.

ε =

( n1
︷ ︸︸ ︷
ε1, · · · , ε1, · · · · · ·

nk
︷ ︸︸ ︷
εk, · · · , εk

)

.

The next two lemmas are simple computational exercises.

Lemma 5.8. In the above setting, P++(l) ∩ Wλ = {λ} for all λ ∈ P++(l) such that
λ|hss =

(
δ(l) ± 1

2ε
)∣
∣
hss.
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Lemma 5.9. Retain the above setting. Put

s(l) =

{

δ(l) + η
1

2
ε

∣
∣
∣
∣
η = ±1 and the length of

(
δ(l) + η

1

2
ε
)∣
∣
hss is less than or equal to

the length of
(
δ(l) − η

1

2
ε
)∣
∣
hss

}

;

i. e., roughly speaking, s(l) consists of the shorter of the two elements δ(l) ± 1
2ε (or both

if they have the same length). Then

SGC
(l) = {λ ∈ P++(l) | λ|hss = µ|hss for some µ ∈ s(l)}.

In particular, at least one of δ(l) ± 1
2ε is in SGC

(l).

Hence, from Propositions 5.6 and 5.7, we obtain the following.

Proposition 5.10. For GC = GL(n,C),

DistGC
(O) = {Jmax(λ) | λ|hss = µ|hss for some µ ∈ s(l)}

where s(l) is defined in Lemma 5.8.

We now turn our attention to the cases of GC = Sp(n,C) or GC = SO(2n,C). Fix a
Cartan subgroup h of g. Then we can choose an orthonormal basis e1, ..., en of h∗ such
that

∆(g, h) =

{
{±ei ± ej | 1 6 i < j 6 n} if g = so(2n,C),
{±ei ± ej | 1 6 i < j 6 n} ∪ {±2ei | 1 6 i 6 n} if g = sp(n,C)

.

Let E1, ...., En be the dual basis of h to e1, ...., en. We fix a simple system for ∆(g, h) in
each case as follows. If GC = SO(2n,C), then let Π = {e1−e2, ..., en−1−en, en−1+en}, and
if GC = Sp(n,C), set Π = {e1−e2, ..., en−1−en, 2en}. We let ∆+ denote the corresponding
positive system of ∆(g, h). Let b denote the corresponding Borel subalgebra containing
h.

Fix a Levi subalgebra of the following form.

(5.2) l ∼=

{
gl(2k1,C) ⊕ · · · ⊕ gl(2ks,C) ⊕ sp(n′,C) if g = sp(n,C);
gl(2k1,C) ⊕ · · · ⊕ gl(2ks,C) ⊕ so(2n′,C) if g = so(2n,C).

Set k∗i = k1 + · · · + ki for 1 6 i 6 s and k∗0 = 0. We assume that h ⊆ l and that
E2k∗

i−1
+1, E2k∗

i−1
+2, ..., E2k∗

i
are contained in the gl(2ki,C)-factor in the above direct sum

decomposition.

If g = sp(n,C), in coordinates

δ(l) =

(
2k1

︷ ︸︸ ︷

k1 −
1

2
, k1 −

3

2
, · · · ,−k1 +

1

2
, · · · · · ·

2ks
︷ ︸︸ ︷

ks −
1

2
, ks −

3

2
, · · · ,−ks +

1

2
, n′, n′ − 1, ..., 1

)

.
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If g = so(2n,C), in coordinates

δ(l) =

(
2k1

︷ ︸︸ ︷

k1 −
1

2
, k1 −

3

2
, · · · ,−k1 +

1

2
, · · · · · ·

2ks
︷ ︸︸ ︷

ks −
1

2
, ks −

3

2
, · · · ,−ks +

1

2
, n′−1, n′−2, ..., 0

)

.

Finally let q be a parabolic subalgebra with a Levi part l.

For ~η = (η1, ...., ηs) ∈ {±1}s, define

[~η] =
(

2k1
︷ ︸︸ ︷
η1, ..., η1, · · · · · · ,

2ks
︷ ︸︸ ︷
ηk, ...., ηk,

n′

︷ ︸︸ ︷

0, ..., 0
)

Let O denote the Richardson orbit induced from the zero orbit of l. The next lemma
follows easily.

Lemma 5.11. Retain the above setting. Then

SGC
(l) =

{

δ(l) +
1

2
[~η]

∣
∣
∣
∣
~η ∈ {±1}s

}

.

In particular, any two elements in SGC
(l) are conjugate under the Weyl group action.

Proposition 5.12. Retain the above setting. Set ~η0 = (

s
︷ ︸︸ ︷

−1, ...,−1) and λq = δ + [~η0].
Then

DistGC
(O) = {AnnU(g)(Mq(λq)}.

Proof. From [V2, Proposition 8.5], Mq(λq) is irreducible. Hence, from Lemma 5.11, we
have AnnU(g)(Mq(λq)) ∈ DistGC

(O). Let I ∈ DistGC
(O). According to Proposition 5.5

and Lemma 5.11, there is some ~η ∈ {±1}s such that I = AnnU(g)(L(δ(l) + [~η])). Since
El(δ(l) + [~η]) is one-dimensional, the Bernstein degree (e.g. [V1]) of Mq(δ(l) + [~η]) is one.
On the other hand, since O is dense in the associated variety of both Lq(δ(l) + [~η]) and
Mq(δ(l)+[~η]), it follows that Lq(δ(l)+[~η]) is the unique constituent ofMq(δ(l)+[~η]) of max-
imal GK dimension. On the other hand, from [BoJa, 4.10 Corollar], for each ~η ∈ {±1}s,
we have AnnU(g)(Mq(δ(l)+ [~η]) = AnnU(g)(Mq(λq). Hence we have AnnU(g)(Mq(λq)) ⊂ I,
both of which have the same associated variety (the closure of O). Then [BoKr, 3.6]
implies that indeed I = AnnU(g)(Mq(λq)).

Definition 5.13. In the setting of Proposition 5.12, we let IO denote the unique element
of DistGC

(O). In addition, we let λ(O) denote the infinitesimal character of IO (namely
λq).

Proposition 5.14. Retain the above setting; in particular recall the notation of Defini-
tion 5.1, Proposition 5.12 and Definition 5.13.

(1) If g = sp(n,C), then IO is the unique integral weakly unipotent primitive ideal
associated to O.

(2) If g = so(2n,C) and k1+· · ·+ks < n, then IO is the unique integral weakly unipotent
primitive ideal associated to O.
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(3) If g = so(2n,C) and k1 + · · ·+ks = n, then AnnU(g)(Mq(δ(l))) is the unique integral
weakly unipotent primitive ideal associated to O.

Proof. (1) follows from Proposition 5.12 and Proposition 5.7. (2) and (3) are obtained
by applying Proposition 5.7 to GC = Spin(2n,C). We omit the details.

Example 5.15. It is interesting to note that in general, IO (of Definition 5.13) is not
necessarily maximal. For example, from [Ma5, Theorem 3.2.2 and Lemma 3.6.1], we have
the following example. Let g = sp(n,C) and l = gl(2k,C) ⊕ sp(n − 2k,C). Then IO is
maximal if and only if 3k > n.

Remark 5.16. Recall that if g = so(2n,C) and k1 + · · ·+ks = n, then the corresponding
Richardson orbit is called very even.

6 Sp(p, q) and SO∗(2n)

In this section, we assume G is either Sp(p, q) or SO∗(2n) and prove the theorems outlined
in the introduction relating cohomologically induced representations to certain degenerate
principal series. We begin by considering some weakly unipotent derived functor modules.
As a starting point, the following result follows immediately from Proposition 4.9.

Corollary 6.1. Let G = Sp(p, q) or SO∗(2n). Suppose O is a complex orbit induced from
a Levi factor of the form appearing in Proposition 4.9. Recall the notation of Section 2.2
and write

Irr(O ∩ s) = {O1
K , · · · ,O

r
K}.

Let p be an arbitrary parabolic subalgebra of g whose Levi part is l. Then, for each j there
exists a θ-stable parabolic subalgebra

qj = lj ⊕ uj

such that p and qj are Ad(GC)-conjugate and

(6.1) KC · (uj ∩ s) = Oj
K .

Moreover

(6.2) GC · (uj ∩ s) = O

for each j. Such a qj is unique up to KC-conjugacy for each choice of p.

We now attach a derived functor module to each Oj
K . Retain the setting as above

and fix Oj
K ∈ Irr(O ∩ s). We fix a parabolic subalgebra p of g whose Levi part is l as in

Corollary 6.1. Let qj = lj ⊕ uj be the θ-stable parabolic defined by Corollary 6.1. Fix a
Cartan h in l, and choose a system of positive roots for h in g that contains the roots of
p. Since p and qj are Ad(GC)-conjugate, we fix gj ∈ GC such that Ad(gj)p = qj . Put
hj = Ad(gj)h. By abuse of notation, we identify (hj)∗ and h via Ad(gj). Write δ for
the half-sum of the positive roots. Recall the infinitesimal character λ(O) ∈ h∗/W of
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Definition 5.13, and choose a representative, also denoted λ(O), dominant with respect
to our choice of positive roots. Set

(6.3) λj = λ(O) − δ.

Since λ(O) differs from δ(l) by a shift orthogonal to δ(lj), it follow that λj differs from
δ(uj) by a shift orthogonal to δ(l). Moreover, λj is integral, and hence it exponentiates
to a one-dimensional (lj , Lj ∩K) module. We may thus form the derived functor module
A(Oj

K) := Aqj(λj) as in [KnV, Chapter 5].

Proposition 6.2. Retain the setting of the previous paragraph and Corollary 6.1. Then
A(Oj

K) is an irreducible unitary representation of G with infinitesimal character λ(O)
(Definition 5.13). Moreover

AV(A(Oj
K)) = Oj

K ,

and
AnnU(g)(A(Oj

K)) = IO.

In fact, Oj
K occurs with multiplicity one in the associated cycle of A(Oj

K).

Proof. All the assertion except the last two are contained in Section 6 of [V4]. (The
key hypotheses are that the induction is in the weakly fair range — see Remark 6.3 —
and the conclusion of Equation (6.2).) The final assertion follows from the argument of
[PT, Proposition 6.2]. AnnU(g)(A(Oj

K)) = IO is obtained from the final assertion and
Proposition 5.12 (also see [V3, Proposition 16.8]).

Remark 6.3. In the terminology of [KnV, Definition 0.52], λj is in the weakly fair range
for qj . In fact it is clear that A(Oj

K) is the most singular module possible, given that

δ(uj) does not exponentiate to Lj . Loosely one may say that A(Oj
K) is on the edge of the

weakly fair range.

Remark 6.4. The definition of A(Oj
K) appears to depend on the choice of p. Later we

see that A(Oj
K) indeed only depends on Oj

K .

Next we introduce the degenerate principal series of Sp(p, q) and SO∗(2n) of particular
interest to us. The key is to arrange for them to have the infinitesimal character λ(O) of
Definition 5.13. The following lemma is a simple exercise.

Lemma 6.5. Retain the setting of Corollary 6.1. There is a Levi subgroup M of G such
that O is induced from the zero orbit of the complexified Lie algebra m of M . Such a
subgroup M is unique up to Ad(G)-conjugation. Moreover, we may assume that M is
θ-stable.

If G = Sp(p, q), then we have

M ≃ GL(k1,H) × · · · × GL(ks,H) × Sp(p′, q′)

with p = p′ +
∑
ki and q = q′ +

∑
ki.

If G = SO∗(2n), then we have

M ≃ GL(k1,H) × · · · × GL(ks,H) × SO∗(2n′)

with n = n′ +
∑
ki.
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To each Richardson orbit appearing here, we define a corresponding degenerate prin-
cipal series IP (O; ~η) for each polarization and some additional data ~η.

Definition 6.6. Retain the setting and notation of Lemma 6.5 and, in particular, fix
a θ-stable Levi subgroup M as in the lemma. Let P be any parabolic subgroup of G
with a Levi decomposition P = MN . For GL(n,H), we let det1/2 denote the following
character. Given A ∈ GL(n,H), let AC denote its image in GL(2n,C) (under any of the
natural embeddings). Then det(AC) is a well-defined real number, and we let det1/2(A)
denote its positive real fourth root. The result is a character det1/2 of GL(n,H) with
weight (1/2, . . . , 1/2). Fix ~η = (η1, ..., ηs) ∈ {±1}s. For G = Sp(p, q) (respectively
G = SO∗(2n)), we let detη̃/2 denote the character of M which is trivial on Sp(p′, q′)
(respectively SO∗(2n′)) but which restricts to detηi/2 on each GL(ki,H) factor. Finally
we set

IP (O; ~η) = nIndG
P (detη̃/2),

where the induction is normalized (Section 2.5).

The following lemma is immediate.

Lemma 6.7. Retain the notation and setting of Definition 6.6. In particular, fix P . Fix
also ~η, ~η1 ∈ {±1}s. Then there is a parabolic subgroup P ′ satisfying the following (1)-(3).

(1) There is a Levi decomposition P = LN ′.

(2) P ′ is Ad(G)-conjugate to P .

(3) IP (O; ~η1) ∼= IP ′(O; ~η).

The Harish-Chandra module IP (O; ~η) may depend on the choice of the polarization
P and the additional data ~η ∈ {±1}s. However, a result of Harish-Chandra tells us that
the distribution character of a parabolically induced representation from an admissible
representation of a Levi subgroup does not depend on the choice of polarization. Hence
we have the following result.

Proposition 6.8. We retain the setting and notation of Definition 6.6. Let ~η, ~η1 ∈ {±1}s

and let P and P ′ be parabolic subgroups with a common Levi subgroup M . Then the
distribution character [IP (O; ~η)] coincides with [IP ′(O; ~η1)] and hence depends only on
O.

Proposition 6.9. Retain the setting and notation of Definition 6.6 and recall Defini-
tion 5.13. Then

AnnU(g)(IP (O; ~η)) = IO.

Proof. The associated variety of the annihilator of a representation induced from πM

is the orbit induced from the associated variety of the annihilator of πM . Hence the
associated variety of the annihilator of IP (O; ~η) is O. Since there is a perfect pairing
between IP (O; ~η) and Mp(δ(m)− [~η]), we see, from that the annihilator of IP (O; ~η) is dual
to AnnU(g)(Mp(δ(m) − [~η])). From the argument in the proof of Proposition 5.12 we see
AnnU(g)(Mp(δ(m)−[~η])) coincides with the annihilator of an irreducible generalized Verma
module. Hence AnnU(g)(IP (O; ~η)) is a primitive ideal. Since IP (O; ~η) has infinitesimal
character λ(O), the current proposition follows from Proposition 5.12.
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As a consequence, we conclude that the degenerate principal series of Definition 6.6
are a source of unitary weakly unipotent representations.

Theorem 6.10. Retain the setting and notation of Definition 6.6. Each irreducible con-
stituent of IP (O; ~η) is unitarizable. Moreover, if O is not very even (Remark 5.16), then
each irreducible constituent of IP (O; ~η) is weakly unipotent (Definition 5.1).

Proof. We seek to show that nIndG
P ((detη̃/2)t) is irreducible for 0 6 t < 1. Then

from a standard argument using a Jantzen filtration (for example see [V2]), we can de-
duce that each irreducible constituent of IP (O; ~η) is unitarizable. From [Ma4, Corollary
5.1.2], nIndG

P (11) is irreducible; this handles the case of t = 0. Using [Ma4, Lemma
4.1.3], we can reduce the irreducibility of nIndG

P ((detη̃/2)t) for 0 < t < 1 to that of
nIndḠ

P̄ ((det1/2)tA) where Ḡ = GL(k1 + · · ·+ ks,H), P̄ is a parabolic subgroup of Ḡ with a

Levi part M̄ = GL(k1,H)×· · ·×GL(ks,H), and det1/2 is a one-dimensional representation
of M̄ which restricts to det1/2 on each GL(ki,H) factor. Tensoring the one-dimensional

representation (det1/2)−t of Ḡ with nIndḠ
P̄ ((det1/2)t) gives the unitarily induced represen-

tation nIndḠ
P̄ (11), which is irreducible ([V3], for example). We have thus shown that each

irreducible constituent of IP (O; ~η) is indeed unitarizable.

From Proposition 5.12, 5.14, and 6.9, any irreducible constituent of IP (O; ~η) is weakly
unipotent for each orbit O which is not very even. The proof is complete.

As preparation for Theorem 6.12, we need the following result.

Proposition 6.11. Let Z be an irreducible Harish-Chandra (g,K)-module with an in-
finitesimal character in PGC

(with notation as in Section 2.1). Fix a Richardson orbit O
as in Corollary 6.1 and assume that AnnU(g)(Z) ∈ Prim(O) (Definition 5.3). Then V

is quasi P -cofinite (Definition 3.9). In particular, each A(Oj
K) (defined before Proposi-

tion 6.2) is quasi P -cofinite.

Proof. Let Z be as in the proposition. Recall the notation of Section 2.6. From the
translation principle, we see that there is some [Y ] ∈ B such that AnnU(g)(Y ) ∈ Prim(O)
and Y ∼ Z. From Lemma 3.10, we have only to show that Y is quasi P -cofinite.

It follows from [Mc] that that there exists a j so that Y and A(Oj
K) belong to the

same cell. (McGovern actually proves that the number of cells consisting of representations
annihilated by an element of Prim(O) is exactly the number r of elements in Irr(O∩ s) =
{O1

K , · · · ,O
r
K}. The r representations A(Oj

K each have different associated varieties, and
since associated varieties are constant on cells, they must belong to distinct cells. Hence
each cell of representations whose annihilator is in Prim(O) contains a unique element of
the form A(Oj

K).) Let Cj denote the cell containing A(Oj
K).

LetX be an irreducible constituent of nIndG
P (11) such that Oj

K is dense in an irreducible
component of AV(X); such an X exists by the computation of Proposition 3.3. Since
AnnU(g)(X) = AnnU(g)(

nIndG
P (11)) ∈ Prim(O), the discussion of the previous paragraph

implies that X is an element of Cj. From Lemma 3.10, we conclude Y is quasi P -cofinite.
The proposition follows.

Theorem 6.10 showed that the degenerate principal series of Definition 6.6 were a
source of weakly unipotent representations attached to O. The following theorem implies
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that all such unipotent representations are obtained this way (apart from the very even
case).

Theorem 6.12. Retain the notation of Definition 6.6 and Proposition 6.2.

(1) In the notation introduced at the end of Section 2.4,

IP (O; ~η) t

r⊕

j=1

A(Oj
K).

That is, IP (O; ~η) has a composition series in which each A(Oj
K) appears exactly

once. Moreover, A(O1
K), ..., A(Or

K ) exhaust the irreducible constituent of maximal
Gelfand-Kirillov dimension.

(2) Suppose X is an integral weakly unipotent representation attached to O (Defini-
tion 5.1). Assume that O is not very even (Remark 5.16). Then there exists j such
that

X ∼= A(Oj
K).

(3) Suppose X is a distinguished unipotent representation attached to O (Definition 5.1).
Then there exists j such that

X ∼= A(Oj
K).

Proof. Suppose X is any representation whose infinitesimal character lies in PGC
and

whose annihilator lies in Prim(O). Then Proposition 6.11 implies that there is some finite-
dimensional representation F such that X is isomorphic to an irreducible constituent of
nIndG

P (F ). But at the infinitesimal character λ(O), nIndG
P (F ) must be of the form IP (O; ~η)

given in Definition 6.6, and we know from Proposition 6.8 that all such representations
have the same distribution character.

Take X = A(Oj
K) in the preceding paragraph. We conclude that each A(Oj

K) appears

as a composition factor of each IP (O; ~η). Corollary 3.2 says each A(Oj
K) appears exactly

once. Propositions 3.3(1) and 6.2 and the additivity of the associated cycle on modules
of the same maximal GK dimension shows there can be no other constituents of maximal
GK dimension. We thus obtain the first assertion of the current proposition. Now parts
(2) and (3) follow from (1) and the previous paragraph.

Using the translation principle, it turns out that we deduce from the “most singular”
case of Theorem 6.12 results about other less singular infinitesimal characters. This is the
content of Proposition 6.13. To formulate it, we need further notation.

For each 1 6 j 6 r, fix a θ-stable parabolic subalgebra qj = lj⊕uj as in Proposition 4.9.
Since p and qj are Ad(GC)-conjugate, we fix gj ∈ GC such that Ad(gj)p = qj . Set
hj = Ad(gj)h. Let χ : MC → C× be a holomorphic one-dimensional representation. We
define χj = χ ◦ Ad(gj)−1, a holomorphic character of the analytic subgroup Lj

C of GC

corresponding to lj .

Write XP for the complexified generalized flag variety GC/PC. For each 1 6 j 6 r,
let Vj denote the (open) G-orbit in GC/PC containing qj . Proposition 4.9 implies that
V1, ...,Vr exhaust all the good open G-orbits in XP .
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For X ∈ m, define

δP (X) =
1

2
tr (adg(X)|n) .

Then δ is a one-dimensional representation of m, and 2nδ lifts to a holomorphic group
homomorphism ξ2nδP

: MC → C× for any n ∈ Z. As usual, we may regard ξ2δ as a one-
dimensional representation of P . With this notation ξ0 = ξ0δP

is the trivial representation
of P .

Let ωP be the canonical line bundle on XP and let Lχ denote the homogeneous
holomorphic line bundle on XP associated to the character χ. So, for instance, ωP =
Lξ2δP

. For a character χ and 1 6 j 6 r, we may consider the derived functor module

(6.4) AVj(χ) = Aqj (χj) = Hdim(k∩uj)(V,Lχ ⊗ ωP )K-finite.

Fix a θ-stable Cartan subalgebra h0 of g0 and a Borel subalgebra b of g such that
h ⊆ b ⊆ p and h ⊆ m. Let ∆+(g, h) denote the positive system of ∆(g, h) corresponding
to b.

Let χ be a holomorphic character of MC and write dχ for the differential of χ. In
addition, write dχ for the restriction of dχ : m → C to h. We call χ P -good (respectively
P -weakly fair) if 〈dχ+ ρ, α∨〉 > 0 (respectively 〈dχ+ δP , α

∨〉 > 0) for all α ∈ ∆+(g, h). If
χ is P -good (respectively P -weakly fair), then AVj(χ) is in the good range (respectively
the weakly fair range ) in the sense of [V4].

Proposition 6.13. Retain the notation introduced just before the proposition (especially
that of (6.4).) In particular, let χ be a P -weakly fair holomorphic character of MC. Let
IP (χ) denote the degenerate principal series representation nIndG

P (CδP
⊗χ). Then (in the

notation introduced at the end of Section 2.4),

IP (χ) t

r⊕

j=1

AVj(χ).

Proof. First, we remark that for any ~η ∈ {±1}s, detη̃/2 ⊗ ξ−δP
can be extended to

a holomorphic character of MC (say χ(~η)). Then we easily see IP (O, ~η) = IP (χ(~η)).
Moreover, if we appropriately choose ~η ∈ {±1}s, then detη̃/2 ⊗ C−δP

is P -weakly fair.
Hereafter we fix such a choice for ~η. We need the following lemma, which is well-known
([V4], [V6], etc.).

Lemma 6.14. For each P -weakly fair χ, we have T
dχ(~η)+ρ
dχ+ρ (AVj(χ)) = AVj(χ(~η)) =

A(Oj
K). Here, T dχ+ρ

dχ′+ρ means the translation functor from dχ+ ρ to dχ(~η) + ρ defined by
tensoring with the irreducible finite-dimensional representation with lowest weight dχ(~η)−
dχ.

Continuation of the proof of Proposition 6.13. From Corollary 3.2 and arguing
as in the proof of Theorem 6.12, we have only to show AVj(χ) appears in IP (χ) as
an irreducible constituent. Let Z be an irreducible constituent of IP (χ). From the
proof of Proposition 6.11, we know that Z lies in the same cell as some AVj(χ). Thus

AV(Z) = Oj
K for some j. Put Z ′ = T

dχ(~η)+ρ
dχ+ρ (Z). Since the differential of detη̃/2 is [~η], we
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have dχ(~η) + ρ = δ(m) + [~η]. Since AV(Z ′) = Oj
K , we conclude AnnU(g)(Z

′) ∈ DistGC
(O).

Theorem 6.12 (2) implies that Z ′ ∼= A(Oj
K). On the other hand, from Lemma 6.14,

we have A(Oj
K) = T

dχ(~η)+ρ
dχ+ρ (AVj(χ)). Therefore, from [V6, Proposition 7.7], we have

Z ∼= AVj(χ).

As a corollary of the above theorem, we obtain a nice characterization of constituents
of maximal GK dimension in integral degenerate principal series.

Corollary 6.15. Let P be a parabolic subgroup of G and let X be a representation of
G parabolically induced from a one-dimensional representation of P . Assume that the
infinitesimal character of X lies in PGC

. Then any irreducible constituent of X of the
maximal Gelfand-Kirillov dimension is a derived functor module in the weakly fair range.

Proof. We may write X as IP (χ) for some holomorphic character. We easily see that
there is some parabolic subgroup P ′ whose Levi part coincides with that of P such that
χ is P ′-weakly fair. Since IP (χ) and IP ′(χ) have the same distribution character (Propo-
sition 6.8), the corollary follows from Proposition 6.13.

Remark 6.16. In the proof of Corollary 6.15, P ′ is not necessarily Ad(G)-conjugate to
P . So, although an irreducible constituent of X in Corollary 6.15 can be written in the
form Aq(λ), q is not necessarily Ad(GC)-conjugate to p. This means that Aq(λ) is not
necessarily attached to an open G-orbit in the complexified generalized flag manifold XP .

To conclude this section, we turn our attention to edge-of-wedge type embeddings.
We begin with the following lemma in the general setting. In its statement, we let Mh

denote the Hermitian dual of a Harish-Chandra module M (e.g. [KnV, Section VI.2]).

Lemma 6.17. Let G be a real reductive group. Let I be a Harish-Chandra (g,K)-module
and let Ψ : Ih → I be a (g,K)-homomorphism. We invoke the following three assump-
tions:

(a1) Dim(Kernel(Ψ)) < Dim(Ih).

(a2) Let V be an arbitrary irreducible constituent of I such that Dim(V ) = Dim(I).
Then, V h ∼= V and the multiplicity of V in I is one.

(a3) Let W be any submodule of I, then Dim(W ) = Dim(I).

Let Socle(I) denote the largest semisimple submodule of I. Then

(1) Socle(I) = Ψ(Ih).

(2) Dim(I/Socle(I)) < Dim(I).

In particular, any irreducible constituent Y of I such that Dim(Y ) = Dim(I) is a sub-
module of I.

Proof. Let Y be any irreducible submodule of I. From (a3), we have Dim(Y ) = Dim(I).
From (a1), we see Ψ(Ih) contains an irreducible constituent isomorphic to Y . But since
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the multiplicity of Y in I is one (by (a2)), it follows that indeed Y is in the image Ψ(Ih).
Hence Socle(I) ⊆ Ψ(Ih).

In order to show (1), we thus have only to show that Ψ(Ih) ∼= Ih/Kernel(Ψ) is semisim-
ple. Let W be any irreducible quotient of Ih/Kernel(Ψ). Then W is also a quotient of
Ih and so W h is realized as a submodule of I. According to (a2), W ≃ W h, and thus
from the previous paragraph, we conclude that the image Ψ(Ih) contains a submodule
isomorphic to W . By (a2), W has multiplicity one in Ψ(Ih). We conclude that any
irreducible quotient W of Ψ(Ih) is also a submodule. Thus Ψ(Ih) is semisimple and (1)
follows. Assertion (2) follows from (a1) and (1).

We consider the following special case. Fix a parabolic subgroup P of G with a θ-stable
Levi part M . Consider the unnormalized generalized Verma modules as above,

uMp(µ) = U(g) ⊗U(p) Cµ.

Let χ be a holomorphic character of MC. Recall that there is a perfect pairing between
uMp(−2δP − dχ) and IP (χ) (where I(χ) is defined in Proposition 6.13).

Here is an edge-of-wedge embedding result for Sp(p, q).

Theorem 6.18. Let G = Sp(p, q) and fix a parabolic subgroup P = MN with

M = GL(k1,H) × · · · × GL(ks,H) × Sp(p′, q′).

For each positive integer ℓ, let mM (ℓ) be the number of i between 1 and s such that ki = ℓ.
Assume

(C1) For each ℓ > p′ + q′, mM (ℓ) is even.

Let χ be a P -weakly fair holomorphic character of MC. Then,

(a) There is an embedding of generalized Verma modules

ψχ : uMp(−2δP − dχ) →֒ uMp(dχ).

This induces an intertwining operator

Ψχ : IP (χ−1 ⊗ ξ−2δP
) → IP (χ).

(cf. [CS, 2]).

(b) We have Socle(IP (χ)) = Ψχ(IP (χ−1 ⊗ ξ−2δP
)). Moreover, Socle(IP (χ)) t IP (χ)

(with notation as in the end of Section 2.4).

(c) We have that the decomposition of Proposition 6.13 is indeed the socle,

Socle(IP (χ)) =

r⊕

j=1

AVj(χ).
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Proof. Set I = IP (χ). Then Ih = I(χ−1⊗ξ−2δP
). Part (a) is obtained in [Ma5, Theorem

5.1.2]. (This is where assumption (C1) is needed.) Thus to establish the theorem, we need
only verify that the assumptions (a1)-(a3) of Lemma 6.17 are satisfied. Since Kernel(Ψ)
has a perfect pairing with uMp(dχ)/uMp(−2δP − dχ) and Dim(uMp(dχ)/Mp(−2δP −
dχ)) < Dim(Mp(−2δP − dχ)) = Dim(I), we have Dim(Kernel(Ψ)) < Dim(I). This is
(a1).

Condition (a2) follows from Proposition 6.13. Moreover, since uMp(−2δP − dχ) is
irreducible, any submodule of I also has a perfect pairing with Mp(−2δP − dχ). This
implies that any submodule of I has the same Gelfand-Kirillov dimension as I. This is
(a3) and the proof is complete.

The following result for SO∗(2n) is obtained in a similar way.

Theorem 6.19. Let G = SO∗(2n) and let P = MN be a parabolic subgroup with

M = GL(k1,H) × · · · × GL(ks,H) × SO∗(2n′).

For each positive integer ℓ, let mM (ℓ) be the number of i between 1 and s such that ki = ℓ.
Assume that

(C2) For each ℓ ≤ n′, mM (ℓ) is even.

Let χ be a P -weakly fair holomorphic character of MC. Then, the conclusions (a)-(c) of
Theorem 6.18 hold in the present context.

7 U(m, n)

For U(m,n), Theorems 7.3 and 7.4 below establish results analogous to those proved for
Sp(p, q) in Corollary 6.15 and Theorem 6.18. It is possible to imitate the approach of
Section 6 in the context of U(p, q), and in particular it is possible to define a version
of the representation IP (O) considered in Definition 6.6. However, such a IP (O) is not
necessarily a class one degenerate principal series. Moreover, the argument leading to the
proof of Corollary 6.15 cannot be imitated for U(m,n). In this section we instead prove
the main results of Theorems 7.3 and 7.4 in a different way.

Henceforth in this section we fix G = U(m,n). We fix a maximal compact subgroup
K ≃ U(m) × U(n) of G and let θ denote the corresponding Cartan involution. As usual,
we let g (resp. k) denote the complexified Lie algebra of G (resp. K); so g ∼= gl(m+ n,C)
and k ∼= gl(m,C) ⊕ gl(n,C).

Let P be a parabolic subgroup of G and choose a θ-stable maximally split Cartan
subgroup sH of G such that sH ⊆ P . (We remark that all Cartan subgroups of G are
connected.) Let M denote the θ-stable Levi part of P (and so sH ⊆M), and write N for
the nilradical of P . We let sh the complexified Lie algebra of sH.

Fix a Borel subalgebra b such that sh ⊆ b ⊆ p. For simplicity, write ∆ for ∆(g, sh).
We let ∆+ denote the system of positive roots corresponding to b and let Π denote the
corresponding basis of ∆. We choose an orthonormal basis e1, ..., em+n of sh∗ so that

∆ = {ei − ej | 1 6 i, j 6 m+ n, i 6= j},
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Π = {e1 − e2, ..., em+n−1 − em+n}.

We modify our original choice of b appropriately so that θ(ei) = em+n−i+1 for all 1 6 i 6
min{m,n} and θ(ei) = ei for all min{m,n} < i < m+ n− min{m,n}.

Let κ = (k1, ..., ks) be a finite sequence of positive integers such that

k = k1 + · · · + ks 6 min{m,n}.

Put k∗i = k1 + · · · + ki for 1 6 i 6 s and k∗0 = 0. Hence k∗s = k. Set m′ = m − k and
n′ = n− k. Define a subset S(κ) of Π as follows,

S(κ) = Π −
{
ek∗

i
− ek∗

i +1, em+n−k∗

i
− em+n−k∗

i +1

∣
∣ 1 6 i 6 s

}
.

We easily see that there exists some κ = (k1, ..., ks) as above such that p is the standard
parabolic subalgebra containing the Borel subalgebra b corresponding to S(κ), i.e. such
that S(κ) is a basis of ∆(m, sh) ∩ ∆+.

Formally, we let U(0, 0) denote the trivial group {1} and we let GL(κ,C) denote the
product GL(k1,C) × · · · × GL(ks,C). Then,

Mκ
∼= GL(κ,C) × U(m′, n′),

and GL(κ,C) and U(m′, n′) can be identified with subgroups of M . The Cartan involution
θ induces Cartan involutions on M , GL(κ,C), U(m′, n′) and we denote them by the same
letter θ.

Next we consider induced representations from characters of parabolic subgroups.
Let µ and ν be complex numbers such that µ + ν ∈ Z. We define a one-dimensional
representation (ηk

µ,ν ,C
k
µ,ν) of GL(k,C) as follows.

ηk
µ,ν(g) = det(g)µdet(g)

−ν
(g ∈ GL(k,C)).

For h ∈ Z, we define a one-dimensional representation (ηp,q
h ,Cp,q

h ) of U(p, q) as follows.

ηp,q
h (g) = det(g)h (g ∈ U(p, q)).

Let u = (u1, ..., us) and v = (v1, ..., vs) be sequences of complex numbers such that
ui + vi ∈ Z for all 1 6 i 6 s. Let h ∈ Z. We define a one-dimensional representation
Cκ
u;h;v of GL(k,C) × U(m− k, n− k) by

Cκ
u;h;v = Ck1

u1,v1
ˆ · · ·ˆ Cks

us,vs
ˆ C

m−k,n−k
h .

When we identify M with GL(κ,C)×U(m− k, n− k), there are ambiguities arising from
automorphisms of GL(κ,C); i.e. any identification we choose may be twisted by complex
conjugation. We choose the identification so that the differential of the restriction of
Cκ
u,h,v to sH is

s∑

j=1

kj∑

i=1

[ujek∗

j−1
+i + vjem+n−k∗

j−1
−i+1 ∈ sh∗] + h

m+n−2k∑

ℓ=1

ek+ℓ;
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i.e. we assign e1, ..., ek (respectively em+n−k+1, ..., em+n) to the holomorphic (respectively
anti-holomorphic) part. We consider the following degenerate principal series representa-
tion of G,

(7.1) IP [u;h;v] = nIndG
P (Cκ

u;h;v).

We let δκ
m,n denote the element of Cs whose i-th entry is

m+n−k∗

i +ki

2 . If m = n = k, we

regard C
0,0
h as the trivial representation of the trivial group. In this case IP [u;h;v] does

not depend on h.

We let J(u, h,v) denote the annihilator of IP [u;h;v] in the universal enveloping al-
gebra U(g).

We define a normalized generalized Verma module as follows. Let p be a parabolic
subalgebra of g = gl(m + n) with Levi decomposition p = l + n. We define a one-
dimensional representation −ρp of l by −ρp(X) = 1

2(ad(X)|n) (X ∈ l). For a one-
dimensional representation ξ of l we extend ξ ⊗−ρp to a one-dimensional representation
of p as usual and define nMp(ξ) = U(g) ⊗U(p) (ξ ⊗−ρp).

We define a weight on sh by

ξ(u, h,v) =
s∑

i=1

ui





ki∑

j=1

ek∗

i−1
+j



 + h
m+n−2k∑

j=1

ek+j +
s∑

i=1

vs−i





ki∑

j=1

em+n−k+k∗

i−1
+j



 .

Obviously, ξ(u, h,v) can be extend to a one-dimensional representation of l. We let p̄κ

denote the opposite parabolic subalgebra to pκ.

Recall that nIP [u;h;v] and nMpκ(−ξ(u, h,v)) admit perfect pairing. nMp̄κ(ξ(u, h,v))
and nMpκ(−ξ(u, h,v)) also admit a perfect pairing. Hence we have:

Lemma 7.1. J(u, h,v) coincides with the annihilator of nMp̄κ(ξ(u, h,v)).

Let c = (c1, ..., cℓ) be a sequence of non-negative integers such that c1+· · ·+cℓ = m+n.
Put c∗i = c1 + · · · + ci and c∗0 = 0. We define a subset S[c] of Π as follows,

S[c] = Π − {ec∗i − ec∗i +1|1 6 i 6 ℓ}.

We let p(c) denote the standard parabolic subalgebra of g associated to S[c]. Under an
appropriate realization of g as gl(m+ n,C), p(c) is the block-upper-triangular parabolic
subalgebra of gl(m + n,C) with blocks of sizes c1, ..., cℓ along the diagonal. If ci = 0
for some i, “a block of size 0” means nothing: we simply neglect it. We let p̄(c) denote
the parabolic subalgebra opposite to p(c). For a sequence h = (h1, ..., hℓ) of complex
numbers, we define a weight on sh as follows.

ξ(h) =

ℓ∑

i=1

hi





ci∑

j=1

ec∗i−1
+j



 .

Fix a degenerate principal series representation nIP [u;h;v] with an integral infinites-
imal character. In particular, u and v are fixed so that u− δκ

m,n,v+ δκ
m,n ∈ Zs. We define
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h = (h1, ..., h2s+1) as follows.

h1 = h,

h2i = us−i+1 (1 6 i 6 s),

h2i+1 = vi (1 6 i 6 s).

We also define a sequence of positive integer c by

c1 = m+ n− 2k,

c2i = c2i+1 = ks−i+1 (1 6 i 6 s).

Finally, we define

Ξ(u, h,v) = {τ ∈ S2s+1 | hτ(1) > · · · > hτ(2s+1)}.

Obviously Ξ(u, h,v) is non-empty. For τ ∈ S2s+1, put cτ = (cτ(1), ..., cτ(2s+1)) and
hτ = (hτ(1), ..., hτ(2s+1)) From [BoJa, 4.10 Corollar] and Lemma 7.1, we have:

Proposition 7.2. If τ ∈ Ξ(u, h,v), then J(u, h,v) coincides with the annihilator of
nMp̄(cτ )(ξ(h

τ )).

From [V2], it follows nMp̄(cτ )(ξ(h
τ )) is irreducible for τ ∈ Ξ(u, h,v). Hence we see that

J(u, h,v) is a primitive ideal.

We now discuss θ-stable parabolic subalgebras with respect to G (cf. [V8, Example
4.5]). Let ℓ be a positive integer. Let Pℓ(m,n) denote the set

{

((m1, ...,mℓ), (n1, ..., nℓ)) ∈ Nℓ × Nℓ

∣
∣
∣
∣

ℓ∑

i=1

mi = m,

ℓ∑

i=1

ni = n,

and mj + nj > 0 for all 1 ≤ j ≤ ℓ

}

.

We also put P(m,n) =
⋃

ℓ>0 Pℓ(m,n) and P(0, 0) = P0(0, 0) = {(∅, ∅)}. If (m,n) ∈
P(m,n) satisfies (m,n) ∈ Pℓ(m,n), we call ℓ the length of (m,n). For (m,n) ∈ P(m,n),
we define

I(m,n) = diag(Im1
,−In1

, ..., Imℓ
,−Inℓ

)

Here, for a positive integer Ik means the k×k identity matrix. (If k = 0, we simply ignore
I0.) Then we can consider the following realization of G,

G =
{
g ∈ GL(m+ n,C)|tḡI(m,n)g = I(m,n)

}
.

Let θ be the Cartan involution given by conjugation by I(m,n). In this realization, we let
q(m,n) denote the block-upper-triangular parabolic subalgebra of g = gl(m+ n,C) with
blocks of sizes p1 + q1, ...., pℓ + qℓ along the diagonal. Then, q(m,n) is a θ-stable parabolic
subalgebra. The corresponding Levi subgroup U(m,n) consists of diagonal blocks,

U(m,n) ∼= U(m1, n1) × · · · × U(mℓ, nℓ).
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We let g(m,n) denote the complexified Lie algebra of U(m,n), and write v(m,n) the
nilradical of q(m,n).

Via the above construction of q(m,n), KC-conjugacy classes of θ-stable parabolic
subalgebras of G are parametrized by P(m,n).

Let (m,n) = ((m1, ...,mℓ), (n1, ..., nℓ)) ∈ Pℓ(m,n) and h = (h1, ...., hℓ) ∈ Zℓ. We
define (ηh,Ch) to be the one-dimensional representation of U(m,n) which restricts to
C

mi,ni

hi
on each U(mi, ni) factor. We let A(m,n)[h] denote the derived functor module

Aq(m,n)(ηh).

Recall the terminology of the good, weakly fair, and mediocre ranges. (The first two
are standard (e.g. [KnV, Introduction]), the third is introduced in [T1].) A simple check
shows that A(m,n)[h] is in the good range for q(m,n) if and only if hi > hi+1 for all
1 6 i < ℓ, and A(m,n)[h] is a derived functor module in the weakly fair range for q(m,n)
if and only if

hi − hi+1 > −
mi + ni +mi+1 + ni+1

2
(1 6 i < ℓ).

For (m,n) ∈ P(m,n),

Dim(Am,n[h]) 6
1

2
dimO(m,n).

We call (m,n) ∈ P(m,n) normal if

Dim(Am,n[h]) =
1

2
dimO(m,n)

holds in the good range. It is known that for a normal (m,n) ∈ Pℓ(m,n) and any mediocre
h ∈ Zℓ, we have

Dim(Am,n[h]) =
1

2
dimO(m,n) and AV(Am,n[h]) = AV(Am,n[h′]),

where h′ is any parameter in the good range (cf. [T1]).

Fix a sequence of positive integers c = (c1, ..., cℓ) such that c1 + · · ·+ cℓ = m+n. Put

O(c) = {(m,n) ∈ Pℓ(m,n) | (m,n) is normal and mi + ni = ci for all 1 6 i 6 ℓ}

This set is of importance when determining the irreducible constituents of degenerate
principal series of maximal Gelfand-Kirillov dimension. We take that up now.

Theorem 7.3. In the notation of this section, consider a degenerate principal series
representation of the form IP [u;h;v] whose infinitesimal character is a weight-lattice
translate of the infinitesimal character of the trivial representation. Define c and h from
(u, h,v) as above. For τ ∈ Ξ(u, h,v) (and using the notation at the end of Section 2.4),
we have

IP [u;h;v] t
⊕

(m,n)∈O(cτ )

A(m,n)[ȟ
τ
];

here ȟ
τ

= (ȟτ
1 , ..., ȟ

τ
2s+1) is defined by

ȟτ
i = hτ(i) −

m+ n− cτ(i)

2
+ cτ ∗i−1 for 1 6 i 6 2s + 1,
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where
cτ ∗i−1 = cτ(1) + · · · + cτ(i−1) for 2 6 i 6 2s+ 1,

and cτ ∗0 = 0.

Proof. Applying the translation principle into the weakly fair range ([V2], [V4]), we may
assume that hτ(1) ≫ · · · ≫ hτ(2s+1).

For simplicity, we say that an infinitesimal character is ρ-integral if it is a weight
lattice translate of the infinitesimal character of the trivial representation. From [BaV2]
(see also [T1, Section 6]) it follows that

(∗) If J is a primitive ideal with ρ-integral infinitesimal character, and OK ∈ Irr(O∩ s)
where O is dense in the associated variety of J , then there is a unique irreducible
Harish-Chandra module A(J,OK) whose annihilator is J and whose associated va-
riety is the closure of OK .

Now let O denote the Richardson orbit associated to p. From the discussion, J(u, h,v)
is primitive and its associated variety is the closure of O. According to the definitions
it follows that every constituent of maximal GK dimension in IP [u;h;v] is annihilated
by J(u, h,v). Thus if we set J = J(u, h,v) and write the associated cycle of IP [u;h;v]
according to Proposition 3.3(1) as

∑

Oj
K
∈Irr(O∩s)

[Oj
K ],

item (∗) and the additivity of the associated cycle on constituents of maximal GK dimen-
sion immediately implies that

(7.2) IP [u;h;v] t
⊕

Oj
K
∈Irr(O∩s)

A(J,Oj
K).

From [V3, Proposition 16.8], we conclude that the annihilator of A(m,n)[ȟ
τ
] contains the

annihilator of nMp̄(cτ )(ξ(h
τ )). Since Dim(A(m,n)[ȟ

τ
]) = 1

2 dimO, Proposition 7.2 implies

that the annihilator of A(m,n)[ȟ
τ
] coincides with J . On the other hand, it is easy to check

(using the algorithm of [T1, Section 5], for instance) that
{
AV(A(m,n)[ȟ

τ
])

∣
∣ (m,n) ∈ O(cτ )

}
= Irr(O ∩ s).

Thus ⊕

Oj
K
∈Irr(O∩s)

A(J,Oj
K) =

⊕

(m,n)∈O(cτ )

A(m,n)[ȟ
τ
],

and the theorem now follows from (7.2).

Next, we consider the case of the P -weakly fair range. (The terminology “P -weakly
fair” is introduced just before Proposition 6.13.) In that case, we have a result analogous
to Theorem 6.18: the socle of the degenerate principal series is just the direct sum of
the irreducible constituents of maximal Gelfand-Kirillov dimension and, moreover, each
constituent corresponds to an open orbit in the complexified generalized flag manifold.
The following result is proved in the same way as Theorem 6.18.
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Theorem 7.4. Assume u = (u1, ..., us),v = (v1, ..., vs) ∈ Zs and h ∈ Z satisfy

u1 > · · · > us > h > vs > · · · > v1.

Set
c(m,n, κ) = (k1, ..., ks,m+ n− 2k∗s , ks, ..., k1) ∈ N2s+1.

Let δκ
m,n denote the element of Cs whose the i-th entry is

m+n−k∗

i−1

2 , where k∗i = k1+· · ·+ki.

(1) We have

Socle(IP [u + δκ
m,n;h;v − δκ

m,n]) ∼=
⊕

(m,n)∈O(c(m,n;κ))

A(m,n)[u1, ..., us, h, vs, ..., v1].

(2) There exists an embedding of a generalized Verma modules

nMpκ(−ξ(u + δκ
m,n, h,v − δκ

m,n)) →֒ nMpκ(−ξ(v− δκ
m,n, h,u + δκ

m,n)).

which induces an intertwining operator

ϕ : IP [v − δκ
m,n;h;u + δκ

m,n]) → IP [u + δκ
m,n;h;v − δκ

m,n]).

Moreover,
Image(ϕ) = Socle(IP [u + δκ

m,n;h;v − δκ
m,n]).

Since U(m,n)) has a compact Cartan subgroup, Proposition 4.4 implies that KC-
conjugacy classes of θ-stable parabolic subalgebras q = l + u parametrize the open G-
orbits on the complexified generalized flag variety XP = GC/PC. Let χ be a holomorphic
character of MC. We let Lχ (respectively ωP ) denote the holomorphic line bundle on XP

associated to χ (respectively the canonical line bundle on XP ). For an open G-orbit V in
XP , we consider the associated derived functor module

AV(χ) = Hdim(k∩u)(V,Lχ ⊗ ωP )K-finite.

We may thus rewrite Theorem 7.4 as follows.

Corollary 7.5. Recall the definition of the P -weakly fair range given before Proposi-
tion 6.13. For each P -weakly fair holomorphic character χ of MC, we have

Socle(nIndG
P (CδP

⊗ χ)) ∼=
⊕

AV(χ),

where the sum is taken over all good open G-orbits in XP (Definition 4.6).

8 GL(n, H)

We turn to G = GL(n,H) and consider a parabolic subgroup P = MN of G with

M ≃ GL(k1,H) × · · · × GL(ks,H).

34



Here, k1 + · · · + ks = n. Write O for the Richardson orbit induced from the zero orbit of
m. In this case Irr(O ∩ s) consists of a since KC orbit OK . Define

(8.1) I(O) = nIndG
P (11).

This is unitarily induced and it follows from [V3] that I(O) is irreducible. The associated

variety of I(O) is O1
K (as can be deduced from Theorem 3.1, for instance) and it has the

special unipotent infinitesimal character associated to O (cf. [BaV3]). Thus the results of
[BaV3] imply that I(O) is annihilated by Jmax(λ(O)).

The structure of the Harish-Chandra cells for GL(n,H) is easier than that for Sp(p, q)
and SO∗(2n) (e.g. [Mc]). From an argument similar to the one leading to Theorem 6.12,
we obtain the following result.

Theorem 8.1. I(O) is the unique weakly unipotent representation attached to O with
integral infinitesimal character.

On the other hand for G = GL(n,H) the unique open G-orbit in the complexified flag
manifold XP = GC/PC is not necessarily good. In fact, we have the following result.

Proposition 8.2. The unique open G-orbit in XP (say V) is good (Definition 4.6) if and
only if P is G-conjugate to its opposite parabolic subgroup.

Proof. First, we remark it is obvious that p is neat in the sense of Definition 4.5 if
and only if P is G-conjugate to its opposite parabolic subgroup. So the if-part of the
current proposition follows from Lemma 4.3. The only-if part is proved as follows. Let
C be the unique KC-orbit contained in V. Let q be any parabolic subalgebra contained
in C. Then, from Lemma 4.3, there is θ-stable Borel subalgebra b such that b ⊆ q. We
choose a θ-stable Cartan subalgebra h such that h ⊆ b. If we consider the basis of the
root system ∆(g, h) corresponding to b, θ induces the non-trivial automorphism of the
Dynkin diagram. Hence, we see that θ(q) is Ad(GC)-conjugate to the opposite parabolic
subalgebra. So, p is Ad(GC)-conjugate to the opposite parabolic subalgebra. The theorem
follows.

We have the following analog of Theorem 6.12.

Theorem 8.3. Let P be a parabolic subgroup of G = GL(n,H) such that P is G-conjugate
to its opposite parabolic subgroup. Let q = l + u be a θ-stable parabolic subalgebra in the
unique closed KC-orbit in GC/PC. Define δq by δq(X) = 1

2tr(ad(X)|u). Then, we have

I(O) ∼= Aq(−δq).

(This is a derived functor module on the “edge” of the weakly fair range in the sense of
Remark 6.3.)

Proof. One may verify that Aq(−δq) is irreducible and integrally weakly unipotent at-
tached to O. So the result follows from Theorem 8.1.

As in the case of Sp(p, q) and SO∗(2n), we have the following result which is deduced
in the same way as Corollary 6.15.
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Corollary 8.4. Let P be a parabolic subgroup of G = GL(n,H) and let X be a represen-
tation of G parabolically induced from a one-dimensional representation of P . Assume
that P is G-conjugate to its opposite parabolic subgroup. Moreover, assume that X has
integral infinitesimal character. Then any irreducible constituent of X of the maximal
Gelfand-Kirillov dimension is a derived functor module in the weakly fair range.

We define IP (χ) and AV(χ) in the same way as the case of Sp(p, q) and SO∗(2n). Since
every involution in the Weyl group of the type A is a Duflo involution, [Ma2, Proposition
2.1.2] implies the following result.

Theorem 8.5. Let G = GL(n,H) and assume that the parabolic subgroup P = MN is
G-conjugate to its opposite. Let χ be a P -weakly fair holomorphic character of MC. Then,

(a) There is an embedding of generalized Verma module

ψχ : uMp(−2δP − dχ) →֒ uMp(dχ)

which induces an intertwining operator

Ψχ : IP (χ−1 ⊗ ξ−2δP
) → IP (χ).

(b) We have Socle(IP (χ)) = Ψχ(IP (χ−1 ⊗ ξ−2δP
)) and, moreover,

Socle(IP (χ)) t IP (χ).

(c) We have
Socle(IP (χ)) ∼= AV(χ).

9 Complex groups

Let G be a connected complex reductive Lie group. Let g be the Lie algebra of G, U(g)
the universal enveloping algebra of g, h a Cartan subalgebra of g, and ∆ the root system
with respect to (g, h). Let W be the Weyl group of the pair (g, h) and let w0 denote the
longest element of W . Fix a positive system ∆+ of ∆ and let Π denote the corresponding
basis of ∆. Fix a triangular decomposition g = n̄ ⊕ h ⊕ n such that n =

∑

α∈∆+ gα and
n̄ =

∑

−α∈∆+ gα. Set b = h + n.

Let g0 denote the normal real form of g which is compatible with the above decompo-
sition and let X ; X̄ denote the corresponding complex conjugation. Then there is an
anti-automorphism of U(g), the so-called Chevalley anti-automorphism, denoted u 7→ tu
which satisfies the following when restricted to g,

(1) tg0 = g0.

(2) tn = n̄, tn̄ = n.

(3) tX = X (X ∈ h).
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Define a homomorphism of real Lie algebras g → g × g via X ; (X, X̄) for X ∈ g. Then
the image of this homomorphism is a real form of g × g, and so we can regard g × g

as the complexification gC of g. Then kC := {(X,−tX) | X ∈ g} is identified with the
complexification of a compact form of g, and of course kC is also identified (as a complex
Lie algebra) with g via X ; (X,−tX). We may regard G × G as the complexification
GC of G.

Let P be a standard parabolic subgroup of G; namely assume that the Lie algebra p

of P contains b. Let M (resp. m) denote the Levi part of P (resp. p) stable under the
Chevalley anti-automorphism. Write np for the nilradical of p. Let S be the subset of Π
corresponding to p; i.e. S is the basis of the root system of h in m. Put S′ = {−w0α|α ∈ S}.
Let p′ denote the standard parabolic subalgebra corresponding to S′. Let wp denote the
longest element of the Weyl group with respect to (m, h).

Under the above identification GC
∼= G×G, the complexification PC of P is identified

with a subgroup P × P of G ×G, and the complex generalized flag variety X = GC/PC

is identified with G/P ×G/P . X can be regarded as the set of parabolic subalgebras of
g which are Ad(GC)-conjugate to Lie(PC) = pC

∼= p × p.

The following is well-known.

Proposition 9.1. X has a unique G-orbit (say O0). The following five conditions are
equivalent to each other.

(1) O0 contains a θ-stable parabolic subalgebra of gC .

(2) p and the parabolic subalgebra opposite to p are G-conjugate.

(3) p = p′.

(4) S is stable under the action of −w0.

(5) w0wp = wpw0. (Namely w0wp is an involution.)

For X ∈ m,define δp(X) = 1
2 tr

(
adg(X)|np

)
. Then, δp is a one-dimensional representa-

tion of m, and 2nδp lifts to a holomorphic group homomorphism ξ2nδp
: M → C× for all

n ∈ Z. Identifying MC
∼= M ×M , for n,m ∈ 2Z we can regard χn,m = ξnδp

ˆ ξmδp
as a

real analytic group homomorphism M → C×. Taking account of the natural projection
P →M , we regard χn,m as a real analytic one-dimensional representation of P . We may
thus consider an unnormalized degenerate principal series representation,

uIndG
P (χn,m) = {f ∈ C∞(G)|f(gp) = χn,m(p)−1f(g) (g ∈ G, p ∈ P )}kC-finite.

If p = b, then δb = ρ = 1
2

∑

α∈∆+ α. For t ∈ R, we define an unnormalized generalized
Verma module,

uMp(t) = U(g) ⊗U(p) Ctδp
.

Here, Ctδp
means the one-dimensional module of p such that m acts on it by tδp. If p = b,

we simply write uM(t) = uMb(t). We let Ip(t) denote the annihilator of Mp(t) in U(g).
From [V2], Mp(t) is irreducible for t 6 −1. Therefore Ip(t) is a primitive ideal for t 6 −1.
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Under the identification gC
∼= g × g, we identify U(gC) ∼= U(g) ⊗ U(g). We write

u ǔ (u ∈ U(g) ) for the anti-automorphism of U(g) generated by X ; −X (X ∈ g). If
V is a U(g)-bimodule, we can regard V as a U(gC)-module as follows,

(u1 ⊗ u2)v = tǔ1vǔ2 (u1, u2 ∈ U(g), v ∈ V ).

In particular, we may regard U(g)/Ip(t) as a U(gC)-module.

We quote:

Theorem 9.2 ([ConD, 2.12 and 6.3]). If n is an even integer such that n > 2, then
uIndG

P (χn,n) is isomorphic to U(g)/Ip(−n) as U(gC)-modules.

Together with [BoKr, 3.6] and the primitivity of Ip(−n) (n > 0), we have:

Corollary 9.3. If n > 2, then uIndG
P (χn,n) has a unique irreducible submodule (say Yn).

The Gelfand-Kirillov dimension of Yn equals that of uIndG
P (χn,n). The Gelfand-Kirillov

dimension of uIndG
P (χn,n)/Yn is strictly smaller than that of Yn.

Since uIndG
P (χ2,2) is the induced module associated with the canonical bundle, we only

consider the case of n = 2. For simplicity, we put I = Ip(−2) = Ip′(0). (The latter equality
follows from [BoJa, 4.10 Corollar] where is it proved that Ip(−n) = Ip′(n − 2).) Let M
and N be U(g)-modules. HomC(M,N) has a natural structure of a U(g)-bimodule (using
the Chevalley anti-automorphism), and so we we may consider HomC(M,N) as a U(gC)
module. We denote the kC-finite part of Hom(M,N) by L(M,N). The functor V  
L(uM(0), V ) defines an equivalence of categories between a category of highest weight
modules and the category of Harish-Chandra (gC, kC)-modules (Bernstein-Gelfand-Joseph-
Enright cf. [BeG], [Jo1]). Via this equivalence of categories, the 2-sided ideals of U(g)/I
correspond to the U(g)-submodules of uM(0)/IuM(0). In particular Y2 corresponds to
the irreducible highest weight module with the highest weight τρ− ρ ([Jo1], also see [Jo2,
page 43]). Here, τ ∈ W is the Duflo involution associated to the primitive ideal I. For
integral weights µ, ν ∈ h∗, we let V (ν, µ) denote the Langlands (Zhelobenko) subquotient
of uIndG

B(ξν+ρ ˆ ξµ+ρ). From [Jo1, 4.5], we have:

Theorem 9.4. The unique irreducible submodule Y2 of uIndG
P (χ2,2) is isomorphic to

V (−τρ,−ρ) = V (w0τw0ρ, ρ).

Using the equivalent conditions in Proposition 9.1, we may compare Y2 with AO0
=

Hdim np(O0,L)kC-finite. For orientation, we include the following result.

Theorem 9.5 ([E], [VZ]). Assume that p satisfies the equivalent conditions in Proposi-
tion 9.1. Then we have

AO0
∼= uIndG

P (χ2,0) ∼=
uIndG

P (χ0,2).

Since 2δp = ρ − w0wpρ, we see AO0
is the Langlands subquotient V (−w0wpρ,−ρ) of

uIndG
B(ξ−w0wpρ+ρˆξ−ρ+ρ). Since uMp(−2) is the irreducible highest weight module of the

highest weight −2δp = w0wpρ− ρ, we have:
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Theorem 9.6. Assume that p satisfies the equivalent conditions in Proposition 1.2.1.
Then AO0

is isomorphic to the unique submodule of uIndG
P (χ2,2) if and only if w0wp is a

Duflo involution in W .

In case that w0wp is a Duflo involution, the embedding of AO0
into uIndG

P (χ2,2) can
be regarded as giving rise to intertwining operators between the following degenerate
principal series representation,

uIndG
P (χ2,0) →֒ uIndG

P (χ2,2),(9.1)
uIndG

P (χ0,2) →֒ uIndG
P (χ2,2).(9.2)

In fact, the following result holds:

Proposition 9.7 ([Ma2]). Let t be a non-negative even integer. Then we have

uMp(−t− 2) →֒ uMp(t)

if and only if w0wp is a Duflo involution in W .

Taking account of the isomorphism uIndG
P (χm,n) ∼= (uMp(−m) ⊗ uMp(−n))∗

kC-finite,

the intertwining operators of (9.1) and (9.2) are induced from the embeddings the gener-
alized Verma modules in the proposition.

Finally, if W is a Weyl group of the type A, each involution in W is a Duflo involution
([Du]). Hence, we obtain:

Corollary 9.8. If G = GL(n,C) and p satisfies the equivalent conditions in Proposition
1.1, the socle of uIndG

P (χ2,2) is isomorphic to AO0
.
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