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Abstract. Motivated by relating the representation theory of the split real and p-adic
forms of a connected reductive algebraic group G, we describe a subset of 2r orbits on
the complex flag variety for a certain symmetric subgroup. (Here r is the semisimple rank
of G.) This set of orbits has the property that, while the closure of individual orbits are
generally singular, they are always smooth along other orbits in the set. This, in turn,
implies consequences for the representation theory of the split real group.

1. introduction

The main result of this note is a simple statement about the orbits of a certain symmetric
subgroup on the flag variety for a complex reductive Lie algebra g. As we explain below,
it relies on deeper motivation to prove. Setting aside that motivation for the moment, the
result can be stated as follows. Let b = t⊕ n be a Borel subalgebra of g, and write Π for the
corresponding simple roots. Let (G,K) denote the complex symmetric pair corresponding
to the equal-rank quasisplit real form of G. Fix an ordering of Π. Then to each subset S of
Π, we attach an orbit QS of K on the flag variety B for g such that Q∅ is closed;

dim(QS) = dim(Q∅) + |S|; (1.1)

and

QS′ ⊂ QS iff S′ ⊂ S. (1.2)

The orbit closure QS contains many other orbits besides the various QS′ and is generally
highly singular. However, if we further assume K is connected, QS is always smooth along
the orbits QS′ . In particular,

pQS′ ,QS
=

{
1 if S′ ⊂ S

0 if S′ ̸⊂ S,
(1.3)

where pQS′ ,QS
is the Kazhdan-Lusztig-Vogan polynomial corresponding to the trivial local

systems on QS′ and QS . The definition and properties of the orbit QS are given in Proposi-
tion 2.3, Corollary 2.4, and Proposition 2.10. The assertion about polynomials is proved in
Theorem 3.4. See Remark 3.6 for a discussion of the hypothesis that K is connected.

The proof of the results of the previous paragraph begins to reveal our motivation. Let
T be the complex torus corresponding to t. It acts with finitely many orbits on the span
g−1 of the negative simple root spaces of t in g. (As the notation indicates, another way
to think of this span is as the −1-eigenspace of the adjoint action of ρ∨ in g, where ρ∨ is
the half-sum of the simple coroots.) The orbits of T on g−1 are easy to describe: there is
a bijection between subsets of the simple roots Π and T orbits which takes a subset S to
the T orbit through a vector in g−1with nonzero components in exactly the negative roots
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spaces determined by S. (See (2.1) below.) The closure order on such orbits corresponds
to the inclusion partial order on subsets of Π, and all orbit closures are smooth. For each
choice of order of Π, we define a T -equivariant map in Section 2,

ϵ : g−1 −→ B, (1.4)

prove it has good properties, and deduce (1.2) and (1.3) from the corresponding statements
about T orbits. We emphasize that the map ϵ and the definition of the orbits QS that
appear above depends on the choice of ordering on Π; see Examples 2.5 and 2.6 for explicit
examples of this dependence. But the good geometric relationship summarized in Theorem
3.4 (and its proof) is independent of the ordering considered.

The map ϵ in (1.4) is, in disguise, a relationship between a version of unramified Langlands
parameters for a split reductive p-adic group and the Langlands parameters (or rather the
Adams-Barbasch-Vogan reformulation of them) of a corresponding split real group. This
is the motivation mentioned above. Describing such a relationship requires recalling large
parts of [Vo3], and we will not attempt to do so here. We will instead briefly recall how the
geometry of K orbit closures on B (respectively, the T orbit closures on g−1) control the
multiplicities of composition factors in certain standard modules for a corresponding real
group (respectively, a corresponding p-adic group).

From the perspective of the previous paragraph, the geometric considerations above should
be thought of “on the dual side”, and they translate into precise representation theoretic
statements. In more detail, let G′

R be the split real form of the Langlands dual of G, and
let I(ρ) denote the spherical principal series of G′

R with trivial infinitesimal character. If
we apply the duality of [Vo2] to (1.3), we conclude that to each subset S ⊂ Π, there is
an irreducible subquotient JS of I(ρ) that occurs with multiplicity 1. (For example, J∅
is the trivial representation.) Note that just as QS can include many other orbits besides
the various QS′ and the singularities along these other orbits can be complicated, there are
generally far more composition factors of I(ρ) than the various JS , and these composition
factors can occur with complicated multiplicities in I(ρ) described by the Kazhdan-Lusztig-
Vogan algorithm. Again, we emphasize that the definition of QS , and therefore JS , depends
on a choice of order of Π. If we change the choice of order, we potentially get a different set
of composition factors that have multiplicity one. But, even by varying over all orders, we
still see only a generally small subset of all composition factors of I(ρ).

Now, switching to the p-adic side, let F be a p-adic field and let G′
F denote the F -points

of the split form of a connected reductive algebraic group (dual to G) defined over the
algebraic closure F̄ . Results of Casselman, as explained for example in [Vo3, Section 4.9],
show that there is an unramified principal series of G′

F with one-dimensional subquotient
whose composition factors are parameterized by the subsets S of Π, and each irreducible
subquotient occurs with multiplicity one. In this way, one can view our results as a kind
of multiplicity-preserving correspondence (depending on the ordering of Π) between these
subquotients and a subset of the irreducible subquotients of the spherical principal series of
the real group.

The next natural generalization of these kinds of results is to look beyond the unramified
representations of the p-adic group to other members of the L-packets that contain them
([Lu1, Lu2]). Geometrically, this corresponds to considering other blocks of nontrivial local
systems on the orbits QS and the corresponding T orbits on g−1. Unfortunately, but perhaps
not surprisingly, this requires case-by-case considerations. We carry some of them out in
Example 3.5.



ORBITS OF A SYMMETRIC SUBGROUP 3

Results of the kind established here were first obtained for GL(n) in [CT1, Section 2.5].
Our present results generalize those of [CT1] to all split groups using different arguments, but
only in the restrictive setting of regular integral infinitesimal character. For classical groups,
we will relax this latter hypothesis in a future paper based on the techniques developed
here [BT]. Part of our motivation is a view toward how the unitary duals of a real and p-
adic group are related: the unitarity algorithm of [ALTV] and (as of yet unproven) natural
analogs for p-adic groups rely heavily on fine structure of the composition series of standard
induced modules; so relating the latter is a natural prerequisite to relating the unitarity
algorithms.

Finally, it is a pleasure to thank Professor Toshiyuki Kobayashi for his long and inspiring
career, replete with wonderful and deep results, from which we have learned immensely.

2. matching of orbits

In this section we explain the map ϵ described in the introduction. Let G be a complex
connected reductive algebraic group with Lie algebra g. Fix a Borel subalgebra b = t⊕n, and
let B = TN denote the corresponding Borel subgroup of G. Write Π for the corresponding
set of simple roots, and for each α ∈ Π, let

pα = g−α ⊕ b,

where g−α denotes the −α root space. Let Pα denote the corresponding subgroup of G.

Let λ be a semisimple element of t. Let gk denote the k-eigenspace for ad(λ) acting on g,

gk = {x ∈ g | ad(λ)x = kx}.
Then the centralized in G of λ, G(λ), acts via Ad with finitely many orbits on each gk; see
[Vi].

In what follows, we will be interested in only the very special case of λ = ρ∨, one-half the
sum of the coroots for t in g. View λ, as we may, as an element of t. Then all eigenspaces
for the action of ad(λ) on g are integral, and G(λ) = T . We will be concerned only with the
−1-eigenspace, and it is easy to see that it is spanned by the root spaces for the negative
simple roots,

g−1 =
⊕
α∈Π

g−α.

(No confusion arises in practice by introducing both integer and root subscripts on g.) The
T orbits on g−1 are very easy to describe. For each subset S ⊂ Π, let xS ∈ g−1 denote a
vector with nonzero components in exactly those g−α for α ∈ S. Then

OS := T · xS , (2.1)

consists of all such vectors with nonzero components in exactly those g−α for α ∈ S. The
closure of OS consists of all vectors with components (possibly zero) in those g−α for α ∈
S. From this it follows, as noted in the introduction, that the closure on the T orbits in
g−1 corresponds to the inclusion partial order on Π. This is a special case of the more
general framework of Zelevinsky [Z1, Z2], partly based on evidence provided by the results
of Casselman mentioned in the introduction.

Let y(λ) = exp(iπλ). By the integrality of λ = ρ∨, y(λ)2 is central in G. Let θ denote
the involution of G obtained by conjugation by y(λ), and let K be the fixed points of θ.
Since T centralizes λ, T ⊂ K. (In other words, the symmetric pair (G,K) is equal rank.)
Moreover, again by construction, the differential of θ sends each root vector xα ∈ gα to
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−xα, for α ∈ Π. Equivalently, the Borel subalgebra b is θ-stable and every simple root is
noncompact imaginary. (In other words, (G,K) is equal rank and quasisplit.) Let B ≃ G/B
denote the variety of Borel algebras in g. Then K acts with finitely many orbits on B, and
(since b is θ-stable) the orbit K · b is closed.

We seek to define the map ϵ of (1.4). For this, we fix a choice of ordering of Π,

Π = {α1, α2, . . . , αn}. (2.2)

In what follows, the map ϵ depends on this choice of order, but the result we state below
are valid for all choices.

Definition 2.1. Let S = {αj1 , αj2 , . . . , αjs} be an (ordered) subset of Π consisting of distinct
roots. To simpliy notation, write Pk for the parabolic subgroup corresponding to αjk defined
above. Define

X S = K ×
K∩B

Ps ×
B
Ps−1 ×

B
. . .×

B
P1

the quotient of K × Ps × . . .× P1 by the action

(b0, bs, bs−1, . . . , b1) · (k0, ys, ys−1, . . . , y1) = (k0 b0, b
−1
0 ys bs, b

−1
s ys−1 bs−1, . . . , b

−1
1 y1).

(If S = ∅, this reduces to X ∅ = K/(K ∩B).) Let K act on X S via

k · [k0, ys, ys−1, . . . , y1] = [k k0, ys, ys−1, . . . , y1].

Lemma 2.2. X S is a smooth variety of dimension dim(K · b) + |S|. If K is connected, X S

is irreducible.

Proof. This is well-known. See [BE, Section 6] and [EWY]. □

Proposition 2.3. For S ⊂ Π, let

τS : X S −→ B
[k, ys, ys−1, . . . , y1] −→ kexp(ys) . . . exp(y1) · b.

The map τS is a well-defined K-equivariant map. Moreover, τS(X S) is the closure of a
single K orbit which we define to be QS.

Let πk denote the natural projection from G/B to G/Pk. Then, the closure of QS is given
by

QS =
(
(π−1
s ◦ πs) ◦ · · · ◦ (π−1

1 ◦ π1)
)
(Q∅), (2.3)

where, by definition, Q∅ = K · b.

Proof. This is more or less obvious from the definitions. See Lemma 6.1 in [Vo1], or the
exposition of [BE, Section 6] and [EWY, Section 4]. □

Corollary 2.4. Fix S, S′ ⊂ Π and define K orbits QS and QS′ as in Proposition 2.3. Then
QS′ ⊂ QS iff S′ ⊂ S as in (1.2).
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Example 2.5. Let G = GL(4,C). Label the simple roots so that α2 corresponds to the
middle node of the Dynkin diagam. (In other words, α2 is the unique simple root not
orthogonal to any other simple roots.) In this setting, K ≃ GL(2,C)×GL(2,C). The orbits
of K on B are well-known, and parametrized in terms of certain involutions with signed fixed
points called clans; see [MT, Y]. The closure order is given in Figure 1. In the figure, a solid

edge Q′ i→ Q indicates that Q is dense in π−1
i (πi(Q

′)), and so Q′ is in the closure of Q. The
dashed edges indicate closure relations not obtained in this way. If we fix any of the four
orders of the simple roots so that α2 does not appear last in the order, then the boxed orbits
are the set of orbits of the form QS for S ⊂ Π. However, if we choose one of the two orders
so that α2 appears last, then the set of orbits of the form QS are the boxed orbits except
that the orbit labeled by 1+−1 does not correspond to S = Π, and instead the shadow-boxed
orbit labeled 1212 does. A hand calculation (or using the atlas software) implies that the
closures of Q1+−1 and Q1212 are both smooth along all other boxed orbits; but also reveals
that the closure of Q1+−1 is singular along Q++−−, while the closure of Q1212 is singular
along Q+−−+ and Q−++−.

Example 2.6. Let G = Sp(4,C). Label the simple roots so that α is short and β is long. In
this case, K ≃ GL(2,C). The closure order ofK orbits on B is given in Figure 2. Once again,

a solid edge Q′ i→ Q indicates that Q is dense in π−1
i (πi(Q

′)), and so Q′ is in the closure of
Q. The dashed edges indicate closure relations not obtained in this way. If we choose the
order, so that β appears before α, the boxed nodes correspond to the orbits of the form QS
for S ⊂ Π. If we instead choose the order so that β is last, the same boxed orbits appear,
except that QΠ corresponds to the shadow-boxed orbits Q1212 (rather than Q1+−1). A quick
hand calculation (confirmed by atlas) shows that, in both cases of the choice of ordering,
all orbits have smooth closure. However, note that Q1+−1 admits a nontrivial irreducible K
equivariant local system, while the shadow-boxed orbit Q1212 does not. We return to this
distinction in Example 3.5 below.

Definition 2.7. Fix an ordering of Π = {α1, α2, . . . , αn} as in (2.2). Write z ∈ g−1 as
z =

∑
i zi with zi in the root space for −αi. Set

ι : g−1 −→ XΠ (2.4)

z → [1, exp(zn), exp(zn−1), . . . , exp(z1)];

ϵ : g−1 −→ QΠ

z → τΠ(ι(z)) = exp(zn)exp(zn−1) · · · exp(z1) · b.

Lemma 2.8. Let OS = T · xS be as in (2.1). Then

dim(ϵ(OS)) = dim(OS).

Proof. Since ϵ is T -equivariant, ZT (xS) ⊂ ZT (ϵ(xS)). So the result follows from the other
containment

ZT (xS) ⊃ ZT (ϵ(xS)). (2.5)
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Figure 1. G = GL(4,C); see Example 2.5.

Write xS =
∑

i zi with possibly some of zi’s equal to zero. Because [g−1, g−1] ⊂ g−2, there
is a z ∈

⊕
k≤−2 gk so that

ϵ(xS) := exp(zn)exp(zn−1) · · · exp(z1) · b
= exp(zn + zn−1 + · · ·+ z1 + z) · b
= exp(xS + z) · b.
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Figure 2. G = Sp(4,C); see Example 2.6.

If t ∈ T centralizes ϵ(xS), it thus centralizes xS + z. Since T preserves the grading of
g =

⊕
k gk, if t ∈ T centralizes xS + z, it must centralize xS , and so (2.5) follows. □

Lemma 2.9. Write TŪ for the opposite Borel subgroup to B = TU . Then Ū ∩K acts freely
on

[Ū ∩K] · ϵ(g−1).

Moreover, for all x ∈ g−1, (
[Ū ∩K] · ϵ(x)

)
∩ ϵ(g−1) = ϵ(x).

Proof. Suppose k ∈ Ū ∩K and z =
∑
zi ∈ g−1 are such that

k · exp(zn) exp(zn−1) · · · exp(z1) · b = exp(zn) exp(zn−1) · · · exp(z1) · b. (2.6)

The stabilizer in G of b is B and Ū ∩B = 1. Thus (2.6) implies

k · exp(zn) exp(zn−1) . . . exp(z1) = exp(zn) exp(zn−1) . . . exp(z1),

from which we conclude that k = 1, verifying the first assertion of the lemma. The second
assertion follows in a similar way. □

Proposition 2.10. With notation as in Proposition 2.3,

dim(QS) = dim(Q∅) + |S|, (2.7)

as in (1.1).

Proof. By Proposition 2.3,
dim QS ≤ dim(Q∅) + |S|.

We argue that the converse inequality holds. Since Ū ∩K · ϵ(OS) is contained in QS , Lemma
2.9 implies

dim(QS) ≥ dim(Ū ∩K) + dim(ϵ(OS)). (2.8)

Because b is θ stable Q∅ = K/(K ∩B), and so

dim(Q∅) = dim(Ū ∩K).

Together with Lemma 2.8 and dim(OS) = |S|, (2.8) becomes

dim(QS) ≥ dim(Q∅) + |S|,
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as we wished to show. □

Corollary 2.11. If K is connected, [K ∩ B̄] · ϵ(x) is dense in K · ϵ(x).

3. matching of geometric multiplicities

In this section, we further refine the matching of orbits and closure relations of Proposi-
tion 2.3 and Corollary 2.4. Our goal is to show that the computation of local intersection
cohomology for the closure of the T orbit OS on g−1 (possibly with nontrivial coefficients)
matches the corresponding calculation for the closure of the K orbit QS on B. The main
result is Theorem 3.4.

Remark 3.1. If one is only interested in a statement like (1.3), then one can proceed
combinatorially case-by-case using recursion formulas for KLV polynomials in the interval⋃
S⊂ΠQS between Q∅ and QΠ in the closure order on K orbits on B. However, our aim is

to intrinsically relate the orbits OS and QS (as we do below).

3.1. Preliminaries. SupposeX is a complex algebraic variety on which a complex algebraic
group H acts with finitely many orbits. Let C(H,X) be the category of H-equivariant
constructible sheaves onX.Write P(H,X) for the category ofH-equivariant perverse sheaves
on X.

Irreducible objects in both categories are parametrized by the set Ξ(H,X) consisting of
pairs (Q,V) with Q an orbit of H on X and V an irreducible H-equivariant local system
supported on Q. To each γ ∈ Ξ(X,H), we write con(γ) and per(γ) for the corresponding
irreducible constructible and perverse sheaves. By taking Euler characteristics, we identify
the Grothendieck group of the categories P(H,X) and C(H,X). In this way, we can consider
the change of basis matrix,

[per(γ)] =
∑

ψ∈Ξ(H,X)

(−1)d(ψ) CH,X(ψ, γ)[con(ψ)]; (3.1)

here ψ = (Qψ,Vψ) and d(ψ) = dim(Qψ). The matrix (CH,X(ψ, γ)) is called the geometric
multiplicity matrix.

3.2. Induced bundles. Suppose a group H acts on a variety X with finitely many orbits.
Suppose H ⊂ H ′. Recall the induced bundle

H ′ ×H X

defined by quotienting H ′ ×X by (h′h, x) ∼ (h′, hx) for all h ∈ H. See [ABV, Chapter 7],
for example.

Proposition 3.2. Retain the general setting of Section 2; in particular, K may be discon-
nected. Then the map

A : [K ∩ B̄]×T g−1 −→ [K ∩ B̄] · ϵ(g−1)

defined by

A(k, x) 7→ k ϵ(x)

is a K ∩ B̄ equivariant isomorphism.
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Proof. Clearly A is surjective and K ∩ B̄ equivariant. We prove that A is injective. Suppose
A(k1, x1) = A(k2, x2). Write xk =

∑
i=1

tzkji with z
k
ji
in the root space for g−αji

. Then

ϵ(xk) = exp (zkjt) . . . exp (zkj1) · b.

Write k1 = n̄1 t1 with n̄1 ∈ [Ū ∩ K] and t1 ∈ T. Similarly, write k2 = n̄2 t2. If t ∈ T , we
have,

ϵ(Ad(t)xk) = exp (Ad(t)zkjt) . . . exp (Ad(t)zkj1) · b.

Then, the equality A(k1, x1) = A(k2, x2), becomes

n̄1 ϵ(Ad(t1)x1) = n̄2 ϵ(Ad(t2)x2). (3.2)

By Lemma 2.9, Ad(t1)x1 = Ad (t2)x2.

Moreover,

A(k1, x1) = n̄1ϵ(Ad(t1)x1) = n̄1 ϵ(Ad(t2)x2)

which equals

A(k2, x2) = n̄2 ϵ(Ad(t2)x2)

by hypothesis. In particular, n̄1 ϵ(Ad(t2)x2) = n̄2 ϵ(Ad(t2)x2). By Lemma 2.9 again, n̄1 =
n̄2. We conclude that

(k2, x2) ∼ (n̄2 t2,Ad(t
−1
2 )Ad(t1)x1) ∼ (n̄2,Ad(t1)x1)

∼ (n̄1,Ad(t1)x1) ∼ (k1t
−1
1 ,Ad(t1)x1) ∼ (k1, x1),

as we wished to show. □

Corollary 3.3. In the setting of Proposition 3.2, there is a natural correspondence of T
orbits on g−1 and K ∩ B̄ orbits on [K ∩ B̄] · ϵ(g−1),

T · x 7→ [K ∩ B̄] · ϵ(x).

Write AT (x) for the component group of the centralizer of x in T , and similarly for AK∩B̄(ϵ(x)).
Then the natural map T → [K ∩ B̄] induces an isomorphism

AT (x) ≃ AK∩B̄(ϵ(x)).

The resulting natural bijection

Ξ(K ∩ B̄, [K ∩ B̄] · ϵ(g−1)) → Ξ(T, g−1) (3.3)

implements an identification of the geometric mulitplicity matrices of Section 3.1,

CT,g−1 = CK∩B̄,[K∩B̄]·ϵ(g−1). (3.4)

Proof. According to [ABV, Proposition 7.14], there is a natural correspondence of T orbits
on g−1 and K ∩ B̄ orbits on the induced bundle [K ∩ B̄] ×T g−1 with the corresponding
properties as listed in the corollary. Composing with the isomorphism of Proposition 3.2
completes the proof. □
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3.3. Matching. We now assume K is connected to establish consequences of the density
statement of Corollary 2.11. The reason for the connectedness hypothesis is to ensure that
the K orbits QS (and their closures) are irreducible. See Remark 3.6 for a further discussion.

Recall that K · ϵ(g−1) = QΠ, by definition, and fix γ ∈ Ξ(K,QΠ). Fix x in the support
of con(γ), and let AK(ϵ(x)) denote the component group of the centralizer of ϵ(x) in K, an
elementary 2-group. Since AK(ϵ(x)) is abelian, the irreducible constructible sheaf con(γ)
has one-dimensional stalks, and since K is connected, its support is irreducible. It therefore
restricts to an irreducible constructible sheaf on [K ∩ B̄] · ϵ(x)⊂ [K ∩ B̄] · ϵ(g−1) of the form
con(γ′) for some γ′ in Ξ(K ∩ B̄[K ∩ B̄] · ϵ(g−1). The assignment γ 7→ γ′ gives a map

Ξ(K,QΠ) → Ξ(K ∩ B̄, [K ∩ B̄] · ϵ(g−1)). (3.5)

The density of Corollary 2.11 implies that the perverse sheaf per(γ) restricts to per(γ′).
Thus, if γ and δ map to γ′ and δ′ in (3.5), the corresponding entries of the geometric
multiplicity matrices of Section 3.1 match,

CK,QΠ
(γ, δ) = CK∩B̄,[K∩B̄]·ϵ(x)(γ

′, δ′). (3.6)

If we compose the maps of (3.3) and (3.5), we obtain a map of parameters

Φ : Ξ(K,QΠ) −→ Ξ(T, g−1), (3.7)

which can be described explicitly as follows. Consider the natural map

AT (x) → AK(ϵ(x)).

Since the right-hand side is abelian, we get a pullback on irreducible representations,

̂AK(ϵ(x)) −→ ÂT (x)). (3.8)

Because irreducible local systems supported on K · ϵ(x) are parametrized by irreducible
representation of AK(ϵ(x)), and similarly for irreducible local systems on g−1 and AT (x),
we obtain the map Φ of (3.7). Unwinding the definitions, we see that if ψ is the trivial
local system on QS , then Φ(ψ) is the trivial local system on OS . Thus, the matching of the
geometric multiplicity matrices in (3.4) and (3.6) implies our main result:

Theorem 3.4. Retain the notation of the previous paragraph, especially the definition of Φ
in (3.7). Recall that K is assumed to be connected.

(a) As in (3.1), we define the geometric change of basis matrix as follows,

[per(γ)] =
∑

δ∈Ξ(K,QΠ)

(−1)d(γ) CK,QΠ
(γ, δ)[con(δ)]. (3.9)

Similarly, define

[per(ϕ)] =
∑

ψ∈Ξ(T,g−1)

(−1)d(ψ) CT,g−1(ϕ, ψ)[con(ψ)]. (3.10)

Then,

CK,QΠ
(ψ, γ) = CT,g−1(Φ(ψ),Φ(γ)).
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(b) In the notation of (2.3), fix ordered subsets S′, S ⊂ Π, and suppose ψ is the trivial
local local system on QS′ and γ is the trivial local system on QS. Then, in the
notation of (2.1), Φ(ψ) is the trivial local system on OS′ and Φ(γ) is the trivial
local system on OS. Because the closures of the orbits OS′ and OS are smooth, we
conclude

CK,QΠ
(ψ, γ) = CT,g−1(Φ(ψ),Φ(γ)) =

{
1 if S′ ⊂ S

0 if S′ ̸⊂ S;

cf. (1.3).

□

Example 3.5. IfK is connected — which is automatic if G is simply connected, for example,
as in the examples below — we always get the matching of Theorem 3.4. But it is interesting
to ask when Φ in (3.7) is surjective; or, equivalently, when the map in (3.8) is surjective
as x ranges over representatives of T orbits on g−1. In this case, every Kazhdan-Lusztig
polynomial that appears for T orbits on g−1 is matched with a Kazhdan-Lusztig-Vogan
polynomial for K orbits on B by Theorem 3.4(a). Note that ϵ (and hence Φ) depends on a
choice of ordering of Π.

For G = GL(n,C), K ≃ GL(⌈n/2⌉) × GL(⌊n/2⌋) is connected. All A-groups are trivial,
so Φ is clearly surjective. When the ordering is the standard Bourbaki ordering, the map Φ
essentially appears in [CT1, Section 2.5]. The other orderings give rise to maps Φ that are
different (as already seen in Example 2.5).

For G = SL(n,C), K is again connected, but there is no chance for Φ to be surjective for
n ≥ 3. When S = Π, AT (xS) = Z/nZ, while AK(ϵ(xS)) is an elementary 2-group. To obtain
a complete matching of polynomials, one must match various blocks of Ξ(T, g−1) with K
orbits constructed in SL(n/d,C) for d|n.

When G = Sp(2n,C), K ≃ GL(n,C) is connected, but the choice of ordering on Π
is important, as Example 2.6 already indicates. In fact, that example generalizes quite
naturally as follows. Let β ∈ Π denote the long simple root, and let α denote the unique
short simple root not orthogonal to β. If β ∈ S, then AT (xS) = Z/2Z; in all other cases
AT (xS) is trivial. If the order on Π is chosen so that β appears before α, and β ∈ S, then
AK(ϵ(xS)) = Z/2Z; in all other cases the AK(ϵ(xS)) is trivial. Thus Φ is surjective in this
case. However, if β appears after α in the ordering on Π, and S is any subset containing
both α and β, we have AT (xS) = Z/2Z while AK(ϵ(xS)) is trivial; so in this case, the map
Φ is not surjective.

For Spin(n,C), K is again connected. The situation is similar, and we simply state the
results. Suppose first that n is even, let α and β be the roots at the end of the “fork” of
the Dynkin diagram. That is, α and β are orthogonal to each other; and there is a unique
simple root γ that is not orthogonal to either α or β. If the order on Π is chosen so that
α and β (in either order) appear before all other simple roots, then the map Φ is surjective
(but can fail to be so for other choices). In the case of n odd, Example 2.6 again shows that
the choice of Π is important since Spin(5) ≃ Sp(4). Let β denote the unique short simple
root, and let α denote the unique long simple root not orthogonal to β. If the order on Π
is chosen so that β appears first, then Φ is again surjective (but again can fail to be so for
other choices).

Remark 3.6. SupposeK is disconnected, and letKe denote its identify component. One can
always repeat the constructions above replacing K by Ke and obtain a version of Theorem
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3.4. (A disadvantage of this approach is that theKe may no longer correspond to an algebraic
real form of G. Passing from K to Ke can also complicate the surjectivity considerations
addressed in Example 3.5.) If one instead deals with the disconnectedK itself, a complication
arises when QS′ ⊂ QS , QS′ is a single Ke orbit, but QS is a union of multiple Ke orbits
QiS , each of which has QS′ in its closure. The image of OS under ϵ is contained in a single

Ke orbit, say Q
1
S . But the other irreducible components QiS for i > 1 also contribute to the

intersection homology along QS′ . Thus the multiplicities arising in the K orbits setting can
be strictly larger than those appearing in the T orbit setting.

Many interesting phenomena can be seen in the case of G = SO(n). In this case, K
consists of the determinant 1 elements in O(⌈n/2⌉) × O(⌊n/2⌋) and has two components.
If one chooses an order on Π which is not the order described in Example 3.5 ensuring
surjectivity, then the phenomenon in the previous paragraph can definitely arise. Indeed,
already for n = 8, one can choose an ordering that leads to instances of CK,QΠ

(ψ, γ) = 2

in contrast to the conclusion of Theorem 3.4(2). However, if one chooses the good order
of Π described in Example 3.5, one can perform a direct analysis of the orbits in question
to rule out the phenomenon in the previous paragraph, and deduce that the conclusions of
Theorem 3.4 hold. In this case, Φ is also surjective. We omit the details.
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