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Abstract. A basic problem in the representation theory of a compact Lie group is

to calculate the restriction of an irreducible representation of K to a closed subgroup.

Most classical results on this problem concern connected groups. We’ll recall some

of those, and talk about some of the modifications needed to work with disconnected

groups.

1. Weight multiplicities

Suppose g is a complex semisimple Lie algebra and h a Cartan subalgebra. If
we fix a Borel subalgebra b = h + n of g, then the irreducible finite-dimensional
representations of g are parametrized by dominant integral weights h∗. Write V λ

for the representation of highest weight λ. The restriction of V λ to h is a direct
sum of weight spaces:

V λ|h =
⊕

µinh∗

mλµCµ, (1.1)

with mλµ a non-negative integer (the weight multiplicity). The most basic classical
branching problem is to calculate these multiplicities. One solution is Kostant’s
multiplicity formula:

mλµ =
∑

w∈W

(−1)wPn(w(λ+ ρ)− (µ+ ρ)). (1.2)(a)

Here is what the terms on the right mean. (−1)w is the determinant of the action
of w on h∗ (which is ±1). The function

Pn: h
∗ → N (1.2)(b)

is Kostant’s partition function: its value at γ is the number of distinct expressions

γ =
∑

α∈∆(n,h)

nαα
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of γ as a non-negative integer combination of positive roots. There are many
proofs of Kostant’s formula, using for example the BGG resolution of V λ, or the
smoothness of the flag variety. A very algebraic reference is [Hump].
Knowledge of weight multiplicities leads directly to solutions of many other

branching problems. An example of a problem that it does not solve directly is
this: calculate the representation of W on the zero weight space of V λ. The heart
of the difficulty is that the group W (or the normalizer of H in G) is disconnected.
Before moving to other topics, notice that two basic ingredients in Kostant’s for-

mula are the Cartan-Weyl parametrization of representations by dominant weights,
and the action of W on weights.

2. K multiplicities.

Suppose G is a real reductive group with maximal compact subgroup K and
complexified Lie algebra g. If X is a (g,K)-module of finite length, then by analogy
with (1.1) we have

X|K =
⊕

λ∈K̂

mλ
XE

λ, (2.1)

with mλ
X a non-negative integer. The fundamental branching problem in this set-

ting is computation of mλ
X . Here is a way to do that. Suppose for definiteness

that X is irreducible. Write Par for the (finite) set of Langlands parameters for
representations of infinitesimal character equal to that of X. To each δ ∈ Par there
is associated a “standard Harish-Chandra module”

X(δ) = IndGMAN (X
M
ds ⊗ eν ⊗ 1). (2.2)(a)

Here XM
ds is a Harish-Chandra module for M in the limits of the discrete series,

and ν ∈ a∗. Each such standard module has a unique Langlands subquotient X(δ).
(Uniqueness of the Langlands subquotient depends on choosing exactly the right
parameter set; it is not true for arbitrary representations of the form (2.2)(a).) The
irreducible modules X(δ) are inequivalent, and every irreducible Harish-Chandra
module of the same infinitesimal character as X is equivalent to one of them.
The Kazhdan-Lusztig conjectures (which are theorems at least for connected

linear groups) allow us to write

X(γ) =
∑

δ∈Par

mγδX(δ), (2.2)(b)

with mγδ an integer given by a reasonable
1 algorithm (see the talk by Fokko du

Cloux).
The problem of computing X|K is reduced by (2.2)(b) to the problem of com-

puting each X(δ)|K . Because of (2.2)(a),

X(δ)|K = Ind
K
M∩K(X

M
ds |M∩K).

Because of Frobenius reciprocity, this calculation in turn can be broken into two
parts:

(1) compute XM
ds |M∩K ; and

(2) compute V λ|M∩K for every irreducible representation λ ∈ K̂.

1The definition of “reasonable” shifted rather drastically on the occasion of the publication of

the original article of Kazhdan and Lusztig.



BRANCHING LAWS AIM LECTURES JULY 2003 BY PETER TRAPA 3

The first of these problems can be approached using the Blattner formula, which is
closely analogous to (and as computable as) the Kostant multiplicity formula (1.2).
There are complications arising from the disconnectedness of M , but never mind.
We will therefore concentrate on the second, which is entirely a branching problem
for compact groups. Here are two illuminating examples.

Example 2.3. Suppose G = U(p, q), so that K = U(p) × U(q). The choices for
M are parametrized by a non-negative integer a less than or equal to both p and
q. Then

M ∩K = U(p− a)× U(1)a∆ × U(q − a).

This is the subgroup of [U(p− a)×U(1)a]× [U(1)a×U(q− a)] obtained by taking
the diagonal copy of U(1) in each of the a copies of U(1) × U(1). Branching to
these subgroups is easily handled by mild generalizations of Kostant’s multiplicity
formula.

Example 2.4. Suppose G = O(p, q), so that K = O(p) × O(q). Some of the
possibilities for M (there are more) are parametrized by a non-negative integer a
less than or equal to both p and q. Then

M ∩K = O(p− a)×O(1)a∆ ×O(q − a).

Formally this example looks very similar to the preceding one, but technically it is
very different: the subgroup M ∩K has (usually) 2a+2 connected components, so
that one cannot expect to get a branching law using only Lie algebra ideas.

Example 2.5. Suppose G is the split real linear group of type E8, so that K =
Spin(16)/{1, ε}. IfMAN is the Borel subgroup of G, thenM =M ∩K ' (Z/2Z)8.
At most 16 of the 256 elements of M belong to a common maximal torus of K, so
again Lie algebra methods cannot provide much help with the branching problem.

3. Branching for connected compact groups.

In this section we will recall Kostant’s general branching theorem for connected
compact Lie groups. We can work entirely with Lie algebras; so fix a complex
reductive Lie algebra g, and let k be a subalgebra reductive in g. (The connec-
tion with compact groups appears when g and k are complexified Lie algebras for
compact connected groups G ⊃ K.) There is an ad(k)-invariant complement p for
k:

g = k⊕ p. (3.1)(a)

Choose a Cartan subalgebra t ⊂ k, and extend it to a Cartan subalgebra h of g:

h = t⊕ (h ∩ p). (3.1)(b)

There is a natural restriction map

res: h∗ → t∗, λ 7→ λ. (3.1)(c)

Define

l = gt, (3.1)(d)
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a Levi subalgebra of g (corresponding to the roots of h in g that restrict to zero on
t). Choose a parabolic subalgebra q = l + u of g in such a way if α and β are any
two roots of h in g, then

α = β and α ∈ ∆(u, h)⇒ β ∈ ∆(u, h). (3.1)(e).

This is certainly possible to arrange. Finally, choose

∆+(g, h) ⊃ ∆(u, h). (3.1)(f).

We need a little notation about the Weyl group. For w ∈W (g, h) =W , define2

∆w = {α ∈ ∆
+ | w−1α < 0}. (3.2)(a)

Now define
W ′ = {w ∈W | ∆w ⊂ ∆(u, h). (3.2)(b)

The set W ′ is the set of (minimal length) coset representatives for W (l, h) in W ;
that is, multiplication defines a bijection

W (g, h) =W (l, h)×W ′. (3.2)(c)

Theorem 3.3 (Kostant). Suppose V λ is a finite-dimensional irreducible represen-
tation of g of highest weight λ ∈ h∗, and V ν is a finite-dimensional irreducible
representation of k of highest weight ν ∈ t∗. Then the multiplicity of V ν in V λ|k is

∑

w∈W ′

(−1)wdλ(w)Pu∩p(w(λ+ ρ)− ρ− ν).

Here dλ(w) is the dimension of the irreducible representation of l of highest weight
w(λ+ ρ)− ρ; and the partition function

Pu∩p: t
∗ → N

counts expressions in terms of the weights of t on u ∩ p.

Another approach to this branching problem is due to Patera, Sharp, Moody,
and McKay. The idea is to begin with the weight multiplicity formula

V λ =
∑

µ∈h∗dominant

mµ(W · µ),

then to compute the branching

(W · µ)|t =
∑

µ′∈t∗dominant

mµ′(Wk) · µ
′,

and then to deduce multiplicities of representations of k.

2In the lecture, w was σ, and ∆w was written Wσ . This notetaker was able to write that

down, but finds himself unable to commit it to TEX.
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4. Disconnected compact groups.

We mentioned at the end of section 1 that two of the basic ingredients in the

Kostant multiplicity formula are the Cartan-Weyl parametrization of K̂ by weights,
and the action of the Weyl group on the parameter space. Here we will begin to
extend these ingredients to disconnected groups.
So assume that K is a compact Lie group, possibly disconnected. Write k for the

complexified Lie algebra of K, T0 for a maximal torus in the identity component
K0, and

b = t+ n (4.1)

for a Borel subalgebra of k.

Definition 4.2. The large Cartan subgroup of K corresponding to b is

T+ = {t ∈ K | Ad(t)(b = b} = NK(b).

The small Cartan subgroup is

T− = {t ∈ K | Ad(t)|t is trivial} = ZK(T0),

the centralizer in K of T0. A general Cartan subgroup is any group T such that

T− ⊂ T ⊂ T+.

If T is any Cartan subgroup of K corresponding to b, then there is a well-defined
character 2ρ of T ,

2ρ(t) = detAd(t)|n, (4.3)(a)

the determinant of the adjoint action of T on n. Despite the suggestive notation,
the character 2ρ need not have a square root. We need such a square root, so we
introduce the group

T̃ = ρ cover of T = {(t, z) ∈ T × C× | 2ρ(t) = z2}. (4.3)(b)

Projection on the first factor defines a two-to-one group homomorphism

π: T̃ → T, π(t, z) = t. (4.3)(c)

The kernel of π consists of the identity and ε = (1,−1). There is a short exact
sequence

1 −→ {1, ε} −→ T̃
π
−→T −→ 1. (4.3)(d)

Projection on the second factor defines a character that we call ρ:

ρ: T̃ → C×, ρ(t, z) = z. (4.3)(e)

The differential of ρ is equal to one half the differential of 2ρ, or one half the sum

of the roots of t in n. Furthermore ρ is a genuine character of T̃ , by which we mean
that ρ(ε) = −1.
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Definition 4.4. Suppose that T̃ is the ρ cover of T defined in (4.3). An irreducible

representation χ of T̃ is called genuine if χ(ε) = −I. (This is equivalent to assuming
that χ does not factor through π to the quotient group T .) The differential of χ
is a completely reducible representation of the Lie algebra t, and therefore a direct
sum of various weights in t∗. The representation χ is called dominant if one (or,
equivalentally, all) of these weights is dominant. It is called regular if one (or,
equivalently, all) of these weights is non-zero on every coroot of t in k.

Theorem 4.5. Suppose K is a compact Lie group and T+ is a large Cartan sub-

group. Let T̃+ be the ρ covering of T+ (cf. (4.3)). Then there is a natural bijection

between the set K̂ of irreducible representations of K, and the set of genuine dom-

inant regular irreducible representations of T̃+.

Describing this bijection is fairly easy. If V is an irreducible representation of
K, then the subspace V n of highest weight vectors is an irreducible representation
of T+. This provides a bijection

K̂ ↔ dominant irreducible representations of T+.

Next, ρ is a genuine irreducible one-dimensional representation of T̃+. It follows
that tensoring with ρ provides a bijection

irreducible representations of T+ ↔ genuine irreducible representations of T̃+.

This bijection identifies dominant representations on the left with dominant regular
representations on the right. Combining these two bijections gives the theorem.
You may wonder why we introduced the covering, which so far has served only

to complicate the statement and proof of Theorem 4.5. The reason is that the
covering will make possible a statement of the Weyl character formula, in which both

numerator and denominator are genuine functions on T̃+. (A “genuine function”
is one sent to its negative under translation by ε.) The actual lecture concluded
with a precise and correct statement of the Weyl character formula on the small
Cartan subgroup T−. The notes will conclude instead with a statement of the Weyl
character formula on T+ more or less equivalent to the one described in [Vorange].

Definition 4.6. Suppose K is a compact Lie group, b is a Borel subalgebra of k,
and T+ is the normalizer of b in k. Then the homogeneous space K/T+ is naturally
identified with the flag variety B of all Borel subalgebras of k. An element of k ∈ K
is called regular for K if some (equivalently every? I’m not sure what to guess)
fixed point of k on B is regular: that is, if the induced action of k on the tangent
space at the fixed point does not have 1 as an eigenvalue.
An element t ∈ T+ is called regular for K if the adjoint action Ad(t)|n does not

have 1 as an eigenvalue. (In order for this definition to be nicely consistent with
the one above, one needs to be able to replace “some” by “every.”) Regularity in
T+ is equivalent to the condition

det(I −Ad(t)|n) 6= 0.

The Weyl denominator is the function

∆(t̃) = ρ(t̃)−1 det(I −Ad(π(t̃))|n)
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on T̃+. It is non-zero exactly on the preimages of regular elements of T+.

The (unchecked) hope is that regular elements in T+ are dense in T+, and that
regular elements of K are dense in K, and that every conjugacy class in K meets
T+. None of this should be very hard; the danger is that it’s false.
We turn now to the Weyl character formula. Just as for connectedK, the formula

expresses the trace of a regular element t ∈ T+ as a quotient of two terms, each of

which depends on a preimage of t in T̃+. (Changing the chosen preimage changes
the sign of each term, so the quotient depends only on t.) The denominator is the
Weyl denominator of Definition 4.6. The numerator is (roughly speaking) a sum
over the Weyl group of T0 in K0. What makes life complicated is that this Weyl
group does not act on T+. The solution (roughly speaking) is simply to throw away
the terms that don’t make sense.
Here are the details. Recall that we are fixing b = t+n. Write n− for the opposite

nil radical (which is automatically preserved by T+). Suppose w ∈ W (k, t). Then
w defines a second Borel subalgebra

bw = t+ nw, (4.7)(a)

corresponding to w(∆+(k, t). This new Borel subalgebra defines a large Cartan
subgroup

T+,w = NK(b
w). (4.7)(b)

The identity component of T+,w is the same torus T0 as for T
+, but the other

components can be different. It’s not difficult to see that

nw = (n ∩ nw)⊕ (n− ∩ nw), (4.7)(c)

and therefore that

T+ ∩ T+,w = {t ∈ T+|Ad(t) preserves n ∩ nw}. (4.7)(d)

The representations of T+ ∩ T+,w on n− ∩ nw and on n∩ n−,w are contragredient.3

It follows that on their common domain T+ ∩T+,w, the two characters 2ρ and 2ρw

differ by the square of a determinant:

2ρw(t) = 2ρ(t) · [det(Ad(t)|n−∩nw)]2 (t ∈ T+ ∩ T+,w). (4.7)(e)

This fact provides a natural isomorphism between the ρ covering of T+ ∩T+,w and
the ρw covering,

(t, z) 7→ (t, z · det(Ad(t)|n−∩nw) (t ∈ T+ ∩ T+,w).

In this way we can regard ρw as a character of the ρ covering (T+ ∩ T+,w)∼.
We can now state the Weyl denominator formula

∆(t̃) =
∑

w∈W (k,t)

t∈T+∩T+,w

(−1)wρw(t̃). (4.8)

Suppose now that χ is a genuine irreducible representation of T+. Since it’s the
end of the day, I will merely assert confidently that there is a natural way to define a
genuine representation χw of (T+ ∩T+,w)∼. (The idea is to twist χ by conjugation
by an element of K0 defining the Weyl group element w. This conjugation will
carry T+ ∩ T+,w into T+.)

3This is a somewhat subtle point, even in the simplest case nw = n−. One way to see it is by

introducing appropriate symplectic forms, and using the fact that the determinant of a symplectic

linear map is one.



8 NOTES BY DAVID A. VOGAN, JR.

Theorem 4.9 (the Weyl character formula). Suppose T+ is a large Cartan sub-
group of a compact Lie group K, χ is a genuine dominant irreducible representation

of T̃+, and V χ is the corresponding irreducible representation of K. Suppose t is

a regular element of T+, and that t̃ is a preimage of t in the ρ covering T̃+. Then
the character of V χ at t is

Θχ(t) =




∑

w∈W (k,t)

t∈T+∩T+,w

(−1)wχw(t)


 /∆(t̃).

This formula could be proved using the Atiyah-Bott-Lefschetz fixed point for-
mula.4
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