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We did the computations below in class. The purpose of this exercise is to write
the solutions up nicely, in order to make sure you understand all the steps.

Exercise. Let G = GL(n,R) := AutR(Rn), the group of linear automorphisms of
Rn, i.e. the group of n-by-n invertible matrices. Let 1 denote the identity in G.

(i) Let g = EndR(Rn), the space of linear endomorphisms of Rn, i.e. all n-by-n
matrices. Write down an explicit linear isomorphism between T1(G) and g.

(ii) For any g ∈ G, let cg denote conjugation by g. This is a smooth map from
G to G that maps 1 to 1, so we may consider its differential at 1,

Ad(g) := T1cg : T1(G) −→ T1(G).

Using (i), we can interpret Ad(g) as a map between n-by-n matrices. Com-
pute Ad(g) explicitly.

(iii) Confirm that Ad is a homomorphism between G and AutR(g). Then note
that the definition of Ad makes sense for any Lie group G, and verify that
it is a homomorphism.

(iv) Since Ad is a smooth map between G and AutR(g) that maps the identity
to the identity, we can consider its differential:

ad := T1(Ad) : T1(G) −→ T1(AutR(g)).

After applying (i) to both the domain and range, we can interpret this as

ad : g −→ EndR(g).

Compute this map explicitly. If we write [AB] = AB − BA for the com-
mutator of two linear endomorphism A and B of the same space, verify
that

ad([AB]) = [ad(A), ad(B)].
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