MATH 6240, PROBLEM SET 3: CLASSICAL GROUPS

 due Friday, December 71.(a) Show that if H is a hermitian form on a complex vector space V, then the real part $R=\operatorname{Re}(H)$ is a symmetric form on the underlying real vector space V, and the imaginary part $C=\operatorname{Im}(H)$ is a skew-symmetric real form on the underlying real space. Observe that R is invariant under multiplication by i : $R(i v, i w)=R(v, w)$. Conversely show that any R which is invariant in this sense is the real part of unique Hermitian form H. For a standard choice of H, compute R and C, and then deduce

$$
\mathrm{U}(n) \simeq \mathrm{O}(2 n) \cap \mathrm{Sp}(2 n, \mathbb{R})
$$

(b) Argue similarly as in (a) to prove

$$
\operatorname{Sp}(n) \simeq \mathrm{U}(2 n) \cap \operatorname{Sp}(2 n, \mathbb{C})
$$

and, more generally,

$$
\operatorname{Sp}(p, q) \simeq U(2 p, 2 q) \cap \operatorname{Sp}(2 n, \mathbb{C})
$$

(c) Show $\operatorname{Sp}(2 n, \mathbb{R}) \simeq \operatorname{Sp}(2 n, \mathbb{C}) \cap \mathrm{U}(n, n)$.
(d) Is $\mathrm{O}(p, q)$ naturally a subgroup of $\mathrm{U}(2 p, 2 q)$?
2. Find a two-to-one homomorphism from $\mathrm{SU}(2)$ to $\mathrm{SO}(3)$.
3. (a) Show directly that $\mathfrak{s p}(2, \mathbb{R}), \mathfrak{s u}(1,1)$, and $\mathfrak{s o}(2,1)$ are isomorphic to $\mathfrak{s l}(2, \mathbb{R})$.
(b) Show that all of the following groups have isomorphic Lie algebras:

$$
\begin{gathered}
\mathrm{SL}(2, \mathbb{R}) ; \\
\mathrm{SU}(1,1) ; \\
\mathrm{SO}(2,1) ; \\
\mathrm{Sp}(2, \mathbb{R}) ; \\
\mathrm{SL}^{ \pm}(2, \mathbb{R})=\{g \in \mathrm{GL}(2, \mathrm{R}) \mid \operatorname{det}(g)= \pm 1\} ; \\
\operatorname{PSp}(2, \mathbb{R})=\operatorname{Sp}(2, \mathbb{R}) / Z^{\prime \prime}
\end{gathered}
$$

where $Z^{\prime \prime}$ is the center of $\operatorname{Sp}(2, \mathbb{R})$;

$$
\operatorname{PGL}^{\prime}(2, \mathbb{R})=\mathrm{GL}(2, \mathbb{R}) / Z^{\prime}
$$

where Z^{\prime} is the center of $\operatorname{GL}(2, \mathbb{R})$ and

$$
\operatorname{PGL}(2, \mathbb{R})=[\mathrm{GL}(2, \mathbb{C}) / Z]^{\sigma} .
$$

In the latter case, Z is the center of $\mathrm{GL}(2, \mathbb{C})$, and σ is the involution which takes each matrix entry to its complex conjugate. In particular, σ preserves Z, and therefore is makes sense to consider $[\mathrm{GL}(2, \mathbb{C}) / Z]^{\sigma}$, the fixed points of σ.
(c) Determine all isomorphisms among the groups in (b).
(d) Determine all finite-dimensional representations of the groups in (b).
4. (a) Let $V \simeq \mathbb{C}^{2}$ be the tautological two-dimensional representation of $\mathfrak{g}=$ $\mathfrak{s l}(2, \mathbb{C})$. Decompose $\operatorname{End}_{\mathbb{C}}(V)$ into irreducible representations of \mathfrak{g}.
(b) Decompose $\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V)$ into irreducible represenations of \mathfrak{g}. (Since $V \simeq V^{*}$ as representation of \mathfrak{g}, we have $\operatorname{End}_{\mathbb{C}}(V) \simeq V \otimes V$; so (a) is the special case of $a=b=1$ in (b).)

