MATH 6210: WARM UP

due August 27

1. For $n \in \mathbb{N}$, let $a_{n}=(-1)^{n} / n$.
(a) Prove or disprove: there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{f(n)}$ diverges.
(b) Fix any $c \in \mathbb{R}$. Prove or disprove: there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\sum_{n=1}^{\infty} a_{f(n)}=c
$$

[^0]
[^0]: 2. [Rudin, Chapter 1, Problem 1] Recall that a σ-algebra over a set X is a nonempty collection of subsets of X which is closed under taking complements and countable unions of its members. Does there exist an infinite σ-algebra with only countably many members?
