MATH 6210: PROBLEM SET \#1
 SELECTED SOLUTIONS

A1. The Hausdorff dimension of the Cantor "middle thirds" set C is $s:=\ln (2) / \ln (3)$. Moreover $\mathcal{H}^{s}(C)=1$.

Solution. Let

$$
\begin{aligned}
E_{0} & =[0,1] \\
E_{1} & =[0,1 / 3] \cup[2 / 3,1] \\
E_{2} & =[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1] \\
& \vdots
\end{aligned}
$$

so that

$$
C=E_{1} \cap E_{2} \cap E_{3} \cdots .
$$

Thus C is covered by E_{j}, a set of 2^{j} intervals of length 3^{-j}. Thus, by definition,

$$
\begin{equation*}
\mathcal{H}_{3-j}^{s}(C) \leq 2^{j}\left(3^{-j}\right)^{s}=1 \tag{1}
\end{equation*}
$$

with the equality holding by our choice of s. Taking $j \rightarrow \infty$, we get

$$
\mathcal{H}^{s}(C) \leq 1
$$

The assertions of (A1) follow if we can prove the reverse inequality. More precisely, if \mathcal{I} is any collection of intervals covering C, we are to show

$$
\begin{equation*}
\sum_{I \in \mathcal{I}}|I|^{s} \geq 1 \tag{2}
\end{equation*}
$$

By compactness of C, we can assume \mathcal{I} is finite. By replacing each open interval with slightly larger closed ones, we can can assume \mathcal{I} consists of closed intervals. Take such an interval I. If I does not contain least two of the closed intervals appearing in the list in the construction of the E_{j} 's above, it belongs to the complement of C and so can be discarded. Otherwise, after intersecting I with C, we can assume I is the smallest interval containing two such intervals J and J^{\prime}. We write $I=J \coprod K \coprod J^{\prime}$ with $K \cap C=\emptyset$. By construction $|J|,\left|J^{\prime}\right|<|K|$. So

$$
\begin{aligned}
|I|^{s} & =\left(|J|+|K|+\left|J^{\prime}\right|\right)^{s} \\
& \geq\left[3 \cdot \frac{1}{2}\left(|J|+\left|J^{\prime}\right|\right)\right]^{s}=2\left[\frac{1}{2}\left(|J|+\left|J^{\prime}\right|\right)\right]^{s}
\end{aligned}
$$

with the last equality following because $3^{s}=2$ by definition of s. Using convexity of x^{s}, we conclude

$$
|I|^{s} \geq 2 \cdot \frac{1}{2}\left(|J|^{s}+\left|J^{\prime}\right|^{s}\right)=\left(|J|^{s}+\left|J^{\prime}\right|^{s}\right)
$$

So, for the purposes of establishing (2) we can replace I by $J \cup J^{\prime}$. Continuing in this way, after a finite number of steps we can assume each I is a closed interval of length 3^{-j} appearing in E_{j}. Since (1) shows (2) holds for the covering of C by E_{j}, we conclude 2 holds in general.

A2. Let (X, \mathcal{M}) be a measurable space equipped with a positive measure μ such that $\mu(X)<\infty$. Let $f: X \rightarrow X$ be a measure preserving transformation of X. That is, suppose that whenever $E \in \mathcal{M}$, then so is $f^{-1}(E)$; and, moreover, $\mu(E)=\mu\left(f^{-1}(E)\right)$ in this case. Fix $A \in \mathcal{M}$ and assume $\mu(A)>0$.
(a) Prove that some point of A returns to A. More precisely prove that there exists $x \in A$ and $n \in \mathbb{N}$ such that $f^{n}(x) \in A$.
(b) Prove that almost every element A returns to A. More precisely prove that

$$
\mu\left(\left\{x \in A \mid f^{n}(x) \notin A \text { for all } n\right\}\right)=0 .
$$

(c) Prove that almost every element of A returns to A infinitely often. More precisely prove that
$\mu\left(\left\{x \in A \mid\right.\right.$ there exists N such that $f^{n}(x) \notin A$ for all $\left.\left.n>N\right\}\right)=0$.
Solution. Suppose no point of A returned to A. Then each of the sets

$$
f^{-j}(A):=\left\{x \in X \mid f^{j}(x) \in A\right\} .
$$

do not intersect A. So

$$
f^{-i}(A) \cap f^{-j}(A)=\emptyset
$$

for all $i \neq j$. By hypothesis, $\mu\left(f^{-j}(A)\right)=\mu(A)$ for all j. Since $\mu(A)>0$ and $\mu(X)<\infty$ (and since μ is countably additive), we obtain a contradiction. This gives (a)

For (b), consider the set $A^{\prime} \subset A$ of point which never return to A. Clearly they never return to A^{\prime}. By (a), $\mu\left(A^{\prime}\right)$ must have measure zero.

For (c), note that

$$
\left\{x \in A \mid \text { there exists } N \text { such that } f^{n}(x) \notin A \text { for all } n>N\right\}
$$

is the union (over N) of $f^{-N}\left(A^{\prime}\right)$. This is a countable union of sets of measure zero (by (b)) and hence has measure zero.

