
MATH 6210: PROBLEM SET #1
SELECTED SOLUTIONS

A1. The Hausdorff dimension of the Cantor “middle thirds” set C is s := ln(2)/ ln(3).
Moreover Hs(C) = 1.

Solution. Let

E0 = [0, 1]

E1 = [0, 1/3] ∪ [2/3, 1]

E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]
...

so that
C = E1 ∩ E2 ∩ E3 · · · .

Thus C is covered by Ej , a set of 2j intervals of length 3−j . Thus, by definition,

(1) Hs
3−j (C) ≤ 2j(3−j)s = 1

with the equality holding by our choice of s. Taking j →∞, we get

Hs(C) ≤ 1.

The assertions of (A1) follow if we can prove the reverse inequality. More precisely,
if I is any collection of intervals covering C, we are to show

(2)
∑
I∈I
|I|s ≥ 1.

By compactness of C, we can assume I is finite. By replacing each open interval
with slightly larger closed ones, we can can assume I consists of closed intervals.
Take such an interval I. If I does not contain least two of the closed intervals
appearing in the list in the construction of the Ej ’s above, it belongs to the com-
plement of C and so can be discarded. Otherwise, after intersecting I with C, we
can assume I is the smallest interval containing two such intervals J and J ′. We
write I = J

∐
K
∐
J ′ with K ∩ C = ∅. By construction |J |, |J ′| < |K|. So

|I|s = (|J |+ |K|+ |J ′|)s

≥ [3 · 1
2

(|J |+ |J ′|)]s = 2
[

1
2

(|J |+ |J ′|)
]s

,

with the last equality following because 3s = 2 by definition of s. Using convexity
of xs, we conclude

|I|s ≥ 2 · 1
2

(|J |s + |J ′|s) = (|J |s + |J ′|s).

So, for the purposes of establishing (2) we can replace I by J ∪ J ′. Continuing in
this way, after a finite number of steps we can assume each I is a closed interval of
length 3−j appearing in Ej . Since (1) shows (2) holds for the covering of C by Ej ,
we conclude 2 holds in general. �
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A2. Let (X,M) be a measurable space equipped with a positive measure µ such
that µ(X) < ∞. Let f : X → X be a measure preserving transformation of
X. That is, suppose that whenever E ∈ M, then so is f−1(E); and, moreover,
µ(E) = µ(f−1(E)) in this case. Fix A ∈M and assume µ(A) > 0.

(a) Prove that some point of A returns to A. More precisely prove that there
exists x ∈ A and n ∈ N such that fn(x) ∈ A.

(b) Prove that almost every element A returns to A. More precisely prove that

µ ({x ∈ A | fn(x) /∈ A for all n}) = 0.

(c) Prove that almost every element of A returns to A infinitely often. More
precisely prove that

µ ({x ∈ A | there exists N such that fn(x) /∈ A for all n > N}) = 0.

Solution. Suppose no point of A returned to A. Then each of the sets

f−j(A) := {x ∈ X | f j(x) ∈ A}.
do not intersect A. So

f−i(A) ∩ f−j(A) = ∅
for all i 6= j. By hypothesis, µ(f−j(A)) = µ(A) for all j. Since µ(A) > 0 and
µ(X) < ∞ (and since µ is countably additive), we obtain a contradiction. This
gives (a)

For (b), consider the set A′ ⊂ A of point which never return to A. Clearly they
never return to A′. By (a), µ(A′) must have measure zero.

For (c), note that

{x ∈ A | there exists N such that fn(x) /∈ A for all n > N}
is the union (over N) of f−N (A′). This is a countable union of sets of measure zero
(by (b)) and hence has measure zero. �


