MATH 6210: SOLUTIONS TO PROBLEM SET \#3

Rudin, Chapter 4, Problem \#3. The space $L^{p}(T)$ is separable since the trigonometric polynomials with complex coefficients whose real and imaginary parts are rational form a countable dense subset. (Denseness follows from Theorem 3.14 and Theorem 4.25; countability is clear since $\left\{e^{i n \theta} \mid n \in \mathbb{Z}\right\}$ is a countable basis of the trigonometric polynomials.)

Meanwhile the space $L^{\infty}(T)$ is not separable. To see this, let S denote the set of indicator functions of subintervals of the circle (viewed as $[0,1)$) with irrational endpoints. Then S is uncountable and the L^{∞} distance between any two elements of S is 1 . Any dense subset of $L^{\infty}(T)$ must contain an element in the (disjoint!) collection of balls $\left\{B_{1 / 3}(x) \mid x \in S\right\}$. So any dense subset must be uncountable.

Rudin, Chapter 4, Problem \#4. If H contains a countable maximal orthonormal set B, then linear combinations S of the elements of B with complex coefficients whose real and imaginary parts are rational form a countable dense subset of H. So H is separable. Conversely suppose H contains an uncountable orthonormal set B. Any dense subset of H must contain at least one element in the disjoint collection of balls $\left\{B_{1 / 3}(x) \mid x \in B\right\}$. So such a dense subset must be uncountable.

Rudin, Chapter 4, Problem \#5. Suppose L is a nonzero continuous linear functional on H. We are to show that M^{\perp} is one-dimensional where M is the kernel of L.

Since L is nonzero, $M \neq H$, so (by the Corollary to Theorem 4.11), $M^{p} \operatorname{erp}$ is nonzero. Fix h nonzero in M^{\perp}. By Theorem 4.12, there is $y \in H$ such that $L(\cdot)=(\cdot, y)$. Take any $z \in M^{\perp}$; we show it's a multiple of h. Consider

$$
z^{\prime}=z-[L(z) /(y, y)] y
$$

Since z and y are in M^{\perp}, so is z. But it's easy to see that $L\left(z^{\prime}\right)=\left(z^{\prime}, y\right)=0$. So z^{\prime} is also in M. So z is zero. So z is a multiple of h, as claimed.

Rudin, Chapter 4, Problem $\# \mathbf{6}$. We covered this in class. The main observation is that the natural map ψ from the Hilbert cube Q to $\mathbb{C}^{\mathbb{N}}:=\prod_{i \in \mathbb{N}} \mathbb{C}$ (mapping $\sum c_{n} u_{n}$ to $\left.\left(c_{1}, c_{2}, \ldots\right)\right)$ is a homeomorphism onto its image. Here we take the product topology on $\mathbb{C}^{\mathbb{N}}$ which is the coarsest topology so that each component projection to \mathbb{C} is continuous. (It is obvious that ψ is a continuous bijection onto its image. The slightly tricky point is that ψ^{-1} is continuous.) Since $\psi(Q)$ is a product of the closed (compact) balls of radius $1 / n$, Tychonoff's Theorem implies $\psi(Q)$, hence Q, is compact.

Given a sequence $\delta_{1}, \delta_{2}, \ldots$ of positive real numbers, define a generalized Hilbert cube Q by

$$
Q=\left\{\sum_{n} c_{n} u_{n}| | c_{n} \mid \leq \delta_{n}\right\}
$$

If $\sum_{n} \delta_{n}^{2}<\infty$, the above argument again shows that Q is compact.
Now suppose $\sum \delta_{n}^{2}$ is infinite. Then the map ψ is no longer surjective onto the product of balls of radius δ_{n} in $\mathbb{C}^{\mathbb{N}}$ (why?), so the argument breaks down. We will show that Q isn't compact by finding a sequence with no convergent subsequence. (Since H is a metric space the notions of sequentially compact and compact are equivalent.) Consider the sequence $\delta_{1} u_{1}, \delta_{1} u_{1}+\delta_{2} u_{2}, \delta_{1} u_{1}+\delta_{2} u_{2}+\delta_{3} u_{3}, \ldots$ This has no convergent subsequence.

Rudin, Chapter 4, Problem \#7. Follow the suggestions given in the problem.

Rudin, Chapter 4, Problem \#8. If H_{1} and H_{2} are two Hilbert spaces, let $\left\{u_{\alpha} \mid \alpha \in A_{1}\right\}$ and $\left\{u_{\alpha} \mid \alpha \in A_{2}\right\}$ denote respective maximal orthonormal subsets. Without loss of generality, we can assume there is an injection ϕ from A_{1} to A_{2} (why?). Define a map Φ from H_{1} to H_{2} sending $\sum c_{\alpha} u_{\alpha} \in H_{1}$ to $\sum c_{\phi(\alpha)} u_{\alpha} \in H_{2}$. Then $H_{1} \simeq \Phi\left(H_{1}\right)$ is a subspace of H_{2}.

Rudin, Chapter 4, Problem \#11. The set $\left.\{(n / n+1)) e^{i n \theta} \mid n \in \mathbb{Z}\right\}$ is closed, nonempty, and contains no element of smallest norm. (Of course it is not convex!)

Rudin, Chapter 4, Problem \#17. The mapping γ from $[0,1]$ into $L^{2}(T)$ taking a to the characteristic function of $[0, a]$ (viewed as a subinterval of the circle) is a continuous injection such that $\gamma(b)-\gamma(a)$ is orthogonal to $\gamma(d)-\gamma(c)$ whenever $0 \leq a \leq b \leq c \leq d \leq 1$. If H is an infinite-dimensional Hilbert space, Problem 4.8 gives a continuous map γ from $[0,1]$ to H with the same properties.

Rudin, Chapter 5, Problem \#1. You get diamonds for $p=1$, rectangles for $p=\infty$, and ellipses for $p=2$.

Rudin, Chapter 5, Problem \#2. Take x, y of norm less than 1. Then

$$
\|t x+(1-t) y\| \leq t\|x\|+(1-t)\|y\| \leq 1 .
$$

Rudin, Chapter 5, Problem \#3. One approach to strict convexity rests on the so called Clarkson Inequalities stating that

$$
\left\|\frac{f+g}{2}\right\|_{p}^{p}+\left\|\frac{f-g}{2}\right\|_{p}^{p} \leq \frac{1}{2}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)
$$

if $2 \leq p<\infty$, and

$$
\left\|\frac{f+g}{2}\right\|_{p}^{q}+\left\|\frac{f-g}{2}\right\|_{p}^{q} \leq\left[\frac{1}{2}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)\right]^{q / p}
$$

if $1<p<2$ and p and q are conjugate.
Now that $f \neq g$ of unit norm in L^{p} for $p<1<\infty$. Since

$$
\left\|\frac{f-g}{2}\right\|_{p}^{p} \text { and }\left\|\frac{f-g}{2}\right\|_{p}^{q}
$$

are strictly positive, the above inequalities show that $1 / 2(f+g)$ has norm strictly less than 1 , as desired.

Strict convexity fails in $L^{\infty}(X)$ assuming X is the disjoint union of two sets X_{1} and X_{2} of nonzero measure. Just take f to be the indicator function of X and g to the indicator function of X_{1}. Strict convexity also fails in $L^{1}(X)$ assuming X contains two sets X_{1} and X_{2} of nonzero finite measure. This time take f to be the indicator function of X_{1} and g to the indicator function of X_{2}.

Rudin, Chapter 5, Problem \#4. Convexity follows from the definitions. Since continuous functions are bounded, the Dominated Convergence Theorem can be used to show that M is closed. To see that it has no elements of minimal norm, take any $f \in M$. We need to modify f so that its sup norm decreases but so that the integral condition is unchanged. There are a variety of explicit ways to do this. I leave them to you.

Rudin, Chapter 5, Problem \#5. Convexity of M is clear from the definitions. The fact that M is closed follow from the Dominated Convergence Theorem (which applies since any convergent sequence in L^{1} has a pointwise convergent subsequence). The minimal possible norm is easily seen to be 1 , and any positive function in M attains this minimum.

Rudin, Chapter 5, Problem \#6. Let M be a subspace of a Hilbert space H. Let Λ_{M} be a bounded linear functional on M. We are to prove it has a unique norm preserving extension to all of H.

To start, Λ_{M} is continuous, so extends uniquely to the closure of M. So assume M is closed, hence a Hilbert space. Thus there exists $m \in M$ such that $\Lambda_{M}(x)=$ (x, m) such that $\left\|\Lambda_{M}\right\|=\|m\|$ (Theorem 4.12 plus Schwarz's inequality). There is one obvious norm-preserving extension of Λ_{M} to H mapping any $x \in H$ to (x, m). Suppose Λ were another norm-preserving extension. by Theorem 4.12, $\Lambda(x)=$ (x, h) for a unique $h \in H$ with $\|h\|=\|m\|$. Write the orthogonal decomposition of h with respect to M as $h=h_{1}+h_{2}$. Since $\Lambda_{\mid M}=\Lambda_{M}$ and $h_{2} \in M^{\perp}$,

$$
(x, m)=\left(x, h_{1}+h_{2}\right)=\left(x, h_{1}\right)
$$

for all $x \in M$. By the uniqueness of Theorem 4.12, $h_{1}=m$. By the norm preserving property and the Pythagorean Theorem

$$
\|m\|=\|h\|=\left\|m+h_{2}\right\|=\sqrt{\|m\|^{2}+\left\|h_{2}\right\|^{2}} .
$$

So $h_{2}=0$ and the only extension of Λ_{M} to H is $\Lambda(x)=(x, m)$ for $x \in H$.

Rudin, Chapter 5, Problem \#7. Let X be a finite set with the counting measure. So $V:=L^{1}(X) \simeq \mathbb{C}^{n}$. Let U be any nonzero subspace of V of dimension $m<n$. A linear functional Λ on U is given by a 1-by- m matrix. It's norm is the maximum of the absolute value of its entries. We can extend Λ to V by adding $n-m$ new entries. If they all have absolute value less than the norm of Λ, the extension is norm-preserving. So there are infinitely many norm-preserving extensions of Λ from U to V.

Rudin, Chapter 5, Problem $\# 8$. For (a), note that is follows from the definitions that X^{*} is a normed vector space. The more subtle fact is that it is complete. So let $\Lambda_{1}, \Lambda_{2}, \ldots$ be a Cauchy sequence in X^{*}. Then since each difference $\Lambda_{i}-\Lambda_{j}$ is bounded, the sequence $\Lambda_{1}(x), \Lambda_{2}(x), \ldots$ is a Cauchy sequence in \mathbb{C} for each fixed $x \in X$. So the pointwise limit $\Lambda(x):=\lim _{n \rightarrow \infty} \Lambda_{i}(x)$ is well-defined. A quick check shows Λ is linear. To see it is bounded, note first that since $\left\{\Lambda_{i}\right\}$ is Cauchy, $\left\{\| \Lambda_{i}\right\}$ is bounded by, say, N. Fix $x \in X$ with $\|x\|=1$. Then

$$
|\Lambda(x)|=\lim _{n \rightarrow \infty}\left|\Lambda_{i}(x)\right| \leq N\|x\|=N
$$

So, indeed, Λ is bounded.
The last thing to check is that $\Lambda_{i} \rightarrow \Lambda$ in the norm on X^{*}. I leave this to you.
For (b), define Φ from X^{*} to \mathbb{C} by evaluation at some fixed x in X. This is clearly linear. To check that it is bounded, compute for $\|\Lambda\|=1$,

$$
|\Phi(\Lambda)|=|\Lambda(x)| \leq\|\Lambda\| \cdot\|x\|=\|x\|
$$

So, indeed, Φ is bounded.
Finally, for (c), let $\left\{x_{n}\right\}$ be a sequence in X such that $\left\{\Lambda\left(x_{n}\right)\right\}$ is bounded for all $\Lambda \in X^{*}$. Let Φ_{n} be the map from X^{*} to \mathbb{C} defined by evaluating at x_{n}. So $\left\{\Lambda\left(x_{n}\right)\right\}$ bounded for all Λ literally means $\left\{\Phi_{n}(\Lambda)\right\}$ is bounded for all Λ. By Banach-Steinhaus, $\left\{\left\|\Phi_{n}\right\|\right\}=\left\{\left\|x_{n}\right\|\right\}$ is bounded.

Rudin, Chapter 5, Problem \#20. For (a), a short argument shows that the set of points x for which $\left\{f_{n}(x)\right\}$ is a G_{δ} set. If it consisted of the rationals, then the rationals would be a dense G_{δ} in \mathbb{R}, something prohibited by the Baire Category Theorem.

For (c) (and hence (b)), enumerate the rationals in $(0,1)$ as r_{1}, r_{2}, \ldots and let f_{n} be the piecewise linear function through $(0,0),\left(r_{1}, 1\right), \ldots,\left(r_{n}, n\right),(1,0)$. This is a sequence of functions such that the set of x with $f_{n}(x) \rightarrow \infty$ is exactly the irrationals.

Rudin, Chapter 6, Problem \#1. Yes, we need only work with finite partitions. Let $\left\{F_{\alpha}\right\}_{\alpha \in A}$ be any (infinite) partition of E. It suffices to find a finite subset $S \subset A$ such that $\sum_{\alpha \in S}\left|\mu\left(F_{\alpha}\right)\right|$ is within ϵ of $\sum_{\alpha \in A}\left|\mu\left(F_{\alpha}\right)\right|$. Since the latter sum is finite and absolutely convergent, there is a finite partial sum which is within ϵ of the total sum. This partial sum defines S, as required.

Rudin, Chapter 6, Problem \#3. Suppose we can show the space of complex measures on X is really a vector space. Then the Riesz Representation Theorem shows that this space (with the total variation norm) is isometrically isomorphic to X^{*}, which is a Banach space by Chapter 5, \#8. I leave the vector space verification to you.

Rudin, Chapter 6, Problem \#4.

Rudin, Chapter 6, Problem \#5. Note that L^{1} is one-dimensional, but L^{∞} is two-dimensional. So these spaces are not dual to each other.

