Rudin, Chapter 4, Problem #3. The space \(L^p(T) \) is separable since the trigonometric polynomials with complex coefficients whose real and imaginary parts are rational form a countable dense subset. (Denseness follows from Theorem 3.14 and Theorem 4.25; countability is clear since \(\{e^{in\theta} \mid n \in \mathbb{Z}\} \) is a countable basis of the trigonometric polynomials.)

Meanwhile the space \(L^\infty(T) \) is not separable. To see this, let \(S \) denote the set of indicator functions of subintervals of the circle (viewed as \([0,1)\)) with irrational endpoints. Then \(S \) is uncountable and the \(L^\infty \) distance between any two elements of \(S \) is 1. Any dense subset of \(L^\infty(T) \) must contain an element in the (disjoint!) collection of balls \(\{B_{1/3}(x) \mid x \in S\} \). So any dense subset must be uncountable. \(\square \)

Rudin, Chapter 4, Problem #4. If \(H \) contains a countable maximal orthonormal set \(B \), then linear combinations \(S \) of the elements of \(B \) with complex coefficients whose real and imaginary parts are rational form a countable dense subset of \(H \). So \(H \) is separable. Conversely suppose \(H \) contains an uncountable orthonormal set \(B \). Any dense subset of \(H \) must contain at least one element in the disjoint collection of balls \(\{B_{1/3}(x) \mid x \in B\} \). So such a dense subset must be uncountable.

Rudin, Chapter 4, Problem #5. Suppose \(L \) is a nonzero continuous linear functional on \(H \). We are to show that \(M^\perp \) is one-dimensional where \(M \) is the kernel of \(L \).

Since \(L \) is nonzero, \(M \neq H \), so (by the Corollary to Theorem 4.11), \(M^\perp \) is nonzero. Fix \(h \) nonzero in \(M^\perp \). By Theorem 4.12, there is \(y \in H \) such that \(L(\cdot) = (\cdot, y) \). Take any \(z \in M^\perp \); we show it’s a multiple of \(h \). Consider

\[
z' = z - \frac{L(z)}{(y, y)} y
\]

Since \(z \) and \(y \) are in \(M^\perp \), so is \(z \). But it’s easy to see that \(L(z') = (z', y) = 0 \). So \(z' \) is also in \(M \). So \(z \) is zero. So \(z \) is a multiple of \(h \), as claimed. \(\square \)

Rudin, Chapter 4, Problem #6. We covered this in class. The main observation is that the natural map \(\psi \) from the Hilbert cube \(Q \) to \(\mathbb{C}^\mathbb{N} := \prod_{n \in \mathbb{N}} \mathbb{C} \) (mapping \(\sum c_nu_n \) to \((c_1, c_2, \ldots) \)) is a homeomorphism onto its image. Here we take the product topology on \(\mathbb{C}^\mathbb{N} \) which is the coarsest topology so that each component projection to \(\mathbb{C} \) is continuous. (It is obvious that \(\psi \) is a continuous bijection onto its image. The slightly tricky point is that \(\psi^{-1} \) is continuous.) Since \(\psi(Q) \) is a product of the closed (compact) balls of radius \(1/n \), Tychonoff’s Theorem implies \(\psi(Q) \), hence \(Q \), is compact.

Given a sequence \(\delta_1, \delta_2, \ldots \) of positive real numbers, define a generalized Hilbert cube \(Q \) by

\[
Q = \left\{ \sum_{n} c_n u_n \mid |c_n| \leq \delta_n \right\}.
\]
If $\sum n \delta_n^2 < \infty$, the above argument again shows that Q is compact.

Now suppose $\sum \delta_n^2$ is infinite. Then the map ψ is no longer surjective onto the product of balls of radius δ_n in \mathbb{C}^N (why?), so the argument breaks down. We will show that Q isn’t compact by finding a sequence with no convergent subsequence. (Since H is a metric space the notions of sequentially compact and compact are equivalent.) Consider the sequence $\delta_1 u_1, \delta_1 u_1 + \delta_2 u_2, \delta_1 u_1 + \delta_2 u_2 + \delta_3 u_3, \ldots$. This has no convergent subsequence.

Rudin, Chapter 4, Problem #7. Follow the suggestions given in the problem. □

Rudin, Chapter 4, Problem #8. If H_1 and H_2 are two Hilbert spaces, let $\{u_\alpha \mid \alpha \in A_1\}$ and $\{u_\alpha \mid \alpha \in A_2\}$ denote respective maximal orthonormal subsets. Without loss of generality, we can assume there is an injection ϕ from A_1 to A_2 (why?). Define a map Φ from H_1 to H_2 sending $\sum c_\alpha u_\alpha \in H_1$ to $\sum c_{\phi(\alpha)} u_\alpha \in H_2$. Then $H_1 \cong \Phi(H_1)$ is a subspace of H_2. □

Rudin, Chapter 4, Problem #11. The set $\{(n/n + 1)e^{i\alpha} \mid n \in \mathbb{Z}\}$ is closed, nonempty, and contains no element of smallest norm. (Of course it is not convex!) □

Rudin, Chapter 4, Problem #17. The mapping γ from $[0, 1]$ into $L^2(T)$ taking a to the characteristic function of $[0, a]$ (viewed as a subinterval of the circle) is a continuous injection such that $\gamma(b) - \gamma(a)$ is orthogonal to $\gamma(d) - \gamma(c)$ whenever $0 \leq a \leq b \leq c \leq d \leq 1$. If H is an infinite-dimensional Hilbert space, Problem 4.8 gives a continuous map γ from $[0, 1]$ to H with the same properties. □

Rudin, Chapter 5, Problem #1. You get diamonds for $p = 1$, rectangles for $p = \infty$, and ellipses for $p = 2$. □

Rudin, Chapter 5, Problem #2. Take x, y of norm less than 1. Then

$$||tx + (1-t)y|| \leq t||x|| + (1-t)||y|| \leq 1.$$ □

Rudin, Chapter 5, Problem #3. One approach to strict convexity rests on the so called Clarkson Inequalities stating that

$$\left|\frac{f + g}{2}\right|_p^p + \left|\frac{f - g}{2}\right|_p^p \leq \frac{1}{2} \left(||f||_p^p + ||g||_p^p\right)$$

if $2 \leq p < \infty$, and

$$\left|\frac{f + g}{2}\right|_p^q + \left|\frac{f - g}{2}\right|_p^q \leq \left[\frac{1}{2} \left(||f||_p^p + ||g||_p^p\right)\right]^{q/p}$$
if $1 < p < 2$ and p and q are conjugate.

Now that $f \neq g$ of unit norm in L^p for $p < 1 < \infty$. Since

$$\left\| \frac{f - g}{2} \right\|^p_p \text{ and } \left\| \frac{f - g}{2} \right\|^q_p$$

are strictly positive, the above inequalities show that $1/2(f + g)$ has norm strictly less than 1, as desired.

Strict convexity fails in $L^\infty(X)$ assuming X is the disjoint union of two sets X_1 and X_2 of nonzero measure. Just take f to be the indicator function of X and g to the indicator function of X_1. Strict convexity also fails in $L^1(X)$ assuming X contains two sets X_1 and X_2 of nonzero finite measure. This time take f to be the indicator function of X_1 and g to the indicator function of X_2.

\[\square\]

\textbf{Rudin, Chapter 5, Problem \#4.} Convexity follows from the definitions. Since continuous functions are bounded, the Dominated Convergence Theorem can be used to show that M is closed. To see that it has no elements of minimal norm, take any $f \in M$. We need to modify f so that its sup norm decreases but so that the integral condition is unchanged. There are a variety of explicit ways to do this. I leave them to you.

\[\square\]

\textbf{Rudin, Chapter 5, Problem \#5.} Convexity of M is clear from the definitions. The fact that M is closed follow from the Dominated Convergence Theorem (which applies since any convergent sequence in L^1 has a pointwise convergent subsequence). The minimal possible norm is easily seen to be 1, and any positive function in M attains this minimum.

\[\square\]

\textbf{Rudin, Chapter 5, Problem \#6.} Let M be a subspace of a Hilbert space H. Let Λ_M be a bounded linear functional on M. We are to prove it has a unique norm preserving extension to all of H.

To start, Λ_M is continuous, so extends uniquely to the closure of M. So assume M is closed, hence a Hilbert space. Thus there exists $m \in M$ such that $\Lambda_M(x) = (x, m)$ such that $||\Lambda_M|| = ||m||$ (Theorem 4.12 plus Schwarz’s inequality). There is one obvious norm-preserving extension of Λ_M to H mapping any $x \in H$ to (x, m). Suppose Λ were another norm-preserving extension. by Theorem 4.12, $\Lambda(x) = (x, h)$ for a unique $h \in H$ with $||h|| = ||m||$. Write the orthogonal decomposition of h with respect to M as $h = h_1 + h_2$. Since $\Lambda|_M = \Lambda_M$ and $h_2 \in M^\perp$,

$$(x, m) = (x, h_1 + h_2) = (x, h_1)$$

for all $x \in M$. By the uniqueness of Theorem 4.12, $h_1 = m$. By the norm preserving property and the Pythagorean Theorem

$$||m|| = ||h|| = ||m + h_2|| = \sqrt{||m||^2 + ||h_2||^2}.$$

So $h_2 = 0$ and the only extension of Λ_M to H is $\Lambda(x) = (x, m)$ for $x \in H$.

Rudin, Chapter 5, Problem #7. Let X be a finite set with the counting measure. So $V := L^1(X) \simeq \mathbb{C}^n$. Let U be any nonzero subspace of V of dimension $m < n$. A linear functional Λ on U is given by a 1-by-m matrix. Its norm is the maximum of the absolute value of its entries. We can extend Λ to V by adding $n - m$ new entries. If they all have absolute value less than the norm of Λ, the extension is norm-preserving. So there are infinitely many norm-preserving extensions of Λ from U to V.

Rudin, Chapter 5, Problem #8. For (a), note that it follows from the definitions that X^* is a normed vector space. The more subtle fact is that it is complete. So let $\Lambda_1, \Lambda_2, \ldots$ be a Cauchy sequence in X^*. Then since each difference $\Lambda_i - \Lambda_j$ is bounded, the sequence $\Lambda_1(x), \Lambda_2(x), \ldots$ is a Cauchy sequence in \mathbb{C} for each fixed $x \in X$. So the pointwise limit $\Lambda(x) := \lim_{n \to \infty} \Lambda_i(x)$ is well-defined. A quick check shows Λ is linear. To see it is bounded, note first that since $\{\Lambda_i\}$ is Cauchy, $||\Lambda|| = 1$, $||\Phi(\Lambda)|| = \lim_{n \to \infty} |\Lambda_i(x)| \leq ||\Lambda|| \cdot ||x|| = ||x||$. So, indeed, Φ is bounded.

Finally, for (c), let $\{x_n\}$ be a sequence in X such that $\{\Lambda(x_n)\}$ is bounded for all $\Lambda \in X^*$. Let Φ_n be the map from X^* to \mathbb{C} by evaluation at some fixed x in X. This is clearly linear. To check that it is bounded, compute for $||\Lambda|| = 1$, $|\Phi(\Lambda)| = |\Lambda(x)| \leq ||\Lambda|| \cdot ||x|| = ||x||$. So, indeed, Φ is bounded.

Rudin, Chapter 5, Problem #20. For (a), a short argument shows that the set of points x for which $\{f_n(x)\}$ is a G_δ set. If it consisted of the rationals, then the rationals would be a dense G_δ in \mathbb{R}, something prohibited by the Baire Category Theorem.

For (c) (and hence (b)), enumerate the rationals in $(0,1)$ as r_1, r_2, \ldots and let f_n be the piecewise linear function through $(0,0), (r_1,1), \ldots, (r_n,n), (1,0)$. This is a sequence of functions such that the set of x with $f_n(x) \to \infty$ is exactly the irrationals.

Rudin, Chapter 6, Problem #1. Yes, we need only work with finite partitions. Let $\{F_\alpha\}_{\alpha \in A}$ be any (infinite) partition of E. It suffices to find a finite subset $S \subset A$ such that $\sum_{\alpha \in S} \mu(F_\alpha)$ is within ϵ of $\sum_{\alpha \in A} \mu(F_\alpha)$. Since the latter sum is finite and absolutely convergent, there is a finite partial sum which is within ϵ of the total sum. This partial sum defines S, as required.
Rudin, Chapter 6, Problem #3. Suppose we can show the space of complex measures on X is really a vector space. Then the Riesz Representation Theorem shows that this space (with the total variation norm) is isometrically isomorphic to X^*, which is a Banach space by Chapter 5, #8. I leave the vector space verification to you.

Rudin, Chapter 6, Problem #4.

Rudin, Chapter 6, Problem #5. Note that L^1 is one-dimensional, but L^∞ is two-dimensional. So these spaces are not dual to each other.