
MATH 6210: SOLUTIONS TO PROBLEM SET #3

Rudin, Chapter 4, Problem #3. The space Lp(T ) is separable since the trigono-
metric polynomials with complex coefficients whose real and imaginary parts are
rational form a countable dense subset. (Denseness follows from Theorem 3.14 and
Theorem 4.25; countability is clear since {einθ | n ∈ Z} is a countable basis of the
trigonometric polynomials.)

Meanwhile the space L∞(T ) is not separable. To see this, let S denote the set
of indicator functions of subintervals of the circle (viewed as [0, 1)) with irrational
endpoints. Then S is uncountable and the L∞ distance between any two elements
of S is 1. Any dense subset of L∞(T ) must contain an element in the (disjoint!)
collection of balls {B1/3(x) |x ∈ S}. So any dense subset must be uncountable. ˜

Rudin, Chapter 4, Problem #4. If H contains a countable maximal orthonor-
mal set B, then linear combinations S of the elements of B with complex coefficients
whose real and imaginary parts are rational form a countable dense subset of H . So
H is separable. Conversely suppose H contains an uncountable orthonormal set B.
Any dense subset of H must contain at least one element in the disjoint collection
of balls {B1/3(x) | x ∈ B}. So such a dense subset must be uncountable.

Rudin, Chapter 4, Problem #5. Suppose L is a nonzero continuous linear
functional on H . We are to show that M⊥ is one-dimensional where M is the
kernel of L.

Since L is nonzero, M 6= H , so (by the Corollary to Theorem 4.11), Mperp
is nonzero. Fix h nonzero in M⊥. By Theorem 4.12, there is y ∈ H such that
L(·) = (·, y). Take any z ∈M⊥; we show it’s a multiple of h. Consider

z′ = z − [L(z)/(y, y)] y

Since z and y are in M⊥, so is z. But it’s easy to see that L(z′) = (z′, y) = 0. So
z′ is also in M . So z is zero. So z is a multiple of h, as claimed. ˜

Rudin, Chapter 4, Problem #6. We covered this in class. The main observa-
tion is that the natural map ψ from the Hilbert cube Q to CN :=

∏

i∈N
C (mapping

∑

cnun to (c1, c2, . . . )) is a homeomorphism onto its image. Here we take the
product topology on CN which is the coarsest topology so that each component
projection to C is continuous. (It is obvious that ψ is a continuous bijection onto
its image. The slightly tricky point is that ψ−1 is continuous.) Since ψ(Q) is a
product of the closed (compact) balls of radius 1/n, Tychonoff’s Theorem implies
ψ(Q), hence Q, is compact.

Given a sequence δ1, δ2, . . . of positive real numbers, define a generalized Hilbert
cube Q by

Q =

{

∑

n

cnun | |cn| ≤ δn

}

.
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If
∑

n δ
2
n <∞, the above argument again shows that Q is compact.

Now suppose
∑

δ2n is infinite. Then the map ψ is no longer surjective onto the
product of balls of radius δn in CN (why?), so the argument breaks down. We will
show that Q isn’t compact by finding a sequence with no convergent subsequence.
(Since H is a metric space the notions of sequentially compact and compact are
equivalent.) Consider the sequence δ1u1, δ1u1 + δ2u2, δ1u1 + δ2u2 + δ3u3, . . . . This
has no convergent subsequence.

Rudin, Chapter 4, Problem #7. Follow the suggestions given in the problem.
˜

Rudin, Chapter 4, Problem #8. If H1 and H2 are two Hilbert spaces, let
{uα | α ∈ A1} and {uα | α ∈ A2} denote respective maximal orthonormal subsets.
Without loss of generality, we can assume there is an injection φ from A1 to A2

(why?). Define a map Φ from H1 to H2 sending
∑

cαuα ∈ H1 to
∑

cφ(α)uα ∈ H2.
Then H1 ≃ Φ(H1) is a subspace of H2. ˜

Rudin, Chapter 4, Problem #11. The set {(n/n+ 1))einθ | n ∈ Z} is closed,
nonempty, and contains no element of smallest norm. (Of course it is not convex!)

˜

Rudin, Chapter 4, Problem #17. The mapping γ from [0, 1] into L2(T ) taking
a to the characteristic function of [0, a] (viewed as a subinterval of the circle) is a
continuous injection such that γ(b) − γ(a) is orthogonal to γ(d) − γ(c) whenever
0 ≤ a ≤ b ≤ c ≤ d ≤ 1. If H is an infinite-dimensional Hilbert space, Problem 4.8
gives a continuous map γ from [0, 1] to H with the same properties. ˜

Rudin, Chapter 5, Problem #1. You get diamonds for p = 1, rectangles for
p = ∞, and ellipses for p = 2. ˜

Rudin, Chapter 5, Problem #2. Take x, y of norm less than 1. Then

||tx+ (1 − t)y|| ≤ t||x|| + (1 − t)||y|| ≤ 1.

˜

Rudin, Chapter 5, Problem #3. One approach to strict convexity rests on the
so called Clarkson Inequalities stating that
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if 1 < p < 2 and p and q are conjugate.
Now that f 6= g of unit norm in Lp for p < 1 <∞. Since
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are strictly positive, the above inequalities show that 1/2(f + g) has norm strictly
less than 1, as desired.

Strict convexity fails in L∞(X) assuming X is the disjoint union of two sets X1

and X2 of nonzero measure. Just take f to be the indicator function of X and g
to the indicator function of X1. Strict convexity also fails in L1(X) assuming X
contains two sets X1 and X2 of nonzero finite measure. This time take f to be the
indicator function of X1 and g to the indicator function of X2. ˜

Rudin, Chapter 5, Problem #4. Convexity follows from the definitions. Since
continuous functions are bounded, the Dominated Convergence Theorem can be
used to show that M is closed. To see that it has no elements of minimal norm,
take any f ∈ M . We need to modify f so that its sup norm decreases but so that
the integral condition is unchanged. There are a variety of explicit ways to do this.
I leave them to you.

˜

Rudin, Chapter 5, Problem #5. Convexity of M is clear from the defini-
tions. The fact that M is closed follow from the Dominated Convergence Theorem
(which applies since any convergent sequence in L1 has a pointwise convergent sub-
sequence). The minimal possible norm is easily seen to be 1, and any positive
function in M attains this minimum.

˜

Rudin, Chapter 5, Problem #6. Let M be a subspace of a Hilbert space H .
Let ΛM be a bounded linear functional on M . We are to prove it has a unique
norm preserving extension to all of H .

To start, ΛM is continuous, so extends uniquely to the closure of M . So assume
M is closed, hence a Hilbert space. Thus there exists m ∈ M such that ΛM (x) =
(x,m) such that ||ΛM || = ||m|| (Theorem 4.12 plus Schwarz’s inequality). There is
one obvious norm-preserving extension of ΛM to H mapping any x ∈ H to (x,m).
Suppose Λ were another norm-preserving extension. by Theorem 4.12, Λ(x) =
(x, h) for a unique h ∈ H with ||h|| = ||m||. Write the orthogonal decomposition of
h with respect to M as h = h1 + h2. Since Λ|M = ΛM and h2 ∈M⊥,

(x,m) = (x, h1 + h2) = (x, h1)

for all x ∈M . By the uniqueness of Theorem 4.12, h1 = m. By the norm preserving
property and the Pythagorean Theorem

||m|| = ||h|| = ||m+ h2|| =
√

||m||2 + ||h2||2.

So h2 = 0 and the only extension of ΛM to H is Λ(x) = (x,m) for x ∈ H .
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Rudin, Chapter 5, Problem #7. Let X be a finite set with the counting
measure. So V := L1(X) ≃ Cn. Let U be any nonzero subspace of V of dimension
m < n. A linear functional Λ on U is given by a 1-by-m matrix. It’s norm is the
maximum of the absolute value of its entries. We can extend Λ to V by adding n−m
new entries. If they all have absolute value less than the norm of Λ, the extension
is norm-preserving. So there are infinitely many norm-preserving extensions of Λ
from U to V . ˜

Rudin, Chapter 5, Problem #8. For (a), note that is follows from the defini-
tions that X∗ is a normed vector space. The more subtle fact is that it is complete.
So let Λ1,Λ2, . . . be a Cauchy sequence in X∗. Then since each difference Λi − Λj

is bounded, the sequence Λ1(x),Λ2(x), . . . is a Cauchy sequence in C for each fixed
x ∈ X . So the pointwise limit Λ(x) := limn→∞ Λi(x) is well-defined. A quick check
shows Λ is linear. To see it is bounded, note first that since {Λi} is Cauchy, {||Λi}
is bounded by, say, N . Fix x ∈ X with ||x|| = 1. Then

|Λ(x)| = lim
n→∞

|Λi(x)| ≤ N ||x|| = N.

So, indeed, Λ is bounded.
The last thing to check is that Λi → Λ in the norm on X∗. I leave this to you.

For (b), define Φ from X∗ to C by evaluation at some fixed x in X . This is
clearly linear. To check that it is bounded, compute for ||Λ|| = 1,

|Φ(Λ)| = |Λ(x)| ≤ ||Λ|| · ||x|| = ||x||.

So, indeed, Φ is bounded.

Finally, for (c), let {xn} be a sequence in X such that {Λ(xn)} is bounded
for all Λ ∈ X∗. Let Φn be the map from X∗ to C defined by evaluating at xn.
So {Λ(xn)} bounded for all Λ literally means {Φn(Λ)} is bounded for all Λ. By
Banach-Steinhaus, {||Φn||} = {||xn||} is bounded.

˜

Rudin, Chapter 5, Problem #20. For (a), a short argument shows that the set
of points x for which {fn(x)} is a Gδ set. If it consisted of the rationals, then the
rationals would be a dense Gδ in R, something prohibited by the Baire Category
Theorem.

For (c) (and hence (b)), enumerate the rationals in (0, 1) as r1, r2, .... and let
fn be the piecewise linear function through (0, 0), (r1, 1), . . . , (rn, n), (1, 0). This
is a sequence of functions such that the set of x with fn(x) → ∞ is exactly the
irrationals. ˜

Rudin, Chapter 6, Problem #1. Yes, we need only work with finite partitions.
Let {Fα}α∈A be any (infinite) partition of E. It suffices to find a finite subset
S ⊂ A such that

∑

α∈S |µ(Fα)| is within ǫ of
∑

α∈A |µ(Fα)|. Since the latter sum
is finite and absolutely convergent, there is a finite partial sum which is within ǫ of
the total sum. This partial sum defines S, as required. ˜
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Rudin, Chapter 6, Problem #3. Suppose we can show the space of complex
measures on X is really a vector space. Then the Riesz Representation Theorem
shows that this space (with the total variation norm) is isometrically isomorphic to
X∗, which is a Banach space by Chapter 5, #8. I leave the vector space verification
to you. ˜

Rudin, Chapter 6, Problem #4.

˜

Rudin, Chapter 6, Problem #5. Note that L1 is one-dimensional, but L∞ is
two-dimensional. So these spaces are not dual to each other. ˜


