MATH 6210: SOLUTIONS TO PROBLEM SET #3

Rudin, Chapter 4, Problem #3. The space LP(T) is separable since the trigono-
metric polynomials with complex coefficients whose real and imaginary parts are
rational form a countable dense subset. (Denseness follows from Theorem 3.14 and
Theorem 4.25; countability is clear since {e™? | n € Z} is a countable basis of the
trigonometric polynomials.)

Meanwhile the space L°°(T) is not separable. To see this, let S denote the set
of indicator functions of subintervals of the circle (viewed as [0, 1)) with irrational
endpoints. Then S is uncountable and the L>° distance between any two elements
of S is 1. Any dense subset of L°°(T) must contain an element in the (disjoint!)
collection of balls { By /3(x) |z € S}. So any dense subset must be uncountable. [J

Rudin, Chapter 4, Problem #4. If H contains a countable maximal orthonor-
mal set B, then linear combinations .S of the elements of B with complex coefficients
whose real and imaginary parts are rational form a countable dense subset of H. So
H is separable. Conversely suppose H contains an uncountable orthonormal set B.
Any dense subset of H must contain at least one element in the disjoint collection
of balls {B;,3(x) | z € B}. So such a dense subset must be uncountable.

Rudin, Chapter 4, Problem #5. Suppose L is a nonzero continuous linear
functional on H. We are to show that M~ is one-dimensional where M is the
kernel of L.

Since L is nonzero, M # H, so (by the Corollary to Theorem 4.11), MPerp
is nonzero. Fix h nonzero in M*. By Theorem 4.12, there is y € H such that
L(-) = (+,y). Take any z € M~*; we show it’s a multiple of h. Consider

zl =z — [L(Z)/(y’ y)] Yy

Since z and y are in M+, so is z. But it’s easy to see that L(z') = (/,y) = 0. So
2’ is also in M. So z is zero. So z is a multiple of &, as claimed. O

Rudin, Chapter 4, Problem #6. We covered this in class. The main observa-
tion is that the natural map 1 from the Hilbert cube Q to CN := [I;cn € (mapping
> enun to (c1,c2,...)) is a homeomorphism onto its image. Here we take the
product topology on CY which is the coarsest topology so that each component
projection to C is continuous. (It is obvious that v is a continuous bijection onto
its image. The slightly tricky point is that /=1 is continuous.) Since ¥(Q) is a
product of the closed (compact) balls of radius 1/n, Tychonoff’s Theorem implies
¥(Q), hence @, is compact.

Given a sequence 91, 02, . .. of positive real numbers, define a generalized Hilbert
cube @ by

Q= { > cntin | e S%} :
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If 3", 62 < oo, the above argument again shows that @ is compact.

Now suppose Y. 62 is infinite. Then the map 1 is no longer surjective onto the
product of balls of radius §,, in CY (why?), so the argument breaks down. We will
show that @ isn’t compact by finding a sequence with no convergent subsequence.
(Since H is a metric space the notions of sequentially compact and compact are
equivalent.) Consider the sequence d1uq,d1u1 + dous, 0111 + daug + d3us, . ... This
has no convergent subsequence.

Rudin, Chapter 4, Problem #7. Follow the suggestions given in the problem.
O

Rudin, Chapter 4, Problem #8. If H; and H; are two Hilbert spaces, let
{tua | @ € A1} and {u, | @ € Az} denote respective maximal orthonormal subsets.
Without loss of generality, we can assume there is an injection ¢ from A; to As
(why?). Define a map ® from H; to Hs sending ) catia € Hi t0 ) Cy(a)Ua € Ha.
Then Hy ~ ®(H;) is a subspace of Hs. [l

Rudin, Chapter 4, Problem #11. The set {(n/n +1))ei"® | n € Z} is closed,
nonempty, and contains no element of smallest norm. (Of course it is not convex!)
O

Rudin, Chapter 4, Problem #17. The mapping 7 from [0, 1] into L?(T) taking
a to the characteristic function of [0, a] (viewed as a subinterval of the circle) is a
continuous injection such that «(b) — vy(a) is orthogonal to v(d) — v(c) whenever
0<a<b<c<d<1 If His an infinite-dimensional Hilbert space, Problem 4.8
gives a continuous map « from [0, 1] to H with the same properties. O

Rudin, Chapter 5, Problem #1. You get diamonds for p = 1, rectangles for
p = oo, and ellipses for p = 2. 0

Rudin, Chapter 5, Problem #2. Take x,y of norm less than 1. Then
[tz + (1 = t)y[| < tll«][ + A = D)llyll < 1.
O

Rudin, Chapter 5, Problem #3. One approach to strict convexity rests on the
so called Clarkson Inequalities stating that
P
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if 1 < p <2 and p and g are conjugate.
Now that f # ¢ of unit norm in L? for p < 1 < co. Since
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are strictly positive, the above inequalities show that 1/2(f + ¢g) has norm strictly
less than 1, as desired.

Strict convexity fails in L°°(X) assuming X is the disjoint union of two sets X3
and Xz of nonzero measure. Just take f to be the indicator function of X and g
to the indicator function of X;. Strict convexity also fails in L'(X) assuming X
contains two sets X1 and X5 of nonzero finite measure. This time take f to be the
indicator function of X; and g to the indicator function of Xs. O

Rudin, Chapter 5, Problem #4. Convexity follows from the definitions. Since
continuous functions are bounded, the Dominated Convergence Theorem can be
used to show that M is closed. To see that it has no elements of minimal norm,
take any f € M. We need to modify f so that its sup norm decreases but so that
the integral condition is unchanged. There are a variety of explicit ways to do this.

I leave them to you.
O

Rudin, Chapter 5, Problem #5. Convexity of M is clear from the defini-
tions. The fact that M is closed follow from the Dominated Convergence Theorem
(which applies since any convergent sequence in L! has a pointwise convergent sub-
sequence). The minimal possible norm is easily seen to be 1, and any positive
function in M attains this minimum.

O

Rudin, Chapter 5, Problem #86. Let M be a subspace of a Hilbert space H.
Let Aj; be a bounded linear functional on M. We are to prove it has a unique
norm preserving extension to all of H.

To start, Ajps is continuous, so extends uniquely to the closure of M. So assume
M is closed, hence a Hilbert space. Thus there exists m € M such that Ay (x) =
(x,m) such that ||Aas|| = ||m|| (Theorem 4.12 plus Schwarz’s inequality). There is
one obvious norm-preserving extension of Ays to H mapping any « € H to (z,m).
Suppose A were another norm-preserving extension. by Theorem 4.12, A(z) =
(x, h) for a unique h € H with ||h|| = ||m||. Write the orthogonal decomposition of
h with respect to M as h = hy + ha. Since Ajp; = Ay and hg € Mt

(x,m) = (x,h1 + ha) = (x, h1)

for all z € M. By the uniqueness of Theorem 4.12, h; = m. By the norm preserving
property and the Pythagorean Theorem

[lml| = [|al] = |lm + hal| = V/|lm][? + [|h2][?.

So he = 0 and the only extension of Ay to H is A(z) = (z,m) for z € H.
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Rudin, Chapter 5, Problem #7. Let X be a finite set with the counting
measure. So V := L1(X) ~ C". Let U be any nonzero subspace of V of dimension
m < n. A linear functional A on U is given by a 1-by-m matrix. It’s norm is the
maximum of the absolute value of its entries. We can extend A to V' by adding n—m
new entries. If they all have absolute value less than the norm of A, the extension
is norm-preserving. So there are infinitely many norm-preserving extensions of A

from U to V. O

Rudin, Chapter 5, Problem #8. For (a), note that is follows from the defini-
tions that X is a normed vector space. The more subtle fact is that it is complete.
So let Ai, Ag,... be a Cauchy sequence in X*. Then since each difference A; — A;
is bounded, the sequence A1 (z), Aa(z), ... is a Cauchy sequence in C for each fixed
x € X. So the pointwise limit A(x) := lim, oo Ai(2) is well-defined. A quick check
shows A is linear. To see it is bounded, note first that since {A;} is Cauchy, {||A;}
is bounded by, say, N. Fix € X with ||z|| = 1. Then

A@)| = lim [As(2)] < Nljal| = N.

So, indeed, A is bounded.
The last thing to check is that A; — A in the norm on X*. I leave this to you.

For (b), define ® from X* to C by evaluation at some fixed  in X. This is
clearly linear. To check that it is bounded, compute for ||A|| = 1,

[2(A)] = [A(z)] < (A} (|| = []=]].
So, indeed, ® is bounded.

Finally, for (c), let {,} be a sequence in X such that {A(z,)} is bounded
for all A € X*. Let ®,, be the map from X* to C defined by evaluating at z,,.
So {A(z,)} bounded for all A literally means {®,(A)} is bounded for all A. By
Banach-Steinhaus, {||®,||} = {||zx||} is bounded.

]

Rudin, Chapter 5, Problem #20. For (a), a short argument shows that the set
of points = for which {f,(x)} is a Gs set. If it consisted of the rationals, then the
rationals would be a dense Gs in R, something prohibited by the Baire Category
Theorem.

For (¢) (and hence (b)), enumerate the rationals in (0,1) as ri,7,.... and let
fn be the piecewise linear function through (0,0), (r1,1),..., (rn,n),(1,0). This
is a sequence of functions such that the set of z with f,(x) — oo is exactly the
irrationals. (]

Rudin, Chapter 6, Problem #1. Yes, we need only work with finite partitions.
Let {Fy}aca be any (infinite) partition of E. It suffices to find a finite subset
S C Asuch that ) ¢ |p(Fy)| is within € of ) 4 [u(Fa)|. Since the latter sum
is finite and absolutely convergent, there is a finite partial sum which is within € of
the total sum. This partial sum defines S, as required. (|



Rudin, Chapter 6, Problem #3. Suppose we can show the space of complex
measures on X is really a vector space. Then the Riesz Representation Theorem
shows that this space (with the total variation norm) is isometrically isomorphic to
X* which is a Banach space by Chapter 5, #8. I leave the vector space verification
to you. (I

Rudin, Chapter 6, Problem #4.
O

Rudin, Chapter 6, Problem #35. Note that L' is one-dimensional, but L> is
two-dimensional. So these spaces are not dual to each other. (I



