Rudin, Chapter 2, Problem #5. Show that the Cantor set has measure 0 but is uncountable.

Let E_k denote the *k*th step in the construction of *E*. So $E_0 = [0,1]$, $E_1 = [0,1/3] \cup [2/3,1]$, and so on; and $E = \bigcap_i E_i$. Add up size of intervals removed to form E_i to get

$$(1/3) + 2(1/3)^2 + 2^2(1/3)^3 + \dots + 2^{i-1}(1/3)^i$$

So E is the complement of a set of size

$$(1/3) + 2(1/3)^2 + 2^2(1/3)^3 + \dots = 1,$$

and hence has measure zero.

Finally, the elements of E are in 1-1 correspondence with infinite base three decimals, so E is uncountable.

Rudin, Chapter 4, Problem #7. Construct a totally disconnected compact set $K \subset \mathbb{R}$ such that $\mu(K) > 0$.

Repeat the construction of the Cantor set from the interval [0, 1] recalled in the previous problem, but define K_i inductively by removing (open) middle segments from $K_{i=1}$ of length ε^i (for $\varepsilon < 1$). Then a simple argument (along the lines in the previous argument) shows that the resulting intersection K has measure

$$\frac{1-3\varepsilon}{1-2\varepsilon}$$

K is totally disconnected and compact for the same reasons that the Cantor set is.

Rudin, Chapter 4, Problem #6. Fix $0 < \varepsilon' < 1$. Find an open dense subset of [0, 1] of measure ε' .

Consider the complement of the set constructed in Problem #7. It is dense and can be made to have measure ε' .

Rudin, Chapter 4, Problem #8. Construct a Borel set $E \subset \mathbb{R}$ such that

 $0 < \mu(I \cap E) < \mu(I)$

for every nonempty interval I.

Suppose we can find $E \subset [0,1]$ satisfying the requirement for each $I \subset [0,1]$. Then repeating E along the real line gives a solution to the problem.

To find such $E \subset [0, 1]$, start with the generalized Cantor set, say E_1 , of measure ε constructed in Problem #7. Then in each of the (countable!) number of "holes" in E_1 with appropriately scaled generalized Cantor sets so that the result has measure

 $\varepsilon + \varepsilon/2$. Call the result E_2 . Next fill the countable number of holes in E_2 with scaled generalized Cantor sets so that the result now has measure $\varepsilon + \varepsilon/2 + \varepsilon/4$. Continue. The union of all E_i will have the required properties and will have measure 2ε .

As we noted, if we repeat E along the real line, it has the required properties of the problem. (By shrinking its measure as we repeat, we can insure the result has *finite* total measure!)

Rudin, Chapter 4, Problem #9. Construct a sequence of continuous functions f_n on [0, 1] such that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0,$$

but so that $f_n(x)$ converges for no $x \in [0, 1]$.

Recall a tent function centered at c of height a and width b is the piecewise linear function

$$f(x) = \begin{cases} 0 & \text{if } x \notin [c - b/2, c + b/2] \\ a(1 - |2(x - c)/b|) & \text{if } x \in [-b/2, b/2]. \end{cases}$$

Let g_n be the tent function centered at $1 + 1/2 + \cdots + 1/n$ (taken modulo 1) with height 1 and width $1/\sqrt{n}$, and let $f_n = \chi_{[0,1]}g_n$. This sequence is a "pulse" of overlapping tent functions which wrap around the unit interval. The width of each tent keeps shrinking (so the integral tends to zero), but if we fix $x \in [0, 1]$, x takes values 0 and arbitrarily close to 1 infinitely often.

Rudin, Chapter 3, Problem #3. If ϕ is a continuous function on (a, b) such that

$$\phi\left(\frac{x+y}{2}\right) \le \frac{\phi(x)}{2} + \frac{\phi(y)}{2},$$

then ϕ is convex.

The best proof (like that of Theorem 3.2) is by drawing a picture. I omit the details. As Rudin points out, you need to be a little careful since the result fails if ϕ is not assumed to be continuous (for example, by taking $a = 0, b = 2, \phi(x) = 0$ for x < 1, and $\phi(x) = 3x + 1$ for $x \ge 1$).

Rudin, Chapter 3, Problem #7. Find necessary and sufficient conditions for the inclusion of $L^p \subset L^q$ to hold.

The solution I give is based on "Another note on the inclusion of $L^p(\mu) \subset L^q(\mu)$ " by A. Villani, *The American Mathematical Monthly*, Vol. 92 (1985), No. 7, 485–487.

Proposition 1 Let μ be a positive measure in \mathcal{M} . Let \mathcal{M}_0 denote the sets of nonzero measure. The the following are equivalent

(a) $L^p(\mu) \subset L^q(\mu)$ for some p < q in $(0, \infty]$;

(b) $\inf_{E \in \mathcal{M}_0} \mu(E) > 0$; and

Proof. (a) implies (b). If $L^p(\mu) \subset L^q(\mu)$, then clearly $L^{pt} \subset L^{qt}$ for all t > 0. So assume we can assume $p \ge 1$, so L^p and L^q are normed. The key is the hypothesized set-theoretic inclusion $L^p \subset L^q$ is a continuous linear map. The reason is that, as we saw in the proof of the completeness of L^q , any convergent sequence in L^p converges (in L^q) to the pointwise limit of some subsequence (almost everywhere). So the image of L^p inside L^q is closed in the L^q norm. So the Closed Graph Theorem then implies the inclusion is continuous. Hence there is a constant k such that for every $f \in L^p$,

$$||f||_p \le k||f||_q.$$

Take $f = \chi_E$ for a measurable set E to get

$$\mu(E)^{1/p} \le k\mu(E)^{1/q},$$

and so

$$\mu(E) \ge k^{\frac{-1}{1/q-1/p}}.$$

So the infinium in (b) must be strictly positive.

(b) implies (c). Given $f \in L^p$, let E_n denote the set of x such that |f(x) < n. Since $f \in L^p$, $\mu(E_n)$ must tend to zero as n becomes large. By (b), this means there is some N such that $\mu(E_n) = 0$. So f is actually in L^{∞} . So f is in L^q too.

(c) trivially implies (a).

There is also a dual assertion (whose proof I leave to you):

Proposition 2 Let μ be a positive measure in \mathcal{M} . Let \mathcal{M}_{∞} denote the sets of finite measure. The the following are equivalent

- (a) $L^p(\mu) \subset L^q(\mu)$ for some p > q in $(0, \infty)$;
- (b) $\sup_{E \in \mathcal{M}_{\infty}} \mu(E) < \infty$; and

(c) $L^p(\mu) \subset L^q(\mu)$ for all p > q in $(0, \infty)$;

Note the if $\mu(X)$ is finite, Proposition 2 applies. If μ is discrete, Proposition 1 applies. Neither proposition applies to Lebesque measure on \mathbb{R} .

Rudin, Chapter 3, Problem #11. Suppose $\mu(\Omega) = 1$, and suppose f and g are positive measurable functions on Ω such that $fg \ge 1$. Then

$$\int_{\Omega} f d\mu \cdot \int_{\Omega} f d\mu \ge 1$$

Since f and g are positive, we can consider their square roots \sqrt{f} and \sqrt{g} . By the H older inequality, we have

$$||\sqrt{f}||_2 ||\sqrt{g}||_2 \ge ||\sqrt{fg}||_1.$$

The left-hand side is of course

$$\sqrt{\int_{\Omega} f d\mu \cdot \int_{\Omega} g d\mu}.$$

By hypothesis $\sqrt{fg} \ge 1$, and so the right-hand side is at least

$$1 \cdot \mu(\Omega) = 1.$$

Squaring both sides gives the desired result.

Circle Problem. Let $S^1 = \{e^{i\theta} \mid 0 \le \theta < 2\pi\}$. For each $n \in \mathbb{Z}$, define a map $\chi_n : S^1 \to \mathbb{C}^{\times}$ via

$$\chi_n(e^{i\theta}) = e^{in\theta}.$$

- (0) Prove that χ_n is a continuous homorphism from the multiplicative group S^1 to the multiplicative group \mathbb{C}^{\times} .
- Suppose χ is any continuous homorphism from the multiplicative group S¹ to the multiplicative group C[×]. Prove that there exists an n such that *χ* = *χ_n*.
- (2) Suppose χ is a continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces in the following sense: if V is a subspace of \mathbb{C}^N such that

$$[\chi(x)](v) \in V$$
 for all $x \in S^1$ and $v \in V$,

then $V = \{0\}$ or $V = \mathbb{C}^N$. Prove that N = 1.

Hence the maps χ_n are precisely the set of continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces.

Solution. (0) is trivial. For (1), let H_m denote the subgroup of S^1 consisting of mth roots of unity. Since χ is a homomorphism, it is clear that for each m there exists and integer $0 \le n_m \le m - 1$ (possibly depending on m) so that $\chi(z) = z^{n_m}$ for all $z \in H_m$. Let z_m denote a choice of generator for H_m . For primes $p \ne q$, we know we can take $z_{pq} = z_p z_q$. So we compute in the group H_{pq} ,

$$z_p^{n_{pq}} z_q^{n_{pq}} = z_{pq}^{n_{pq}} = \chi(z_{pq}) = \chi(z_p z_q) = \chi(z_p)\chi(z_q) = z_p^{n_p} z_q^{n_q}.$$

In other words

$$z_p^{n_{pq}-n_p} = z_q^{n_q-n_{pq}}.$$

Since H_p and H_q intersect only in $\{1\}$,

$$n_{pq} = n_p \mod p$$

and

4

$$n_{pq} = n_q \mod q.$$

Thus $n_p = n_q \mod p$ (as well as mod q). So indeed for all primes p, n_p is a constant n (independent of p). Since all prime roots of unity are dense in S^1 , the claim follows.

For (2), write A_{θ} for $\chi(e^{i\theta})$; so A_{θ} is an $N \times N$ matrix. Since A_{θ} cannot be the zero matrix, it has a nonzero eigenvalue. Pick one and call it λ_{θ} . Consider the matrix $B_{\theta} = A_{\theta} - \lambda_{\theta} Id$. Since χ is a homomorphism and S^1 is abelian, it's clear that B_{θ} commutes with all A_{ϕ} . Hence the kernel K of B is an invariant subspace of \mathbb{C}^N . By hypothesis, this means that K is either $\{0\}$ or all or \mathbb{C}^N . The former case is impossible since any eigenvector corresponding to λ_{θ} is in the kernel. Thus Kmust be all of \mathbb{C}^N . So $B_{\theta} = 0$. In other words A_{θ} is the (nonzero) constant multiple λ_{θ} of the identity. Thus any subspace of \mathbb{C}^N is invariant. This is a contradiction unless N = 1.