
MATH 6210: SOLUTIONS TO PROBLEM SET #2

Rudin, Chapter 2, Problem #5. Show that the Cantor set has measure 0 but
is uncountable.

Let Ek denote the kth step in the construction of E. So E0 = [0, 1], E1 =
[0, 1/3] ∪ [2/3, 1], and so on; and E =

⋂

i Ei. Add up size of intervals removed to
form Ei to get

(1/3) + 2(1/3)2 + 22(1/3)3 + · · · + 2i−1(1/3)i.

So E is the complement of a set of size

(1/3) + 2(1/3)2 + 22(1/3)3 + · · · = 1,

and hence has measure zero.
Finally, the elements of E are in 1-1 correspondence with infinite base three

decimals, so E is uncountable. ˜

Rudin, Chapter 4, Problem #7. Construct a totally disconnected compact set
K ⊂ R such that µ(K) > 0.

Repeat the constuction of the Cantor set from the interval [0, 1] recalled in the
previous problem, but define Ki inductively by removing (open) middle segments
from Ki=1 of length εi (for ε < 1). Then a simple argument (along the lines in the
previous argument) shows that the resulting intersection K has measure

1 − 3ε

1 − 2ε
.

K is totally disconnected and compact for the same reasons that the Cantor set is.
˜

Rudin, Chapter 4, Problem #6. Fix 0 < ε′ < 1. Find an open dense subset of
[0, 1] of measure ε′.

Consider the complement of the set constructed in Problem #7. It is dense and
can be made to have measure ε′. ˜

Rudin, Chapter 4, Problem #8. Construct a Borel set E ⊂ R such that

0 < µ(I ∩ E) < µ(I)

for every nonempty interval I.

Suppose we can find E ⊂ [0, 1] satisfying the requirement for each I ⊂ [0, 1].
Then repeating E along the real line gives a solution to the problem.

To find such E ⊂ [0, 1], start with the generalized Cantor set, say E1, of measure
ε constructed in Problem #7. Then in each of the (countable!) number of “holes” in
E1 with appropriately scaled generalized Cantor sets so that the result has meaure
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ε+ε/2. Call the result E2. Next fill the countable number of holes in E2 with scaled
generalized Cantor sets so that the result now has measure ε+ε/2+ε/4. Continue.
The union of all Ei will have the required properties and will have measure 2ε.

As we noted, if we repeat E along the real line, it has the required properties of
the problem. (By shrinking its measure as we repeat, we can insure the result has
finite total measure!)

˜

Rudin, Chapter 4, Problem #9. Construct a sequence of continuous functions
fn on [0, 1] such that

lim
n→∞

∫ 1

0

fn(x)dx = 0,

but so that fn(x) converges for no x ∈ [0, 1].

Recall a tent function centered at c of height a and width b is the piecewise linear
function

f(x) =

{

0 if x /∈ [c − b/2, c + b/2]

a(1 − |2(x − c)/b|) if x ∈ [−b/2, b/2].

Let gn be the tent function centered at 1 + 1/2 + · · · + 1/n (taken modulo 1) with
height 1 and width 1/

√
n, and let fn = χ[0,1]gn. This sequence is a “pulse” of

overlapping tent functions which wrap around the unit interval. The width of each
tent keeps shrinking (so the integral tends to zero), but if we fix x ∈ [0, 1], x takes
values 0 and arbitrarily close to 1 infinitely often.

˜

Rudin, Chapter 3, Problem #3. If φ is a continuous function on (a, b) such
that

φ

(

x + y

2

)

≤ φ(x)

2
+

φ(y)

2
,

then φ is convex.

The best proof (like that of Theorem 3.2) is by drawing a picture. I omit the
details. As Rudin points out, you need to be a little careful since the result fails if
φ is not assumed to be continuous (for example, by taking a = 0, b = 2, φ(x) = 0
for x < 1, and φ(x) = 3x + 1 for x ≥ 1). ˜

Rudin, Chapter 3, Problem #7. Find necessary and sufficient conditions for
the inclusion of Lp ⊂ Lq to hold.

The solution I give is based on “Another note on the inclusion of Lp(µ) ⊂ Lq(µ)”
by A. Villani, The American Mathematical Monthly, Vol. 92 (1985), No. 7, 485–487.

Proposition 1 Let µ be a positive measure in M. Let M0 denote the sets of
nonzero measure. The the following are equivalent

(a) Lp(µ) ⊂ Lq(µ) for some p < q in (0,∞];
(b) infE∈M0

µ(E) > 0; and
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(c) Lp(µ) ⊂ Lq(µ) for all p < q in (0,∞];

Proof. (a) implies (b). If Lp(µ) ⊂ Lq(µ), then clearly Lpt ⊂ Lqt for all t > 0. So
assume we can assume p ≥ 1, so Lp and Lq are normed. The key is the hypothesized

set-theoretic inclusion Lp ⊂ Lq is a continuous linear map. The reason is that, as
we saw in the proof of the completeness of Lq, any convergent sequence in Lp

converges (in Lq) to the pointwise limit of some subsequence (almost everywhere).
So the image of Lp inside Lq is closed in the Lq norm. So the Closed Graph Theorem
then implies the inclusion is continuous. Hence there is a constant k such that for
every f ∈ Lp,

||f ||p ≤ k||f ||q.
Take f = χE for a measurable set E to get

µ(E)1/p ≤ kµ(E)1/q,

and so
µ(E) ≥ k

−1

1/q−1/p .

So the infinium in (b) must be strictly positive.
(b) implies (c). Given f ∈ Lp, let En denote the set of x such that |f(x) < n.

Since f ∈ Lp, µ(En) must tend to zero as n becomes large. By (b), this means
there is some N such that µ(En) = 0. So f is actually in L∞. So f is in Lq too.

(c) trivially implies (a). ˜

There is also a dual assertion (whose proof I leave to you):

Proposition 2 Let µ be a positive measure in M. Let M∞ denote the sets of
finite measure. The the following are equivalent

(a) Lp(µ) ⊂ Lq(µ) for some p > q in (0,∞);
(b) supE∈M∞

µ(E) < ∞; and
(c) Lp(µ) ⊂ Lq(µ) for all p > q in (0,∞);

Note the if µ(X) is finite, Proposition 2 applies. If µ is discrete, Proposition 1
applies. Neither proposition applies to Lebesque measure on R. ˜

Rudin, Chapter 3, Problem #11. Suppose µ(Ω) = 1, and suppose f and g are
positive measurable functions on Ω such that fg ≥ 1. Then

∫

Ω

fdµ ·
∫

Ω

fdµ ≥ 1

Since f and g are positive, we can consider their square roots
√

f and
√

g. By
the H older inequality, we have

||
√

f ||2||
√

g||2 ≥ ||
√

fg||1.
The left-hand side is of course

√

∫

Ω

fdµ ·
∫

Ω

gdµ.

By hypothesis
√

fg ≥ 1, and so the right-hand side is at least

1 · µ(Ω) = 1.

Squaring both sides gives the desired result.
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˜

Circle Problem. Let S1 = {eiθ | 0 ≤ θ < 2π}. For each n ∈ Z, define a map
χn : S1 → C× via

χn(eiθ) = einθ.

(0) Prove that χn is a continuous homorphism from the multiplicative group
S1 to the multiplicative group C×.

(1) Suppose χ is any continuous homorphism from the multiplicative group S1

to the multiplicative group C×. Prove that there exists an n such that
χ = χn.

(2) Suppose χ is a continuous homomorphism from S1 to GL(N, C) so that χ
admits no invariant subspaces in the following sense: if V is a subspace of
CN such that

[χ(x)](v) ∈ V for all x ∈ S1 and v ∈ V ,

then V = {0} or V = CN . Prove that N = 1.

Hence the maps χn are precisely the set of continuous homomorphism from S1 to
GL(N, C) so that χ admits no invariant subspaces.

Solution. (0) is trivial. For (1), let Hm denote the subgroup of S1 consisting of
mth roots of unity. Since χ is a homomorphism, it is clear that for each m there
exists and integer 0 ≤ nm ≤ m − 1 (possibly depending on m) so that χ(z) = znm

for all z ∈ Hm. Let zm denote a choice of generator for Hm. For primes p 6= q, we
know we can take zpq = zpzq. So we compute in the group Hpq,

znpq
p znpq

q = znpq
pq = χ(zpq) = χ(zpzq) = χ(zp)χ(zq) = znp

p znq
q .

In other words
znpq−np

p = znq−npq
q .

Since Hp and Hq intersect only in {1},
npq = np modulo p

and
npq = nq modulo q.

Thus np = nq mod p (as well as mod q). So indeed for all primes p, np is a constant
n (independent of p). Since all prime roots of unity are dense in S1, the claim
follows.

For (2), write Aθ for χ(eiθ); so Aθ is an N × N matrix. Since Aθ cannot be
the zero matrix, it has a nonzero eigenvalue. Pick one and call it λθ. Consider the
matrix Bθ = Aθ − λθId. Since χ is a homomorphism and S1 is abelian, it’s clear
that Bθ commutes with all Aφ. Hence the kernel K of B is an invariant subspace of
CN . By hypothesis, this means that K is either {0} or all or CN . The former case
is impossible since any eigenvector corresponding to λθ is in the kernel. Thus K
must be all of CN . So Bθ = 0. In other words Aθ is the (nonzero) constant multiple
λθ of the identity. Thus any subspace of CN is invariant. This is a contradiction
unless N = 1. ˜


