Rudin, Chapter 2, Problem #5. Show that the Cantor set has measure 0 but is uncountable.

Let E_k denote the kth step in the construction of E. So $E_0 = [0,1]$, $E_1 = [0,1/3] \cup [2/3,1]$, and so on; and $E = \bigcap_k E_k$. Add up size of intervals removed to form E_i to get

$$(1/3) + 2(1/3)^2 + 2^2(1/3)^3 + \cdots + 2^{i-1}(1/3)^i.$$

So E is the complement of a set of size

$$(1/3) + 2(1/3)^2 + 2^2(1/3)^3 + \cdots = 1,$$

and hence has measure zero.

Finally, the elements of E are in 1-1 correspondence with infinite base three decimals, so E is uncountable. \hfill \Box

Rudin, Chapter 4, Problem #7. Construct a totally disconnected compact set $K \subset \mathbb{R}$ such that $\mu(K) > 0$.

Repeat the construction of the Cantor set from the interval $[0,1]$ recalled in the previous problem, but define K_i inductively by removing (open) middle segments from K_{i-1} of length ε^i (for $\varepsilon < 1$). Then a simple argument (along the lines in the previous argument) shows that the resulting intersection K has measure

$$\frac{1 - 3\varepsilon}{1 - 2\varepsilon}.$$

K is totally disconnected and compact for the same reasons that the Cantor set is. \hfill \Box

Rudin, Chapter 4, Problem #6. Fix $0 < \varepsilon' < 1$. Find an open dense subset of $[0,1]$ of measure ε'.

Consider the complement of the set constructed in Problem #7. It is dense and can be made to have measure ε'. \hfill \Box

Rudin, Chapter 4, Problem #8. Construct a Borel set $E \subset \mathbb{R}$ such that

$$0 < \mu(I \cap E) < \mu(I)$$

for every nonempty interval I.

Suppose we can find $E \subset [0,1]$ satisfying the requirement for each $I \subset [0,1]$. Then repeating E along the real line gives a solution to the problem.

To find such $E \subset [0,1]$, start with the generalized Cantor set, say E_1, of measure ε constructed in Problem #7. Then in each of the (countable!) number of “holes” in E_1 with appropriately scaled generalized Cantor sets so that the result has measure
$\varepsilon + \varepsilon/2$. Call the result E_2. Next fill the countable number of holes in E_2 with scaled generalized Cantor sets so that the result now has measure $\varepsilon + \varepsilon/2 + \varepsilon/4$. Continue. The union of all E_i will have the required properties and will have measure 2ε.

As we noted, if we repeat E along the real line, it has the required properties of the problem. (By shrinking its measure as we repeat, we can insure the result has finite total measure!)

\[\square \]

\textbf{Rudin, Chapter 4, Problem \#9.} Construct a sequence of continuous functions f_n on $[0,1]$ such that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0,$$

but so that $f_n(x)$ converges for no $x \in [0,1]$.

Recall a tent function centered at c of height a and width b is the piecewise linear function

$$f(x) = \begin{cases} 0 & \text{if } x \notin [c - b/2, c + b/2] \\ a(1 - |2(x - c)/b|) & \text{if } x \in [-b/2, b/2]. \end{cases}$$

Let g_n be the tent function centered at $1 + 1/2 + \cdots + 1/n$ (taken modulo 1) with height 1 and width $1/\sqrt{n}$, and let $f_n = \chi_{[0,1]}g_n$. This sequence is a “pulse” of overlapping tent functions which wrap around the unit interval. The width of each tent keeps shrinking (so the integral tends to zero), but if we fix $x \in [0,1]$, x takes values 0 and arbitrarily close to 1 infinitely often.

\[\square \]

\textbf{Rudin, Chapter 3, Problem \#3.} If ϕ is a continuous function on (a, b) such that

$$\phi \left(\frac{x + y}{2} \right) \leq \frac{\phi(x)}{2} + \frac{\phi(y)}{2},$$

then ϕ is convex.

The best proof (like that of Theorem 3.2) is by drawing a picture. I omit the details. As Rudin points out, you need to be a little careful since the result fails if ϕ is not assumed to be continuous (for example, by taking $a = 0, b = 2, \phi(x) = 0$ for $x < 1$, and $\phi(x) = 3x + 1$ for $x \geq 1$).

\[\square \]

\textbf{Rudin, Chapter 3, Problem \#7.} Find necessary and sufficient conditions for the inclusion of $L^p \subset L^q$ to hold.

\textbf{Proposition 1} Let μ be a positive measure in \mathcal{M}. Let \mathcal{M}_0 denote the sets of nonzero measure. The the following are equivalent

(a) $L^p(\mu) \subset L^q(\mu)$ for some $p < q$ in $(0, \infty]$;
(b) $\inf_{E \in \mathcal{M}_0} \mu(E) > 0$; and
(c) \(L^p(\mu) \subseteq L^q(\mu) \) for all \(p < q \) in \((0, \infty)\);

Proof. (a) implies (b). If \(L^p(\mu) \subseteq L^q(\mu) \), then clearly \(L^t(\mu) \subseteq L^t(\mu) \) for all \(t > 0 \). So assume we can assume \(p \geq 1 \), so \(L^p \) and \(L^q \) are normed. The key is the hypothesized set-theoretic inclusion \(L^p \subseteq L^q \) is a continuous linear map. The reason is that, as we saw in the proof of the completeness of \(L^q \), any convergent sequence in \(L^p \) converges (in \(L^q \)) to the pointwise limit of some subsequence (almost everywhere). So the image of \(L^p \) inside \(L^q \) is closed in the \(L^q \) norm. So the Closed Graph Theorem then implies the inclusion is continuous. Hence there is a constant \(k \) such that for every \(f \in L^p \),

\[
\|f\|_p \leq k|\|f\|_q|.
\]

Take \(f = \chi_E \) for a measurable set \(E \) to get

\[
\mu(E)^{1/p} \leq k\mu(E)^{1/q},
\]

and so

\[
\mu(E) \geq k^{-1} \mu(E)^{1/(p+q)}.
\]

So the infimum in (b) must be strictly positive.

(b) implies (c). Given \(f \in L^p \), let \(E_n \) denote the set of \(x \) such that \(|f(x)| < n \). Since \(f \in L^p \), \(\mu(E_n) \) must tend to zero as \(n \) becomes large. By (b), this means there is some \(N \) such that \(\mu(E_n) = 0 \). So \(f \) is actually in \(L^\infty \). So \(f \) is in \(L^q \) too.

(c) trivially implies (a).

There is also a dual assertion (whose proof I leave to you):

Proposition 2 Let \(\mu \) be a positive measure in \(\mathcal{M} \). Let \(\mathcal{M}_\infty \) denote the sets of finite measure. The the following are equivalent

(a) \(L^p(\mu) \subseteq L^q(\mu) \) for some \(p > q \) in \((0, \infty)\);

(b) \(\sup_{E \in \mathcal{M}_\infty} \mu(E) < \infty \); and

(c) \(L^p(\mu) \subseteq L^q(\mu) \) for all \(p > q \) in \((0, \infty)\);

Note the if \(\mu(X) \) is finite, Proposition 2 applies. If \(\mu \) is discrete, Proposition 1 applies. Neither proposition applies to Lebesque measure on \(\mathbb{R} \).

Rudin, Chapter 3, Problem #11. Suppose \(\mu(\Omega) = 1 \), and suppose \(f \) and \(g \) are positive measurable functions on \(\Omega \) such that \(fg \geq 1 \). Then

\[
\int_\Omega f d\mu \cdot \int_\Omega f d\mu \geq 1
\]

Since \(f \) and \(g \) are positive, we can consider their square roots \(\sqrt{f} \) and \(\sqrt{g} \). By the Hölder inequality, we have

\[
||\sqrt{f}||_{2}||\sqrt{g}||_{2} \geq ||\sqrt{fg}||_{1}.
\]

The left-hand side is of course

\[
\sqrt{\int_\Omega f d\mu \cdot \int_\Omega g d\mu}.
\]

By hypothesis \(\sqrt{fg} \geq 1 \), and so the right-hand side is at least

\[
1 \cdot \mu(\Omega) = 1.
\]

Squaring both sides gives the desired result.
Circle Problem. Let $S^1 = \{ e^{i\theta} \mid 0 \leq \theta < 2\pi \}$. For each $n \in \mathbb{Z}$, define a map $\chi_n : S^1 \to \mathbb{C}^\times$ via
\[\chi_n(e^{i\theta}) = e^{i n \theta}. \]

(0) Prove that χ_n is a continuous homomorphism from the multiplicative group S^1 to the multiplicative group \mathbb{C}^\times.

(1) Suppose χ is any continuous homomorphism from the multiplicative group S^1 to the multiplicative group \mathbb{C}^\times. Prove that there exists an n such that $\chi = \chi_n$.

(2) Suppose χ is a continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces in the following sense: if V is a subspace of \mathbb{C}^N such that
\[\chi(x)(v) \in V \text{ for all } x \in S^1 \text{ and } v \in V, \]
then $V = \{0\}$ or $V = \mathbb{C}^N$. Prove that $N = 1$.

Hence the maps χ_n are precisely the set of continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces.

Solution. (0) is trivial. For (1), let H_m denote the subgroup of S^1 consisting of mth roots of unity. Since χ is a homomorphism, it is clear that for each m there exists an integer $0 \leq n_m \leq m - 1$ (possibly depending on m) so that $\chi(z) = z^{n_m}$ for all $z \in H_m$. Let z_m denote a choice of generator for H_m. For primes $p \neq q$, we know we can take $z_{pq} = z_p z_q$. So we compute in the group H_{pq},
\[z_p^{n_p} z_q^{n_q} = z_{pq}^{n_{pq}} = \chi(z_{pq}) = \chi(z_p z_q) = \chi(z_p) \chi(z_q) = z_p^{n_p} z_q^{n_q}. \]

In other words
\[z_p^{n_p - n_q} = z_q^{n_q - n_{pq}}. \]

Since H_p and H_q intersect only in \{1\},
\[n_{pq} = n_p \text{ modulo } p \]
and
\[n_{pq} = n_q \text{ modulo } q. \]

Thus $n_p = n_q \mod p$ (as well as mod q). So indeed for all primes p, n_p is a constant n (independent of p). Since all prime roots of unity are dense in S^1, the claim follows.

For (2), write A_θ for $\chi(e^{i\theta})$; so A_θ is an $N \times N$ matrix. Since A_θ cannot be the zero matrix, it has a nonzero eigenvalue. Pick one and call it λ_θ. Consider the matrix $B_\theta = A_\theta - \lambda_\theta \text{Id}$. Since χ is a homomorphism and S^1 is abelian, it’s clear that B_θ commutes with all A_ϕ. Hence the kernel K of B is an invariant subspace of \mathbb{C}^N. By hypothesis, this means that K is either $\{0\}$ or all of \mathbb{C}^N. The former case is impossible since any eigenvector corresponding to λ_θ is in the kernel. Thus K must be all of \mathbb{C}^N. So $B_\theta = 0$. In other words A_θ is the (nonzero) constant multiple λ_θ of the identity. Thus any subspace of \mathbb{C}^N is invariant. This is a contradiction unless $N = 1$. \qed