MATH 6210: PROBLEM SET #2 extra problem

- 1. Let $S^1 = \{e^{i\theta} \mid 0 \le \theta < 2\pi\}$. For each $n \in \mathbb{Z}$, define a map $\chi_n : S^1 \to \mathbb{C}^{\times}$ via $\chi_n(e^{i\theta}) = e^{in\theta}$.
 - (0) Prove that χ_n is a continuous homorphism from the multiplicative group S^1 to the multiplicative group \mathbb{C}^{\times} .
 - (1) Suppose χ is any continuous homorphism from the multiplicative group S^1 to the multiplicative group \mathbb{C}^{\times} . Prove that there exists an n such that $\chi = \chi_n$.
 - (2) Suppose χ is a continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces in the following sense: if V is a subspace of \mathbb{C}^N such that

 $[\chi(x)](v) \in V$ for all $x \in S^1$ and $v \in V$,

then $V = \{0\}$ or $V = \mathbb{C}^N$. Prove that N = 1.

Hence the maps χ_n are precisely the set of continuous homomorphism from S^1 to $GL(N, \mathbb{C})$ so that χ admits no invariant subspaces.