Name:
$\begin{array}{c} {\rm QUIZ} \ 2 \\ {\rm September} \ 4, \ 2001 \end{array}$
Calculators are allowed — but you must show your work to receive full credit!
1. Evaluate each logarithm below, using the properties of logarithmic functions and the following facts $\log_a x = 4 \qquad \log_a y = 2 \qquad \log_a z = 3.$
(a) $\log_a(xz)$
(b) $\log_a(\sqrt{y})$
(c) $\log_a(x^4)$
2. The purchasing power P (in dollars) of an annual amount of A dollars after t years of 5% inflation is given by $P = Ae^{-0.05t}.$
$P=Ae^{-0.00t}$. How long will it be before a pension of \$30,000 per year has a purchasing power of \$8,000?

Solutions to Quiz #1

1(a)
$$\log_a(xy) = \log_a(x) + \log_a(y) = 4 + 2 = 6.$$

1(b)
$$\log_a(\sqrt{y}) = \log_a(y^{1/2}) = (1/2)\log_a(y) = (1/2) \cdot 2 = 1.$$

1(c)
$$\log_a(x^4) = 4\log_a(x) = 4 \cdot 4 = 16$$
.

2. Take the natural log of both sides of the equation to obtain

$$\ln(P) = \ln(Ae^{-0.05t}) = \ln(A) - \ln(e^{-0.05t}) = \ln(A) - 0.05t.$$

Now solve for t:

$$t = 20(\ln(A) - \ln(P)).$$

Plug in to get

$$t = 20(\ln(30000) - \ln(8000)) = 26.4$$
 years.