PRACTICE EXAM 2 November 2, 2001

There are five questions on the practice exam. Calculators are not allowed.

1 True or false:

- (1) If f'(c) = 0, then f achieves a maximum or a minimum at x = c.
- (2) If f''(c) > 0, then f achieves a minimum at x = c.
- (3) $\int f'(x)dx = f(x) + c$.
- (4) If profits are maximize at the sale of x units, then $\overline{MR}(x) = \overline{MC}(x)$.
- (5) Current demand for Cipro is elastic.

2. Compute the following indefinite integrals:

- (a) $\int (x+4)^5 dx$
- (b) $\int (3xe^{x^2+4x}+6e^{x^2+4x})dx$
- 3. Suppose that in a certain company the relationship between the price per unit (say p) of its product and the weekly sales volume in thousands of dollays (say y) is

$$\frac{dy}{dp} = -\frac{y}{2p+10}.$$

Solve this differential equation if y = 18 when p = \$20.

4. If the daily demand for a product is given by the function

$$p = 2100 - 10q - q^2/2,$$

and the daily supply before taxation is given by

$$p = 300 + 5q + q^2/2,$$

find the tax per item that maximizes total tax revenue.

5. Consider the function

$$f(x) = x(x-6)^2.$$

- (a) Find the critical values of f(x)
- (b) For each critical value determine whether it is a minimum, a maximum, or a horizontal point of inflection (plateau).
 - (c) Determine the values of x (if any) for which f(x) is concave up.
 - (d) Determine the values of x (if any) for which f(x) is concave down.
 - (e) Determine the points of inflection (if any) for f(x).
 - (f) Sketch the graph of f(x).

- 1.
- (1) F (Could be a plateau)
- (2) F (need also that f'(c) = 0)
- (3) T
- (4) T
- (5) F (inelastic)
- 2. Compute the following indefinite integrals:
 - (a) $(x+4)^6/6$ (b) $3e^{x^2+4x}/2$
- 3. $y = \frac{18\sqrt{50}}{\sqrt{2p+10}}$
- 4. t = \$1, 100
- (a) x = 2, 6
- (b) x = 2: max; x = 6: min.
- (c) x > 4
- (d) x < 4
- (e) x = 4
- (f)