Positive and null recurrent-Branching Process

Pejman Mahboubi

December 15, 2011
In last discussion we studied the transience and recurrence of Markov chains.

There are 2 other closely related issues about Markov chains that we address:

- Is there an invariant distribution?
- Does the chain converge to this distribution? (Asymptotic behavior)

For irreducible finite MC, if \(R \) is an aperiodic recurrent class, then there is

- an invariant dist. \(\bar{\pi} \) such that \(\bar{\pi}(x) > 0 \) for all \(x \) [p. 16, (1.9)]
- \(p_n(x, y) \to \bar{\pi}(y) \) as \(n \to \infty \).
- \(\bar{\pi} \) is unique (by irreducibility).
- But for the countable MC, the case is different.
- For example for the Simple Random Walk (d=1) we have
 - \(p_{2n} = \frac{(2n)!}{n!n!2^{2n}}, \quad p_{2n+1} = 0. \) Therefore:
 - \(\sum_{n=1}^{\infty} p_n(0,0) = \infty, \) then it is recurrent (1 recurrent class)
 - \(\lim p_n(0,0) = 0 \) (p. 47), then the invariant dist. does not exist, why? bc, then \(\bar{\pi} = \vec{0}, \) which is not a probability dist.
- Therefore we must have \(\lim_{n \to \infty} p_n(y,x) > 0. \)
- This condition is not possible for the transient chains because it contradicts \(\sum p_n < \infty \)
- But it is possible for recurrent chains to have \(\lim p_n(x,y) > 0. \)
- We say a MC is positive recurrent if \(\lim_{n \to \infty} p_n(x,y) > 0 \)
- Remember that \(\lim_{n \to \infty} p_n(x,y) > 0 \) implies \(\sum p_n(x,y) = \infty. \)
- A MC which is not positive recurrent is called null recurrent.
Positive recurrent MC behave similar to the finite MC’s. For example:

Assume a countable MC \(\{X_n\} \) is aperiodic, and irreducible. If \(X_n \) is positive recurrent with \(\bar{\pi}(x) = \lim_{n \to \infty} p_n(y, x) \), then

- \(\bar{\pi}(x) \) is a probability dist. i.e \(\sum_x \bar{\pi}(x) = 1 \).
- \(\bar{\pi}(x) \) is an invariant dist. i.e if \(P(X_0 = x) = \bar{\pi}(x), \forall x \), then \(P(X_1 = x) = \bar{\pi}(x) \forall x \). OR equivalently

\[
\bar{\pi}(x) = \sum_y \bar{\pi}(y)p(y, x)
\]

(Next page we repeat this fact in a stronger form)

Remember that in the finite case, we discussed the return time \(T \) defined by

\[
T_x = \inf\{n \geq 1 : X_n = x\}
\]

If \(X_n \) is transient then \(P^x(T_x = \infty) > 0 \) (bc by definition \(\rho_{xx} < 1 \))

Therefore if \(X_n \) is transient then \(E^xT_x = \infty \).
If X_n is recurrent, then

$$\begin{cases}
E^{x} T_x = \frac{1}{\bar{\pi}(x)} < \infty & \text{positive recurrent} \\
\infty & \text{null recurrent}
\end{cases}$$

Consider the irreducible and aperiodic MC. The following 3 are equivalent

- State x is positive recurrent ($\forall y : \lim_{n \to \infty} p_n(y, x) = \bar{\pi}(x) > 0$)
- There is an invariant dist. $\bar{\pi}(x) > \bar{0}$: $\bar{\pi}(x) = \sum_y \bar{\pi}(y)p(y, x)$
- All states are positive recurrent

This theorem shows that being positive recurrent is a class property
Branching Process

- Assume a population starts with n individuals at time 0: $X_0 = n$
- Between time n and $n + 1$, each individual gives birth to a random number of children Y_1, Y_1, \ldots, Y_n, and die. Furthermore, $\{Y_k\}_{k=1}^n$ are iid.
- Y_n are the number of children, then they are integer-valued
- let $p_0 = P(Y_i = 0), p_1 = P(Y_i = 1), p_2 = P(Y_i = 2) \ldots$.
- Let X_n denote the population in time n. Then

$$X_n = Y_1 + \cdots + Y_{X_{n-1}}$$

- If we know the population at n, then the MC holds:

$$P(X_{n+1} = j | X_n = j, X_{n-1} = i_1, \ldots, X_0 = 1) = P(X_{n+1} = j | X_n = j)$$

- indeed we can compute the r-h-s

$$p(k, j) := P(X_{n+1} = j | X_n = j) = P(Y_1 + \cdots + Y_k = j)$$
Therefore, \(p(k,j) \) is the probability of having \(k \) individuals in state \(n+1 \), given we have \(k \) individuals in state \(n \).

We can calculate a few things about the expectations:

- Let \(\mu = EY_i = \sum_{j=1}^{\infty} jp_j \).
- The average number of individuals at time \(n \)
- The conditional average is easy to compute

\[
E(X_n|X_{n-1} = k) = E(Y_1 + \cdots + Y_k) = kEY_1 = k\mu
\]

\[
EX_n = \sum_{k=0}^{\infty} E(X_n|X_{n-1} = k)P(X_{n-1} = k) = \mu \sum_{k=0}^{\infty} kP(X_{n-1} = k) = \mu EX_{n-1}
\]

- By iteration we get \(EX_n = \mu^n EX_0 \)
- Remember that in the Branching process \(\{0\} \) is recurrent.
Consider a few paths of the Branching process.
Two important sets

Define:

\[A_n := \{ \omega : X_n(\omega) = 0 \} . \]

- When \(X_n = 0 \), then \(X_{n+k} = 0 \) for all \(k \geq 1 \).
- \(A_n \) are increasing: \(A_n \subset A_{n+1} \)

Define:

\[\mathcal{A} := \{ \omega : \omega \text{ dies out} \} = \{ X_n = 0 \text{ for some } n \} \]

Then we have

\[\mathcal{A} = \bigcup_{n=1}^{\infty} A_n \quad (1) \]

Next, we find a way to compute \(P(\mathcal{A}) \) in terms of \(P(A_n) \).
Here we state an important fact about the continuity of P

Theorem

Assume A_n are increasing events: $A_n \subset A_{n+1}$. Then

$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$

Therefore,

$$P(\mathcal{A}) := P(\text{population dies out}) = P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n) \quad (2)$$
Theorem ($\mu < 1$)

If $\mu < 1$, then the populations dies out with probability one:

$$P(X_n = 0 \text{ for some } n) = 1$$

Proof.

1. $P(X_n \geq 1) = \sum_{k=1}^{\infty} P(X_n = k) \leq \sum_{k=1}^{\infty} kP(X_n = k) = EX_n = \mu^n EX_0$

2. Note that $\{X_n \geq 1\} = A_n^c$. Therefore

$$P(A_n) = 1 - P(A_n^c) \geq 1 - \mu^n EX_0$$

3. Therefore

$$1 \leq P(A_n) \leq 1 - \mu^n EX_0$$

4. Let $n \to \infty$. Using the squeeze theorem $\lim P(A_n) = 1$. Then (2) finishes the proof.
When $\mu > 1$, then $E X_n = \mu^n \to \infty$. Is it possible that $X_n \to 0$:

$$
\lim_{n \to \infty} P(X_n = 0) > 0?
$$

Example

Let $X_n \in \{0, 2^n\}$. $P(X_n = 0) = 1 - \frac{1}{n}$, and $P(X_n = 2^n) = \frac{1}{n}$. Then

- $P(X_n = 0) \to 1$
- $E X_n = 2^n \frac{1}{n} \to \infty$.

Therefore, we have to be careful with the situation:

- The case that $p_0 = 0$ is trivially survives with probability 1
- If $p_0 > 0$, but $p_0 + p_1 = 1$, then $\mu := E X_n < 1$
- Therefore, the only nontrivial case is

$$
p_0 > 0; p_0 + p_1 < 1
$$
Assume $p_0 > 0$, and $p_0 + p_1 < 1$. Furthermore, let

$$a_n(k) := P(A_n | X_0 = k) \text{ and } a(k) := P(\mathcal{A} | X_0 = k)$$

Then

$$a(k) := P^k(\mathcal{A}) = \lim_{n \to \infty} P^k(A_n) = \lim_{n \to \infty} a_n(k) \quad (3)$$

$a_n(k)$ is the probability of extinction, given we started with k individuals

but these k individuals form k independent Branching processes, each starting from one individuals

Therefore, Probability of extinction of a B-P starting with k individuals is equal to the extinction of k independent B-P each starting with one individual, ie,

$$a(k) = [a(1)]^k = [\lim_{n \to \infty} a_n(1)]^k$$

Let $a := a(1)$.

Pejman Mahboubi Positive and null recurrent-Branching Process
Fixed Point Property of \(a \)

- Define the moment generating function of \(X \) by \(\varphi_X(s) = E s^X \).
- Starting from 1, after taking one step we will have \(k \) children with probability \(p_k \):

\[
a = \sum_{k=0}^{\infty} P^1(\mathcal{A}|X_1 = k) p_k = p_0 + \sum_{k=1}^{\infty} P^1(\mathcal{A}|X_1 = k) p_k = p_0 + \sum_{k=1}^{\infty} a(k) p_k = \sum_{k=0}^{\infty} p_k a^k = E a^{X_1}
\]

- The last equality holds because when \(X_0 = 1 \), then \(X_1 = Y_1 \)

\[
a = E a^{X_1} \quad \text{or} \quad a = \varphi_{X_1}(a) \quad (4)
\]

- Therefore, \(a \) is a fixed point of the mgf \(\varphi \)
But equation (4) is not enough for finding $a := P(\text{population dies out})$

This is because $\varphi_{X_1}(\alpha) = \alpha$ might have more than one solution. Let us define

$$\varphi^n(s) := \varphi_{X_n}(s), \quad n \geq 1$$

i.e ϕ^n denotes the generating function ϕ_{X_n} of X_n

where $\{X_n\}$ is the B-P : $\varphi^n(s) := \mathbb{E}s^{X_n}$

Write the definition for $\mathbb{E}s^{X_n}$ to see that

$$a_n = P(A_n) := P(X_n = 0) = \varphi^n(0). \quad (5)$$

If we work a bit harder we find that $\varphi_{X_n}(s)$ is φ_{X_1} evaluated at $\varphi^{n-1}(s)$

$$\varphi^n(s) := \varphi_{X_n}(s) = \varphi(\varphi^{X_{n-1}}(s)) = : \varphi(\varphi^{n-1}(s))$$
We claim \(a := P^1(A) \) is the smallest root of \(\varphi(s) = s \):

Theorem

\(a := P^1(A) \) is the smallest root of \(\varphi(s) = s \).

We know that \(a = \lim_{n \to \infty} a_n \). We also know that

\[
a_n = \varphi^n(0) = \varphi(\varphi^{n-1}(0)) = \varphi(a_{n-1}).
\]

We prove this theorem by induction. Let \(\hat{a} \) be the smallest root of \(\varphi(s) = s \). We want to show by induction that \(a_n \leq \hat{a} \) for all \(n \). Because then we can take a limit and show that \(a \leq \hat{a} \), which forces \(a = \hat{a} \). \(a_0 = 0 \leq \hat{a} \). Next assume \(a_{n-1} \leq \hat{a} \). Then

\[
a_n = \varphi(a_{n-1}) \leq \varphi(\hat{a}) = \hat{a}
\]

The inequality follows from the fact that \(\phi \) is an increasing function.
here we state some of the properties of φ. Most of them are easy to check

Lemma

For the positive random variable X, let $\varphi(s) := \varphi_X(s)$

- $\varphi(s)$ is increasing on $[0, \infty)$
- $\varphi(0) = p_0 = P(X = 0)$
- $\varphi'(1) = EX$

- Since $p_0 + p_1 < 1$ by assumption ($\mu \geq 1$), then

$$\varphi''(s) \geq 0$$

- If X_1, \ldots, X_n are iid, then

$$\varphi_{X_1+\ldots+X_n}(s) = \varphi_{X_1}(s) \times \cdots \times \varphi_{X_n}(s)$$
Lemma

Let $\varphi^n(s) := \varphi_{X_n}(s)$. Then

$$\varphi^n(s) = \varphi(\varphi^{n-1}(s))$$

Proof.

$$\varphi^n(s) := E^1 s^{X_n} = \sum_{j=0}^{\infty} P^1(X_n = j) s^j = \sum_{j=0}^{\infty} s^j \sum_{k=0}^{\infty} P^k(X_{n-1} = j) P^1(X_1 = k) =$$

$$\sum_{k=0}^{\infty} p_k \sum_{j=0}^{\infty} P^k(X_{n-1} = j) s^j = \sum_{k=0}^{\infty} p_k [\varphi^{n-1}(s)]^k = \varphi(\varphi^{n-1}(s))$$

$P^k(X_n = j)$ is the probability of starting from k individual, and having j individual at time n. \qed