Quiz #5
Time: 10 minutes

Consider the function \(f(x, y) = y - 3x + 5 \), where \(x \) and \(y \) are subject to the constraints:

\[
\begin{align*}
&y - 2x \leq 1 \\
x + y \leq 4 \\
x \geq 0, \ y \geq 0 \\
\end{align*}
\]

(a) Draw the feasible region defined by the constraints. (b) Find the coordinates of the corners. (c) Find the maximum and minimum values of \(f \) on the feasible region.

(a) Inequalities (c) and (d) say that the feasible region is contained in the first quadrant.

For (a): the line is \(y - 2x = 1 \) or \(y = 2x + 1 \).

Use test point \((0,0)\) to find which half-plane to keep: \((0,0)\) satisfies the inequality, yes.

For (b): the line is \(x + y = 4 \) or \(y = -x + 4 \).

Use test point \((0,0)\): yes.

So the feasible region is the shaded polygon:

(b) We find the coordinates of the remaining corners by solving:

\[
\begin{align*}
y = 2x + 1 & \quad \rightarrow 2x + 1 = -x + 4 \\
y = -x + 4 & \quad \rightarrow 3x = 3, \ x = 1
\end{align*}
\]

\(x = 1 \) and \(y = 3 \).

(c) Evaluate \(f(x,y) \) at the 4 corners:

\(f(0,0) = 5, \ f(0,1) = 6, \ f(4,0) = -7, \ f(1,3) = 5 \)

This is the maximum. This is the minimum.