Consider the function \(f(x, y) = x e^{-(x^2+y^2)} \) and its graph \(S \). (1) Find the first partial derivatives and gradient of \(f \). (2) (a) Find an equation for the tangent plane to \(S \) at the point \((1, 1, e^{-2})\). (b) What is the steepest slope of a line in this plane? (c) Find a vector tangent to the level curve of \(f \) through \((1, 1)\). (3) Find the critical points of \(f \). Then find the local maxima and minima of \(f \). Bonus: are these also global maxima/minima? (4) If \(x = r \cos \theta \) and \(y = r \sin \theta \), find the partial derivatives \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \).

\[
\begin{align*}
\frac{\partial f}{\partial x} &= -x e^{-(x^2+y^2)} - 2xe^{-(x^2+y^2)} = (1-2x) e^{-(x^2+y^2)}, \\
\frac{\partial f}{\partial y} &= -2xy e^{-(x^2+y^2)}; \\
\nabla f(x, y) &= \langle (1-2x) e^{-(x^2+y^2)}, -2xy e^{-(x^2+y^2)} \rangle \\
\nabla f(1, 1) &= \langle -e^{-2}, -2e^{-2} \rangle \\
\text{So an equation for the tangent plane is:} \\
z - e^{-2} &= -e^{-2}(x-1) - 2e^{-2}(y-1)
\end{align*}
\]

(\textbf{b}) We know that the directional derivative of \(f \) at a point \((x, y)\) in the direction of a unit vector \(\overrightarrow{u} \) is:

\[
D_{\overrightarrow{u}} f(x, y) = \overrightarrow{u} \cdot \nabla f(x, y)
\]

This is maximal when \(\overrightarrow{u} \) has the same direction as \(\nabla f(x, y) \); in that direction the slope of the line tangent to the graph of \(f \) is \(\| \nabla f(x, y) \| \).

Here: \[\| \nabla f(1, 1) \| = \sqrt{(e^{-1})^2 + (-2e^{-1})^2} = \sqrt{5e^{-2}} = \sqrt{5}. e^{-1} \]

(\textbf{c}) This also tells us that level curves of \(f \) are everywhere perpendicular to the gradient of \(f \). Any vector \(\overrightarrow{w} = \langle w_1, w_2 \rangle \) perpendicular to \(\nabla f(1, 1) = \langle -e^{-1}, -2e^{-1} \rangle \) will do, such as \(\langle 2, -1 \rangle \).

\[
\langle 2, -1 \rangle \cdot \langle -e^{-1}, -2e^{-1} \rangle = 0
\]

(3) \((x, y)\) is a critical point of \(f \) \(\Rightarrow\) \(\nabla f(x, y) = \overrightarrow{0} = \langle 0, 0 \rangle \)

(i.e. \(\frac{\partial f}{\partial x}(x, y) = \frac{\partial f}{\partial y}(x, y) = 0 \)). Here the only critical points are \((1, 0)\) and \((-1, 0)\).
We use the second partial derivatives test to decide if these points are local max/min for f:

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= -4xe^{-(x^2+y^2)} - 2x(1-2x)e^{-(x^2+y^2)} = (4x^3 - 6x)e^{-(x^2+y^2)} \\
\frac{\partial^2 f}{\partial y\partial x} &= -2y(1-2x)e^{-(x^2+y^2)} \\
\frac{\partial^2 f}{\partial y^2} &= -2x e^{-(x^2+y^2)} + 4xy e^{-(x^2+y^2)} = -2x(1-2y)e^{-(x^2+y^2)}
\end{align*}
\]

Evaluating these 3 functions at $(\frac{1}{\sqrt{2}}, 0)$ then $(-\frac{1}{\sqrt{2}}, 0)$ gives:

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2}(\frac{1}{\sqrt{2}}, 0) &= -2\sqrt{2} e^{-\frac{1}{2}} \\
\frac{\partial^2 f}{\partial y\partial x}(\frac{1}{\sqrt{2}}, 0) &= 0 \\
\frac{\partial^2 f}{\partial y^2}(\frac{1}{\sqrt{2}}, 0) &= -\sqrt{2} e^{-\frac{1}{2}}
\end{align*}
\]

\[
D = \Delta = \frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = 4e^{-1} > 0
\]

Therefore f has a local maximum at $(\frac{1}{\sqrt{2}}, 0)$ (value: $f(\frac{1}{\sqrt{2}}, 0) = e^{-\frac{1}{2}}$)

\[
D < 0
\]

Therefore f has a local minimum at $(-\frac{1}{\sqrt{2}}, 0)$ (value $f(-\frac{1}{\sqrt{2}}, 0) = -\frac{e^{-\frac{1}{2}}}{\sqrt{2}}$)

BONUS: These local min/max values are also global min/max values, because $f(x, y) \to 0$ as $x^2+y^2 \to \infty$ (meaning that $(x, y) \to \infty$).

4. Using the Chain Rule:

\[
\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
\]

\[
\frac{\partial f}{\partial \phi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \phi}
\]

so:

\[
\begin{align*}
\frac{\partial f}{\partial \phi} &= (1-2x)e^{-(x^2+y^2)} \cos \phi + 2xy e^{-(x^2+y^2)} \sin \phi \\
\frac{\partial f}{\partial \theta} &= -(1-2x)e^{-(x^2+y^2)} \sin \phi + 2xy e^{-(x^2+y^2)} \cos \phi.
\end{align*}
\]