#20: Straightforward.

#21: Follows from definitions.

#22: Use #21 and definitions (separate cases when f or g is \(\pm \infty \)).

Note that (4) doesn't mention the indeterminate form "\(\infty \times \infty \)" because Royden adopts the convention that \(\infty \times \infty = 0 \) (p. 36).

#24: Use hint. From the definition of a measurable function, if \(f \) is measurable then \(f^{-1}(O) \) is measurable for any open interval \(O \). Therefore (hint), the class of sets for which \(f^{-1}(E) \) is measurable is a \(\sigma \)-algebra. Indeed:
\[
\begin{align*}
 f^{-1}(\{0\}) &= f^{-1}(U \cap \{0\}) \\
 &= f^{-1}(U) \cap f^{-1}(\{0\})
\end{align*}
\]

Therefore this class of sets contains all Borel sets.

#25: Let \(E \subseteq \mathbb{R} \). Then:
\[
\{ x \mid g(f(x)) < x \} = f^{-1}(g^{-1}((\infty, \infty)) \text{ is measurable.}
\]

#28: From Problem 2.48 we know that open becomes continuous measurable by #24 (open \(\Rightarrow \) Borel).

Recall that \(f \) is a continuous linear function on \(\mathbb{R} \) (counterexample is Cantor ternary function \(f \)).

Therefore if \(I \) is one of these open intervals, \(f[I] \) is a translate of \(I \) with the same measure as \(I \). Therefore: \(m(f[I] - C) = 1 \) and \(m(f[I]) = 1 \).

Let \(g = f^{-1} \). Then: \(g(F) = C \). Now \(F \) has measure \(>0 \), so it contains a non-measurable set \(B \) (in the same way that we saw a non-measurable set \(C \)). Consider \(A = g(B) \).

Then \(A \) is measurable (because \(C \) is of measure 0), but \(g^{-1}(A) = B \) is not.

Take \(A = \{ x \mid f(x) > 0 \} \). Then: \(A = \{ x \mid g(x) \in A \} \) is measurable, so \(g(x) > 0 \) is measurable! (\(\Delta \) see problem 25: the order of composition matters.)

(c) Take \(A \) again, \(A \) is measurable but not a Borel set (or else problem 24 would tell us that \(f^{-1}(A) \) is measurable;

#29: Take \(F : \mathbb{R} \to \mathbb{R} \), \(f_n(x) = \frac{1}{x^n} \). Then the conclusion of prop. 23 doesn't hold.

#41: (a) Any step function \(h \) is \(\mathcal{B} \)-measurable.

Therefore: \(g \circ f \). \(f \) is identically \(1 \) (any open interval contains an irrational) and any step function \(g \) is identically \(1 \) (any open interval contains a rational).

(b) \(g \circ f \) is integrable; \(\int g \circ f \, dx = m(\mathbb{R}) \), \(f \) is an enumeration of \(\{0, 1\} \). \(f \) is not Riemann integrable! Of course it is Lebesgue integrable.

(c) \(f \) is increasing to \(f \) and each \(f_n \) is Riemann integrable. Cannot change the order...