Consider the function \(f(x, y) = (2x + y^2)e^{-x^2} \) and its graph \(S \). (1) (5 points) Find the first partial derivatives and gradient of \(f \). (2) (4 points) (a) Find an equation for the tangent plane to \(S \) at the point \((0, -1, 1)\). (b) What is the directional derivative of \(f \) at \((0, -1)\) in the direction of the vector \(v = <3, 4> \)? (c) What is the maximal directional derivative of \(f \) at \((0, -1)\)? (3) (9 points) Find the critical points of \(f \), then find the local maxima and minima of \(f \). Bonus (2 points): are these also global maxima/minima? (4) (2 points) If \(x = st \) and \(y = s + t \), find the partial derivatives \(\frac{df}{ds} \) and \(\frac{df}{dt} \).

1. \(\frac{\partial f}{\partial x} = 2e^{-x^2} - 2x(2x + y^2)e^{-x^2} = (2-4x^2-2xy)e^{-x^2} \); \(\frac{\partial f}{\partial y} = 2 ye^{-x^2} \). Therefore: \(\nabla f(x, y) = <(2-4x^2-2xy)e^{-x^2}, 2 ye^{-x^2}> \).

2. (a) \(\nabla f(0, -1) = <2, -2> \) so an equation for the tangent plane is: \(z - 1 = 2x - 2(y+1) \).

 (b) Recall that for a unit vector \(\vec{w} \), the directional derivative of \(f \) at \((x, y)\) in the direction of \(\vec{w} \) is: \(D_{\vec{w}}f(x, y) = \vec{w} \cdot \nabla f(x, y) \). We first rescale \(\vec{w} \) to have unit length: \(\vec{w} = \frac{\vec{v}}{||\vec{v}||} = <\frac{3}{5}, \frac{4}{5}> \); then: \(D_{\vec{w}}f(0, -1) = D_{\vec{w}}f(0, -1) = \vec{w} \cdot \nabla f(0, -1) = 2 \cdot \frac{3}{5} - 2 \cdot \frac{4}{5} = -\frac{2}{5} \).

3. We know that the maximal directional derivative is \(||\nabla f|| \) (in the direction of \(\nabla f \)). Here: \(||\nabla f|| = \sqrt{4+4} = 2\sqrt{2} \).

3. (3) For the critical points, solve \(\frac{\partial f}{\partial x}(x, y) = \frac{\partial f}{\partial y}(x, y) = 0 \) for \(x \) and \(y \).

This gives: \(y = 0 \) and \((2-4x^2-2xy) = 0 \).

Therefore \(f \) has two critical points: \(\left(\frac{1}{\sqrt{2}}, 0 \right)^{P^+} \) and \(\left(-\frac{1}{\sqrt{2}}, 0 \right)^{P^-} \).

We then use the second partial derivative test to determine whether or not \(f \) has a local maximum or minimum at \(P^+ \) and \(P^- \).

We start by computing the second partial derivatives of \(f \):
\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= (-8x - 2y) e^{-x^2} - 2x(2 - 4x^2 - 2xy^2) e^{-x^2} = (-12x - 2y^2 + 8x^3 + 4x^2 y^2) e^{-x^2} \\
\frac{\partial^2 f}{\partial x \partial y} &= -4xy e^{-x^2} \\
\frac{\partial^2 f}{\partial y^2} &= 2 e^{-x^2}
\end{align*}
\]

Evaluating these 3 functions at \(p^+ = \left(\frac{1}{\sqrt{2}}, 0 \right) \) and \(p^- = \left(-\frac{1}{\sqrt{2}}, 0 \right) \) gives:

\[
\begin{align*}
\frac{\partial^2 f}{\partial x}(\frac{1}{\sqrt{2}}, 0) &= 4x(2x^2 - 3) e^{-x^2} = -4\sqrt{2} e^{-\frac{1}{2}} \\
\frac{\partial^2 f}{\partial x}(\frac{1}{\sqrt{2}}, 0) &= 0 \\
\frac{\partial^2 f}{\partial y}(\frac{1}{\sqrt{2}}, 0) &= 2 e^{-\frac{1}{2}}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2}(\frac{1}{\sqrt{2}}, 0) &= -8\sqrt{2} e^{-\frac{1}{2}} < 0 \\
\frac{\partial^2 f}{\partial y^2}(\frac{1}{\sqrt{2}}, 0) &= 8\sqrt{2} e^{-\frac{1}{2}} > 0
\end{align*}
\]

The determinant \(D = \frac{\partial^2 f}{\partial x \partial y} - \left(\frac{\partial^2 f}{\partial x^2} \right) \left(\frac{\partial^2 f}{\partial y^2} \right) = -8\sqrt{2} e^{-\frac{1}{2}} < 0 \) for \(\Delta = 8\sqrt{2} e^{-\frac{1}{2}} > 0 \) and \(\frac{\partial^2 f}{\partial x} > 0 \Rightarrow f \) has a local maximum at \(p^+ \) ("Saddle point").

Min. value: \(f(p^-) = -\sqrt{2} e^{-\frac{1}{2}} \).

Bonuy: Along vertical lines \((x = \text{constant}) \), \(f(x, y) \xrightarrow{y \to \pm \infty} \infty \).

In all other directions, \(f(x, y) \xrightarrow{} 0 \) \((e^{-x^2} \text{ dominates}) \).

Therefore the local min at \(p^- \) is also a global minimum for \(f \).

4) Write the Chain Rule:

\[
\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
\]

\[
\begin{align*}
\frac{\partial f}{\partial s} &= (2 - 4x^2 - 2xy^2) e^{-x^2} t + 2ye^{-x^2} \\
\frac{\partial f}{\partial t} &= (2 - 4x^2 - 2xy^2) e^{-x^2} s + 2ye^{-x^2}
\end{align*}
\]