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Abstract

We introduce some basics of hyperbolic geometry and prove the

angle sum relations for spherical and hyperbolic space. We then work

towards proving a theorem regarding the algebraic structure of a group

of transformations generated by reflections in the sides of a triangle

and a corollary concerning the finiteness of the group based on an

algebraic property of one of its presentations.

1 Introduction

The main results of this paper are the introduction and partial proof of a
theorem concerning the group of transformations generated by reflections in
the sides of a triangle and a corollary concerning the finiteness of the group
based on an algebraic property of one of its presentations. The main refer-
ences, included at the end, are Beardon, [1], Coxeter, [2] and Ratcliffe, [3].
The information on hyperbolic geometry in Beardon is relatively accessible;
in Ratcliffe it is treated in generality. The main theorem is treated in quite
abstract and general terms in both Beardon and Ratcliffe. It is treated with
slightly less generality in two dimensions in Coxeter.

Throughout the paper we consider the metric spaces Euclidean and spher-
ical metric spaces E2 = (R2, dE) and S2 = (S2, dS), respectively (here
S

2 = {x ∈ R
3 : ||x|| = 1}). We also consider the upper half-plane and confor-

mal ball models of the hyperbolic plane: H2 = ({x+iy ∈ C : y > 0}, dH) and
B2 = ({z ∈ C : ||x|| < 1}, dB), respectively. dE is the usual metric on R

2. We
defer to Ratcliffe ([3], pp. 37) for the spherical metric and to Beardon ([1],
pp. 130, 132) for the hyperbolic metrics. Let θ(x, y) be the Euclidean angle
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between x and y, then dS(x, y) = θ(x, y). Also, dH(z, w) = log |z−w̄|+|z−w|
|z−w̄|−|z−w|

and dB(z, w) = log |1−zw̄|+|z−w|
|1−zw̄|−|z−w|

.

2 Spherical and hyperbolic geometry

Next we describe the triangles of the three spaces. More information on the
geometry of these metric spaces is given in Ratcliffe, [3], and in Beardon,
[1]. The triangles of En are the usual triangles of Euclidean geometry. The
triangles of Sn are described as follows: Take three points x, y, z,∈ S

2 with
x, y, z not co-linear (meaning that there is no great circle containing all three
points). Let H(x, y, z) be the half-sphere including the great circle formed
by x, y and with z in the interior. Then the triangle with x, y, z as vertices
is the set H(x, y, z) ∩ H(y, z, x) ∩ H(z, x, y).

A lune is defined to be the intersection H(x1, y1, z1) ∩ H(x2, y2, z2) of
two distinct nonopposite half spheres. Note that, in general, x1 = x2 or
x1 6= x2 and similarly for y1, y2 and z1, z2. However, H(x1, y1, z1) and
H(x2, y2, z2) must be distinct and nonopposite. Then, by rotations any lune
is congruent to a lune L(α) = {(φ, θ) : 0 ≤ φ ≤ π, 0 ≤ θ ≤ α}. Then
Area(L(α)) =

∫ α

0

∫ π

0
sin φdφdθ = 2α.

Theorem 2.1. For any spherical triangle T with angles α, β, γ,

Area(T ) = (α + β + γ) − π

Corollary 2.2. For any spherical triangle T with angles α, β, γ, α+β+γ >

π.

Proof. Extend the sides of the triangle into three great circles. These great
circles divide the sphere into eight triangular regions. Two are T and −T ;
the other are A, −A, B, −B, C, −C. Any two of the great circles form the
boundary of a lune of angle α, β or γ. The lune with angle α is the union of T

and A, so we have Area(T )+Area(A) = 2α. Similarly, Area(T )+Area(B) =
2β and Area(T ) + Area(C) = 2γ. Also note that Area(T ) + Area(A) +
Area(B) + Area(C) = 2π. Then add the first three equations and subtract
the fourth: 2Area(T ) = 2α + 2β + 2γ − 2π, so Area(T ) = (α + β + γ) − π.

The triangles of H2 are described next. We first need to know more
about the geometry of the space. A geodesic in H2 is either a Euclidean line
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orthogonal to the real axis (a line of the form z = a + it for t ∈ R
+ and

for some a ∈ R) or a circle orthogonal to the real axis (e.g. {x + iy ∈ C :
|x + iy| = 1, y > 0}). A ray from z is a geodesic [z, α) for some α ∈ R or
α = ∞ (in which case the ray is a vertical line which, if extended to meet
the real axis, would be orthogonal to it).

Consider three non-colinear points x, y, z (so there is no geodesic contain-
ing x, y, z). Let L2 and L3 be the rays from x to y and x to z respectively.
Define an angle at x as the ordered pair of rays (L2, L3). L2 determines a
geodesic, say, L∗. L3 − {x} is contained in one connected componenet, say
Σ, of H2 −L∗

2. Similarly, L2 −{z} is contained in one connected component,
Σ′ of H2 − L∗

3. Let the interior of the angle be A1 = Σ ∩ Σ′. Similarly, let
A2 and A3 be the interior of the angles at point y and z. Then the triangle
T (x, y, z) = A1 ∩ A2 ∩ A3.

Theorem 2.3. For any hyperbolic triangle T with angles α, β, γ,

Area(T ) = π − (α + β + γ)

Corollary 2.4. For any hyperbolic triangle T with angles α, β, γ, α+β+γ <

π.

Proof. Consider the upper half plane model of the hyperbolic plane. From
Beardon, we have that, for a set E ⊂ H2, Area(E) =

∫ ∫

E
1
y2 dxdy ([1], pp.

132). Consider a triangle T with vertices c = ∞ and a and b lie on the unit
circle |z| = 1. Then

Area(T ) =

∫ cos(β)

cos(π−α)

∫ ∞

(1−x2)1/2

dy

y2
dx

=

∫ cos(β)

cos(π−α)

1√
1 − x2

dx

= arcsin(cos(β)) − arcsin(cos(π − α))

= arcsin(cos(β)) + arcsin(cos(α))

= (
π

2
− arccos(cos(β))) + (

π

2
− arccos(cos(α)))

= π − (α + β)
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In general, any triangle is the difference two such triangles, so the general
formula follows.

Lastly, we need to describe what the reflections are in each space. The
reflections of E2 are the usual Euclidean reflections. The reflections of S2

are the reflections of E2 restricted to S2. The reflections of B2 are the the
Möbius transformations f(z) = az+b

cz+d
that fix the unit circle.

3 Triangle reflection groups

Definition 3.1. A topological group is a group G that is a also topological
space where the group multiplication (g, h) 7→ gh and inversion g 7→ g−1 are
continuous functions.

Definition 3.2. A discrete group is a topological group G where every point
is an open set.

Definition 3.3. A set F is a fundamental domain for a group G of isometries
if:

(1) F is open and connected

(2) X =
⋃

g∈G g(F )

(3) g1 6= g2 ∈ G implies g1(F ) ∩ g2(F ) = ∅

Theorem 3.4. Let G be the group of transformations generated by the re-
flection in the sides of a triangle T with angles α = π

p
, β = π

q
, γ = π

r
.

Then:

(i) G is discrete

(ii) T is a fundamental domain for G

(iii) G =
〈

r1, r2, r3|r2
i , (r1r2)

k12 , (r2r3)
k23 , (r1r3)

k13

〉

where {k12, k23, k13} = {p, q, r}.
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Proof. We prove that (ii) implies (i). For a technical proof of (ii), the reader
is referred to Beardon, [1] or Ratcliffe, [3]. For a proof, in two dimensions,
that (ii) implies (iii), the reader is referred to Coxeter, [2].

(ii) =⇒ (i): Note that if G is not discrete, then there exists an injective
sequence (γn) ∈ G which converges to 1. Thus γn(x) → x for every x ∈ X.
However, because T is a fundamental domain for G, we know that for any
g1 ∈ G we have g1(T )∩T = ∅. Therefore, for a neighborhood N ⊂ Interior(T )
of a point x ∈ Interior(T ), we have that g1(N)∩N = ∅. Thus we can have no
sequence of (γn) ∈ G such that γn(x) → x and γn → 1. Thus G is discrete.

Corollary 3.5. Let G =
〈

r1, r2, r3|r2
i , (r1r2)

k12 , (r2r3)
k23 , (r1r3)

k13

〉

. Then G

is finite if and only if 1
k12

+ 1
k23

+ 1
k13

> 1.

Proof. Let 1
k12

+ 1
k23

+ 1
k13

> 1. Let T be a triangle with angles π
k12

, π
k23

and
π

k13

. Then the reflection group of T is G. Since π
k12

+ π
k23

+ π
k13

> π it follows

that T is a triangle in S
2. Since S

2 is compact and the area of T is not 0, it
follows that we need only a number of transformations to to cover S

2. Thus
G is finite.

Let G be finite and have the presentation above. Then there is a triangle
T with angles π

k12

, π
k23

, π
k13

such that G is the refleciton group of T . Either T

is a Euclidean triangle, a hyperbolic triangle or a spherical triangle. Since G

is finite, T is neither Euclidean nor hyperbolic. Instead, T is spherical. Thus
1

k12

+ 1
k23

+ 1
k13

> 1.
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