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As we know, a topological n-manifold X is a Hausdorff space such that every point con-
tained in it has a neighborhood (is contained in an open set) homeomorphic to an n-
dimensional open ball. We will be focusing on 3-manifolds much the same way we looked
at 2-manifolds (surfaces).

A basic example of a 3-Manifold: R3 is a 3-manifold because every point in R3 is contained
in an open ball in R3.

Our study of 3-Manifolds will benefit greatly by making sure we have a strong standing in
surfaces. All surfaces admit one of three geometries or geometrics structures.

1. Geometric Structures

A geometric structure is defined as a complete and locally homogenous Riemannian man-
ifold. That is, a manifold with a metric defined locally (in the target space) that can be
integrated to find lengths of paths.

The line with minimum length, also known as a distance-minimizing path, between two
points is called a geodesic.

The three geometries that model all surfaces are Euclidean (flat geometry), spherical,
and hyperbolic geometry. These three geometries act as the universal covers of all sur-
faces.

Spherical and Hyperbolic geometries are infinitesimally Euclidean. That is, in arbitrarily
small neighborhoods, these geometries behave like Euclidean geometry. However, on a
larger scale these three geometries can be differentiated by several unique attributes. We
will look at two.

Euclidean geometry follows Euclids fifth postulate: given any line and a disjoint point, there
exists exactly one line containing our point that does not intersect our given line.

Hyperbolic and Spherical geometry do not. In Hyperbolic geometry there exist at least
two lines (defined later) disjoint to our given line and containing our point. In Spherical
geometry, all lines intersect.
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As well, consider a geodesic triangle, three points connected by geodesics, in the three
geometries. In Euclidean geometry the sum of angles inside a geodesic triangle, Σ, is always
equal to π. In hyperbolic geometry, 0 < Σ < π. In spherical geometry, π > Σ.

Figure 1. L to R, Triangles in Euclidean, Hyperbolic, and Spherical Geometries

1.1. The Hyperbolic Plane H. The majority of 3-manifolds admit a hyperbolic struc-
ture [Thurston], so we shall focus primarily on the hyperbolic geometry, starting with
the hyperbolic plane, H. There are several model spaces of H. By that we mean a way
of displaying geometric shapes in an underlying space. We shall focus on the upper-half
plane and the disc model, both of which have the complex plane as the underlying space,
C.

The upper half plane is defined as:

H={z ε C , Im(z) > 0 }

with the metric ds= |dz|
Im(z)

Figure 2. Disk and Upper Half Plane Model of H (Silvio Levy)

There exist two types of lines in the upper half plane. If points x, y have the same real
component in C, the line connecting them is perpendicular to real line in C. If x and y do
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not have the same real component, then a line connecting them is defined as a Euclidean
circle centered on the real line.

The disk model is defined as:

H = {z ε C such that |z| < 1}

With the metric ds= 2|dz|
1−|z|2

Most lines in the Poincare disk model are arcs of circles that intersect the boundary S1

orthogonally. There also exist Euclidean straight lines that connect two points opposite
each other across the center. Both types are displayed in Figure 2 and Figure 3.

In any n-dimensional hyperbolic space. There exists exactly one geodesic connecting two
points. In fact, the uniqueness of lines in the hyperbolic plane is discussed in [Anderson]. As
well, in both the hyperbolic plane and its three dimensional analog, as a line approaches
the boundary, whether it be the bottom of an upper half model, or the boundary of a
ball/disk model, the metrics are defined such that the length of the line increases and is of
infinite length if it intersects the boundary. As well, in any dimension of hyperbolic space,
angles between lines (and planes) approach zero as the length of sides increase.

Figure 3. An image of two Octagons in the Hyperbolic Disk Model
adapted from [Lackenby]

In Figure 3, we can see this as the length of our sides get larger. If two lines intersect at the
boundary, since they both intersect the boundary orthogonally, the angle between them
will be zero. Since Hyperbolic geometry is infinitesimally Euclidean, by an application of
the intermediate value theorem, we can make our angle anything we desire between its
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Euclidean angle and zero. It is worth noting the opposite is true in n-dimensional spherical
geometries. As the length of sides of a polygon increase towards their boundary, the angle
between them increases towards 180 degrees.

1.2. Hyperbolic 3-Space- H3. Like the Hyperbolic Plane, there exist several model
spaces for Hyperbolic 3-Space. The two we will focus on are the analogs to our 2-
dimensional examples. The left figure below is an the open ball model with examples of
planes. The right diagram is the Upper Half Space model with examples of planes.

Figure 4. Open Ball and Upper Half Space Model (Silvio Levy)

The Upper Half Space is defined as R3 such that the z-coordinate is greater than zero.
Planes exist in the Upper Half Space in two forms. They are either planes that run
perpendicular to R2, or as hemispheres that intersect R2 orthogonally.

The metric on the Upper Half Space is

ds= |
~dx|
t

The open ball model can be thought of as R2
⋃
∞, or simply as an open unit 3-ball. Planes

in the open ball model exists as either Euclidean planes that pass through the center of the
ball (whose intersection with the boundary S2 is a great circle), or as a hemisphere whose
intersection with the boundary S2 is orthogonal. More specifically they are fixed point sets
of involutions (isometries of order 2).

The metric on the open ball model is

ds= 2| ~dx|
1−|~x|2

2. 3-Manifolds

Now that we are working in the 3-space, lets define one more 3-manifold that should be
readily available for our understanding:



INTRODUCTION TO 3-MANIFOLDS 5

The 3-torus is a 3-manifold constructed from a cube in R3. Let each face be identified
with its opposite face by a translation (without twisting). You can imagine this as a direct
extension from the 2-torus we are comfortable with. If you were to sit inside of a 3-torus
and look straight you would see infinitely many images of yourself. Unlike in a hall of
mirrors though, you would see images of the back of your head. In a 3-Torus, you would
not only see infinite images of yourself from behind in front of you, but if you were to
look up you would see images of you from below repeating off into space. If you were to
look to your left you would see the right side of your body, with infinite repetitions behind
gradually getting smaller.

This 3-torus is constructed from E2 because all the faces of a cube can be identified without
any overlap of angles. By this we mean the dihedral angles of the cube are 90 degrees. If
we take a point on an edge of the cube, a neighborhood of our point is a 90 degree wedge
of a 3-ball. After gluing the face containing one of the edges of our 90 degree wedge with
it’s opposite face, we now have a hemisphere as a neighborhood. One more identification
of faces creates a 3-balls neighborhood. If you think of a vertex on the corner of the
cube, a neighborhood about that point is one quarter of a sphere with three planar faces.
After we glue these faces with their opposites we can realize the neighborhood is actually
a 3-ball.

If we are to think of higher dimensional polyhedra, problems arise when gluing faces.
A regular dodecahedron in Euclidean space has dihedral angles of approximately 116.6
degrees. If we take a point on an edge of a pentagon, the open neighborhood of that point
is a little less than a one third wedge of a 3-ball, with two planar faces. If we are to identify
opposite faces with minimal twisting, there is no way to create a complete 3-ball about a
point on an edge in Euclidean geometry. We will either under shoot the dihedral sum of
360 degrees, or go way over.

Here we can look at other geometries. We could put our dodecahedron in a Spherical
geometric structure and make our dihedral angles equal 120 degrees by increasing it’s size.
With a 1/10 clockwise twist of opposite faces while gluing, this creates a 3-manifold called
the Poincare dodecahedral space.

As well, in hyperbolic geometry we can make the inside angles of polygons as small as
we want by making the edges longer. Using this method and a system of twists we can
construct something called the Seifert-Weber space in Hyperbolic Space. This happens to
be a Hyperbolic 3-Manifold.

Definition: A Hyperbolic 3-Manifold is a quotient manifold H3/Γ, where Γ is a discrete
group of orientation preserving isometries of H3.

An isometry in general is a distance preserving homeomorphism on a space. That is, a
homeo f : (X, dX)→ (f(X), df(X)) such that dX(x, y) = df(X)(f(x), f(y)) for every x and
y in X.
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This definition of Hyperbolic 3-manifold follows the same idea as the universal covering
of the 2-Torus by the Euclidean plane. The 2-torus is a Euclidean 2-manifold because it
is the quotient manifold of E2 by the isometry group Γ =< t1, t2 >, where < t1, t2 > is
the normal subgroup of translations in the x and y directions. This was essentially the
same as taking a grid of squares and identifying the edges of each square in the aba−1b−1

form.

3. Examples of Hyperbolic 3-Manifolds

Figure 5. Seifert-Weber Space (Silvio Levy)

3.1. Seifert-Weber Space. To construct the Seifert-Weber Dodecahedral Space, take a
dodecahedron and identify opposite faces with a 3/10 clockwise twist.

By observing our quotient maps combinatorially, we see that the edges are connected in
6 groups of 5. Thinking back to the problem mentioned above, we know the dihedral
angles are of approximately 116.6 degrees in Euclidean space. Therefore to make these 5
wedges line up without overlap we need smaller dihedral angles. From earlier we know by
the intermediate value theorem we can place our dodecahedron in Hyperbolic Space and
lengthen edges until we get a satisfactory angle. Since edges are glued in groups of five, a
dihedral angle 72 degrees would add up to 360 degrees perfectly. This is easiest to see in
the open ball model above right.

Now we must check to see if this is actually a 3-manifold after all.

It is easy to see that point in the middle of one of our pentagon faces has a 3-ball neigh-
borhood. Before gluing, the neighborhood is an open hemisphere, and after identification
with the opposite face, we complete our 3-ball. (Think of a point sandwiched between two
solid walls.)
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Points on the edge of a pentagon are a little more difficult to see. Before identifications,
a neighborhood of a point was a 72 degree wedge of a 3-ball. However after gluing all
opposite faces, edges are glued in groups of 5.

Imagine being on the surface of a 3-ball surrounding our point x, standing on a great
circle. When traversing in any direction on the boundary sphere through a wedge of
our dodecahedron, you travel inside the wedge until arriving at a face of a pentagon.
This pentagon however has been glued to its opposite pentagon via a twisting translation
isometry. You then cross a non-existent border and are now walking on the surface of a
3-ball intersect a 72-degree wedge elsewhere in our space. We repeat this process until,
after passing through 5 gluings, we are back in our original wedge. We have successfully
traversed a great circle on a 3 ball surrounding our point x. Since we arbitrarily chose the
direction we traveled in, it is clear the neighborhood of x is in fact a 3-ball.

Vertices of the dodecahedron take a little more effort to visualize. After gluing, it turns
out that all vertices are mapped to one point v, and that as well has a 3-ball neighborhood.
[Thurston] We are not always this fortunate when dealing with vertices, as we will see with
the figure eight knot complement.

Some observations about Seifert-Weber Space:

Imagine you are standing in the SW space. If you stand with your back to one pentagon
and you look through the center of the dodecahedron at the opposite face, you will see a
slightly smaller image of yourself from behind, with a 3/10 clockwise twist. Beyond that
you would see infinitely many more images of you from behind, each twisting 3/10 clockwise
from the previous image. You would have to look at the tenth image in the distance to
actually see an image of your back with the same orientation as yourself.

A B

Figure 6. The identifications of two tetrahedra needed to make the figure-
eight knot complement adapted from [Lackenby]

3.2. Figure Eight Complement. The figure eight knot complement is a classic example
of a slightly more complicated 3-manifold. Take the two tetrahedra above and glue them
according to the orientations described. Lets call this new figure M . The faces will all be
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glued in pairs, but all the vertices will be glued together. The neighborhood of a point on
a face is homeomorphic to a 3-ball by the same solid-wall sandwich idea. A little bit later
we shall prove the same is true in hyperbolic space for any point besides the vertex, v. A
small neighborhood of the v however is a cone with a torus boundary.

Figure 7. Identifications of Tetrahedra adapted from [Lackenby]

You can see in Figure 7 that the 123 triangle is glued to the 678 triangle with 1 onto 6,
2 onto 7, and 3 onto 8. Take a small neighborhood about angle 1. The boundary of that
neighborhood can be seen as the triangle that is sitting inside the tetrahedron, not on a
face. One side of this triangle is glued to one side of a boundary triangle about a small
neighborhood around angle 6.

Walking around the corner of our angle 1 neighborhood boundary triangle we see that the
124 triangle is glued to the 586 triangle, with angle 1 glued to angle 5. The neighborhoods
of these two points also share a side on their boundary triangles. We can continue this
exercise until we return to a neighborhood about angle 6. From here we almost have the
boundary of a neighborhood of v from Figure 7.

When we followed identifications around on the boundary triangle of a neighborhood of
v, we neglected a face for each angle. Look at angle 1, we have not declared what the
back edge of the boundary triangle (lying in the 134 face) is glued to. If we follow the
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identification, that triangle edge is identified to the edge of the boundary triangle of angle
5 the lies on face 578. So, a neighborhood about angle 1 and angle 5 are glued together
twice, as described in Figure 7. From here we can see that the boundary of a neighborhood
about v is a torus.

Since v was our only problematic point, we can take out v every point has a has a 3-ball
neighborhood. Therefore M − v is a 3-manifold.

Theorem 1.

M − v is homeomorphic to S3 −K where K is the figure 8 knot.

Figure 8. Figure Eight Knot K [Lackenby]

We shall follow the proof from [Lackenby].

Consider the K1 cell complex on a figure eight knot shown below embedded in S3.

Figure 9. K1 complex on knot K [Lackenby]

Attach 2-Cells as defined in Figure 10 (next page) giving us a K2 cell complex embedded
in S3.
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Figure 10. adapted from [Lackenby]

We claim that S3-K2 is homeomorphic to two 3-Balls

This is easily follows from the claim there exists a homeomorphism from S3-K1 to S3-K1
1 ,

where K1
1 is Figure 11.

The proof of this claim comes directly from [Lackenby] and the idea is demonstrated clearly
in Figure 12. Take a fattened neighborhood of 1-Cells 1 and 2. We can then untangle 3 &
6 from 4 & 5 without changing the complement giving us the complex we want. We now
have our K2 cell complex on the flattened and untangled version of the figure-8 knot, K2

1 ,
filling R2.

If we embed K2
1 in S3 and take the complement, we get something that is homeomorphic

to two 3-Balls. Think of K2
1 embedded in S3 as R2

⋃
{∞}, dividing S3 into two parts.

From this idea we can see that the complement is two 3-Balls.

Now, without removing K2
1 from S3, we can think of these 3-Balls as the interior 3-cells and

extend our K2 cell complex to a K3 complex. The boundary of the 3-cells are connected
to our K2 complex as shown by Figure 13.
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Figure 11. K1
1 adapted from [Lackenby]

Figure 12. adapted from [Lackenby]

The 0-cells and 1-cells 3, 4, 5, and 6 combine to form a figure eight knot K, as can be seen
in Figure 14. This is the original figure-8 knot we were given before turning it into a K1

cell complex by adding 1-cells 1 and 2.

We can then reduce the 0 and 1-cells 3, 4, 5, and 6 to a point, v, and remove v. Since we
are working in S3, this is equivalent to reducing a figure-8 knot to a point and removing it
from S3. All that follows now is showing that the cell complex after collapsing these cells
to v is M .
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I II

Figure 13. [Lackenby]

Figure 14. adapted from [Lackenby]

If we reduce the 0 cells and 1 cells 3, 4, 5, 6 to point, we are left with one point v, two
1- cells (1 and 2), four 2-cells (A, B, C, D), and two 3-cells. With a little investigating,
one sees that the identifications on Figure 13, after collapsing K to a point, match that of
Figure 6.

Look at the Tetrahedron A from Figure 6, and imagine it sitting on the 124 face with angle
three pointing straight up. Imagine we were to squish A straight down but be able to make
out the angles and edges as in Figure 15, and were able to then view our flat structure
from underneath. This would look like the K2 complex I from Figure 13 with 1-cells 3, 4,
5, 6, and the 0-cells reduced to a point. We can do a similar procedure with Tetrahedron
B and get a reduced cell complex II.

Since we have a sufficient complex to create S3 −K from M − v, we can determine that
this procedure indeed proves they are homeomorphic. �

Finally, since this example has been considered a hyperbolic manifold without any justifi-
cation, we shall prove that M − v is a hyperbolic manifold.
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7

86

5

Figure 15. L: Crushed Tetrahedra A from Figure 6, R: Crushed Tetrahe-
dra B

Theorem 2. M − v is a hyperbolic manifold.

Definition. An ideal tetrahedron is a polyhedron centered at the origin with its four
vertices on the boundary S2 of the open ball model.

Lackenby proves one theorem that we shall use in proving M − v is a hyperbolic mani-
fold.

Theorem 3. Let M be a structure obtained by gluing faces of hyperbolic polyhedra in
pairs via isometries. Suppose that each point x ε M has a neighborhood Ux and an open
mapping φx: Ux → Bε(x)(0) where Bε(x)(0) is an epsilon ball about φx(x) centered at the
origin, and φx is a homeomorphism which sends x to 0 and restricts to an isometry on each
component of Ux that intersects a face of a glued polyhedra. Then M inherits a hyperbolic
structure.

Definition An ideal tetrahedron is regular if, for any permutation of its vertices, there is
a hyperbolic isometry which realizes this permutation.

Build a regular tetrahedron, 4, by constructing a Euclidean tetrahedron centered at the
origin of the open ball model with vertices in S2. Lackenby asserts that 4 is regular
because any permutation of its vertices is realized by an orthogonal map of R3 which is a
hyperbolic isometry.

We then glue two 4 via the identifications from Figure 6. All we need to do is prove for
Theorem 3 to hold is that any point on an edge has a 3-ball neighborhood (we deleted our
vertex). Since we constructed our regular ideal tetrahedron from a Euclidean tetrahedron,
the dihedral angles between faces is π/3 (proof in [Lackenby]). Since our edges are glued
in groups of 6 (look at Figure 6), our π/3 wedges add up to a 3-ball.

This fulfills the criterion for Theorem 3. Therefore M − v is a hyperbolic structure main-
taining that is is a hyperbolic 3-manifold. �
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4. Applications

4.1. Dehn Surgery. Dehn surgery is process of using a link or knot inside a 3-manifold
to generate a different 3-manifold.

To perform a Dehn surgery, take any link or knot K contained in M , a 3-manifold,
hyperbolic or otherwise, and choose a small open tubular neighborhood, avoiding self-
intersection. Remove this expanded K0. The result is a Manifold minus a Torus. No
matter how ugly the torus may be, it still has the same fundamental group since we
avoided self intersection.

We now take a solid torus, T , and choose two fundamental group generating paths on it.
We glue T back into our drilled out section by gluing ∂T onto ∂M with the paths we
have chosen on T lining up with a longitudinal and meridian line on what used to be the
boundary of K0.

If we choose the same paths on T as ∂M to glue along, we get the same manifold M back.
However, we can choose any two fundamental group generating paths and can generate a
different 3-manifold. In fact Lickorish and Wallace proved in the 1960’s that:

Theorem 4. Any closed, connected, orientable 3-Manifold may be obtained from the
3-Sphere by Dehn surgery on a link L contained in S3 [seen in Lackenby]

Dehn surgery on hyperbolic manifolds is unique to 3-manifolds, making the study of 3-
manifolds that much more rich than many higher dimensional manifolds. In the 1980’s
another interesting fact about Dehn surgeries was proven.

Theorem 5. All but finitely many Dehn surgeries result in a hyperbolic manifold.
[Thurston]


