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LIFTING G-IRREDUCIBLE BUT GLn-REDUCIBLE GALOIS

REPRESENTATIONS

NAJMUDDIN FAKHRUDDIN, CHANDRASHEKHAR KHARE, AND STEFAN PATRIKIS

Abstract. In recent work, the authors proved a general result on lifting G-irreducible odd
Galois representations Gal(F/F ) → G(Fℓ), with F a totally real number field and G a
reductive group, to geometric ℓ-adic representations. In this note we take G to be a classical
group and construct many examples of G-irreducible representations to which these new
lifting methods apply, but to which the lifting methods provided by potential automorphy
theorems do not.

1. Introduction

Let G be a smooth group scheme over Zℓ such that G0 is a split connected reductive group
scheme, and G/G0 is finite of order prime to ℓ. Let F be a number field with algebraic clo-
sure F and absolute Galois group ΓF = Gal(F/F ), and let ρ̄ : ΓF → G(Fℓ) be a continuous
homomorphism. The question of whether ρ̄ admits a geometric (or, more ambitiously, auto-
morphic or motivic) lift ρ : ΓF → G(Zℓ) has attracted a great deal of interest at least since
Serre formulated his modularity conjecture in the case F = Q, G = GL2, and ρ̄ absolutely
irreducible and odd (see Definition 1.1 below). There are essentially two types of methods,
first studied for G = GL2 and F totally real, for proving such lifting theorems, a purely
Galois-theoretic approach developed by Ramakrishna ([Ram99], [Ram02]), and an approach
developed in [KW09] and [Kha06] making crucial use of potential automorphy ([Tay02]).
Much further work on both of these methods (and their descendants) has led to the papers
[FKP19], for the Galois-theoretic method, and [BLGGT14], for the automorphic methods,
which more or less represent the state-of-the-art (see also [CEG18] for a refinement of the
local hypotheses in [BLGGT14]). Both of these methods crucially rely on the following
oddness hypothesis:

Definition 1.1. We say ρ̄ : ΓF → G(Fℓ) is odd if for all v | ∞,

h0(ΓFv
, ρ̄(gder)) = dim(FlagG0),

where ρ̄(gder) is the Lie algebra of the derived group Gder of G0, equipped with the action of
ΓF via the composite Ad ◦ ρ̄, and FlagG0 is the flag variety of G0.

The main distinction between the output of the two methods is that the Galois-theoretic
methods of [FKP19] are applicable to any group G, but yield weaker results, answering only
the question of existence of geometric lifts. By contrast, the deeper automorphic methods
yield potentially automorphic lifts, which can consequently be put in compatible systems of
geometric representations; these methods, however, at present only apply to classical groups.

We are grateful to Wushi Goldring for stimulating conversations. C.K. was supported by NSF grant
DMS-1601692 and a Humboldt Research Award, and would like to thank TIFR, Mumbai for its hospitality,
in periods when some of the work was carried out. S.P. was supported by NSF grants DMS-1700759 and
DMS-1752313.
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In [FKP19, §7] we gave a number of examples of ρ̄ valued in an exceptional group G that
we showed admitted geometric lifts with Zariski-dense image in G(Qℓ).

The purpose of this note is to highlight one other distinction between the range of applica-
tion of [FKP19] and [BLGGT14], resulting from the difference in the irreducibility require-
ments on the residual representations. Recall that ρ̄ is G-irreducible if its image is contained
in no proper parabolic subgroup of G(Fℓ). The main theorem of [FKP19] requires that
ρ̄|ΓF (ζℓ)

be G-irreducible (for ℓ ≫G 0), whereas the lifting theorem of [BLGGT14] requires

that r ◦ ρ̄|ΓF (ζℓ)
be GLn-irreducible for a representation r : G → GLn (for ℓ ≫n 0). We will

take G ⊂ GLn to be a classical group with its standard representation, and we will construct
a series of examples of representations ρ̄ : ΓF → G(Fℓ), for F a suitable totally real field,
that are absolutely irreducible as G-representations but reducible as GLn-representations,
and that can be lifted to G(Zℓ)-representations (with Zariski-dense image) by the methods
of [FKP19] but not by those of [BLGGT14].

To apply our lifting results, we have to check a few hypotheses, so we now recall a weak-
ening of the main theorem of [FKP19] (the full result yields more precise conclusions about
the local restrictions and the image of the lift). Roughly speaking, we need ρ̄ with suitable
global image and also satisfying some modest local ramification properties:

Theorem 1.2 (See Theorem A of [FKP19]). Let ℓ ≫G 0 be a prime. Let F be a totally
real field, and let ρ̄ : ΓF → G(Fℓ) be a continuous representation unramified outside a finite

set of finite places S containing the places above ℓ. Let F̃ denote the smallest extension of

F such that ρ̄(ΓF̃ ) is contained in G0(Fℓ), and assume that [F̃ (ζℓ) : F̃ ] is strictly greater
than an integer aG depending only on the root datum of G (see [FKP19, Lemma A.6]). Fix
a geometric lift µ : ΓF → G/Gder(Zℓ) of µ̄ := ρ̄ (mod Gder), and assume that ρ̄ satisfies the
following:

• ρ̄ is odd.
• ρ̄|Γ

F̃ (ζℓ)
is absolutely irreducible.

• For all v ∈ S, ρ̄|ΓFv
has a continuous lift ρv : ΓFv

→ G(Zℓ) of type µ|ΓFv
; and that for

v|ℓ this lift may be chosen to be de Rham and regular in the sense that the associated
Hodge–Tate cocharacters are regular.

Then there is a lift

G(Zℓ)

��

ΓF ρ̄
//

ρ
<<
③
③
③
③
③
③
③
③
③

G(Fℓ)

of ρ̄ satisfying:

• The projection of ρ to G/Gder(Zℓ) equals µ.
• ρ is unramified outside a finite set of primes, and the restrictions ρ|ΓFv

for v|ℓ are de
Rham and regular, having the same ℓ-adic Hodge type as ρv.

• The Zariski-closure of the image ρ(ΓF ) contains G
der.

We provide a few kinds of examples. We begin in §2 with an elementary example with G =
GSp2n, obtained by appropriately summing irreducible odd two-dimensional representations.
Then in §3, we explain a quite general but “soft” approach to constructing examples using
Calegari’s result on the “potential inverse Galois problem with local conditions” ([Cal12,
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Proposition 3.2]). This relies on the results of Moret-Bailly and yields examples with no
global control over the totally real field F . Finally, we devote the bulk of the paper to a
series of more concrete examples relying on Zywina’s work ([Zyw19]) on the (actual) inverse
Galois problem for orthogonal groups. The representations we construct here have the form
ρ̄ = θ̄⊕1, where N is an even integer, and θ̄ : ΓF → SON(Fℓ) is an orthogonal representation
with large image arising from [Zyw19]. In this case the real work is to compute the action
of complex conjugation in Zywina’s examples, and we do this in §5. This approach has
the advantage that, modulo the purely local question of whether any ΓQℓ

→ SON+1(Fℓ)
admits a Hodge-Tate regular de Rham lift, it would yield examples with F = Q. Recently
the techniques for producing such lifts have been greatly advanced: forthcoming work of
Emerton-Gee will address this question with GLN+1 in place of SON+1, and others are at
work extending the methods of Emerton-Gee to other group. Thus we may be optimistic
that in the not-too-distant future these local obstacles will vanish. In any case, we hope that
the various methods presented here are all of some interest.

2. An elementary example

In this brief section, we consider a relatively simple example where G = GSp2n, defined

with respect to the symplectic form J =

(
0 1n

−1n 0

)
, where 1n denotes the n × n identity

matrix. Let ρ̄1, ρ̄2, . . . , ρ̄n : ΓQ → GL2(Fℓ) be n Galois representations satisfying

• The ρ̄i|ΓQ(ζℓ)
are irreducible.

• The determinants det(ρ̄i) are independent of i.
• The ρ̄i are all odd, i.e. det(ρ̄i(c)) = −1 for all i.

Writing ρ̄i(g) =

(
ai(g) bi(g)
ci(g) di(g)

)
, define

ρ̄(g) =




a1(g) 0 · · · 0 b1(g) 0 · · · 0
0 a2(g) 0 · · · 0 b2(g) 0 · · ·

0 0
. . . 0 0 0

. . . 0
0 · · · 0 an(g) 0 · · · 0 bn(g)

c1(g) 0 · · · 0 d1(g) 0 · · · 0
0 c2(g) 0 · · · 0 d2(g) 0 · · ·

0 0
. . . 0 0 0

. . . 0
0 · · · 0 cn(g) 0 · · · 0 dn(g)




.

The condition that det(ρ̄i) be independent of i guarantees that ρ̄ is valued in GSp2n and
has symplectic multiplier det(ρ̄i). Oddness of each ρ̄i therefore implies oddness of ρ̄. Since
the ρ̄i|ΓQ(ζℓ)

are irreducible, non-isotropic, and pair trivially with one another, we see that

ρ̄|ΓQ(ζℓ)
leaves no proper isotropic subspace invariant. Thus ρ̄|ΓQ(ζℓ)

is GSp2n-irreducible, while
obviously not GL2n-irreducible.

Proposition 2.1. Assume ℓ≫n 0. With notation as above, ρ̄ admits a Hodge-Tate regular
de Rham lift ρ : ΓQ → GSp2n(Zℓ) with Zariski-dense image.

Proof. From the above discussion, this will now follow from Theorem 1.2 provided we can
check the local hypotheses in that theorem. For this, we note that by Lemma 2.2 below each
ρ̄i|ΓQℓ

admits a potentially crystalline lift ρi,ℓ satisfying:
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• det(ρi,ℓ) is independent of i.
• The Hodge-Tate weights of the ρi,ℓ are distinct.

Let µ : ΓQ → Z
×

ℓ be a global character such that µ|ΓQℓ
= det(ρi,ℓ). Such a µ exists either

by the local and global Kronecker-Weber theorems or by noting that det(ρi,ℓ) is an integer
power of the cyclotomic character multiplied by a finite-order character; this reduces to the
case of finite-order characters, where we can realize any finite extension of Qℓ as a completion
of a finite extension of Q. For such a µ, the local hypothesis at ℓ of Theorem 1.2 is satisfied
by the choice of similitude character µ and the local lift ρℓ constructed by summing the ρi,ℓ
in the same way as ρ̄ is defined in terms of the ρ̄i. For primes p 6= ℓ where ρ̄ ramifies, [Boo18,
Theorem 1.1] implies that ρ̄|ΓQp

admits a lift ΓQp
→ GSp2n(Zℓ) with similitude character µ.

We now conclude by Theorem 1.2. �

Here is the local lemma used in the proof:

Lemma 2.2. Let ρ̄1, ρ̄2, . . . , ρ̄n : ΓQℓ
→ GL2(Fℓ) be continuous representations with the same

determinant τ̄ = det(ρ̄i), i = 1, . . . , n. Then there exist potentially crystalline lifts ρi : ΓQℓ
→

GL2(Zℓ) such that the union of the Hodge-Tate weights of the ρi is a set with 2n distinct
elements, and det(ρi) is independent of i.

Proof. First we note that it suffices to produce potentially crystalline lifts ρi with (all taken
together) distinct Hodge-Tate weights and det(ρi) having the same (single) Hodge-Tate
weight for all i. Indeed, then each quotient det(ρi)/ det(ρ1) is a finite-order character val-
ued in a pro-ℓ group (since the reduction mod ℓ is trivial), and so we can extract a square
root and twist ρi to have the same determinant as ρ1 (and this finite-order twist does not
affect the property of being potentially crystalline). To finish the proof, we apply [Mul13,
Théorème 2.5.3, Theorem 2.5.4], which show the following:

• If ρ̄i is irreducible, then for any choice of Hodge-Tate weights {mi,1, mi,2}, there exists
a potentially crystalline lift ρi of ρ̄i with these weights. We choose these in such a
way that mi,1 +mi,2 is independent of i, but the multi-set {mi,j}i,j is in fact a set.

• If ρ̄i =

(
χ̄i,1 ∗
0 χ̄i,2

)
is an extension of characters, then for each i there are potentially

crystalline lifts χi,j of χ̄i,j with Hodge-Tate weights summing to any pre-specified
value and a potentially crystalline lift of ρ̄i that is an extension of χi,2 by χi,1. (To
see this claim requires inspection of the proof of [Mul13, Théorème 2.5.4].)

�

3. Approach via the potential IGP with local conditions

The general approach of the present section is quite flexible and will certainly apply to
other Galois images and target groups than those used here; we do not strive for maximal
generality. Let N = 2n be an even integer, and consider the standard embedding SON →
SON+1 of special orthogonal groups over Zℓ (defined, for definiteness, with respect to the
symmetric pairings given by the identity matrices1). Let Γ = SON (Fℓ), and fix the following
order two element c∞ of Γ:

1This group over Zℓ may not be split, but we will only apply the lifting results of [FKP19] after making
a finite extension of Zℓ. Many variants on the present construction are possible; in particular, we could take
different forms of SON .
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• If N ≡ 0 (mod 4), then c∞ =

(
0 1n
1n 0

)
(note that det(c∞) = (−1)n = 1).

• If N ≡ 2 (mod 4), then c∞ =




0n−1 0 1n−1 0
0 −1 0 0

1n−1 0 0n−1 0
0 0 0 −1


 (note that det(c∞) =

(−1)n−1 = 1).

We now circumvent the inverse Galois problem by applying Calegari’s solution ([Cal12,
Proposition 3.2]) to the potential inverse Galois problem with local conditions, and we thus
produce the examples of this section:

Proposition 3.1. There exists a totally real field F/Q and a Galois extension K/F satis-
fying:

(1) There is an isomorphism θ̄ : Gal(K/F )
∼
−→ Γ.

(2) K/Q is linearly disjoint from Q(ζℓ)/Q.
(3) With respect to the isomorphism θ̄, for all v|∞, complex conjugation cv ∈ Gal(K/F )

is conjugate to c∞.
(4) The prime ℓ splits completely in F/Q, and for all places v|ℓ of F , and all w|v of K,

Kw = Fv is the trivial extension.

Assume now ℓ ≫N 0, and define ρ̄ = θ̄ ⊕ 1. Then ρ̄ : ΓF → SON+1(Fℓ) has a Hodge-Tate
regular geometric lift ρ : ΓF → SON+1(Zℓ) with image Zariski-dense in SON+1.

Proof. Existence of K, F , and θ̄ follow immediately from [Cal12, Proposition 3.2]. To finish
the proof, we must verify that the hypotheses of Theorem 1.2 are satisfied for ρ̄ = θ̄ ⊕ 1. A
maximal (proper) parabolic subgroup of SON+1 is the stabilizer of an isotropic subspaceW ⊂

F
N+1

ℓ . Since the image of θ̄|ΓQ(ζℓ)
is SON(Fℓ), which acts absolutely irreducibly in its standard

N -dimensional representation for ℓ≫N 0, ρ̄ stabilizes exactly two proper subspaces of F
N+1

ℓ ,
namely the space of θ̄ and the complementary line. Clearly neither of these subspaces is
isotropic, so in all cases ρ̄|ΓQ(ζℓ)

is SON+1-absolutely irreducible.

Booher’s result ([Boo18, Theorem 1.1]) shows that for v not above ℓ at which ρ̄ is ramified,
ρ̄|ΓFv

has a lift to ΓFv
→ SON+1(Zℓ). (Note that Booher’s result shows a GON+1-deformation

ring with fixed orthogonal multiplier is formally smooth of suitably large dimension; we fix
the multiplier to be trivial to produce an ON+1 = SON+1 × {±1} lift and then project
to SON+1.) Since the extensions Kw/Fv are trivial for v|ℓ, ρ̄|ΓFv

clearly has a Hodge-Tate
regular crystalline lift, simply by taking an appropriate sum of powers of the cyclotomic
character. To conclude, we check that ρ̄ is odd. Indeed, since the adjoint representation of
SON+1 is isomorphic to the second exterior power of the standard representation, we find

Tr(ρ̄(c)|soN+1
) =

Tr(ρ̄(c))2 − Tr(ρ̄(c2))

2
=

1− (N + 1)

2
= −rk(SON+1).

This is equivalent to the oddness condition dim(so
Ad(ρ̄(c))=1
N+1 ) = dimFlagSON+1

assumed in
Theorem 1.2. �

Remark 3.2. Perhaps the most interesting case here is when N ≡ 2 (mod 4). Then the
representations θ̄ are not odd, and indeed cannot be odd since −1 does not belong to the
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Weyl group of SON for any N ≡ 2 (mod 4).2 Existing lifting techniques cannot lift them to
geometric SON -representations, and we expect that no such lifts that are Hodge-Tate regular
as GLN -representations can exist. See Proposition 3.3 below for a proof of this in some cases,
but we now explain a general heuristic. Such a lift (necessarily GLN -irreducible) would
conjecturally arise from an automorphic representation π of (split) SON/Q with cuspidal
transfer to GLN . The archimedean L-parameter recπ∞

: WR → SON(C) would then (by
archimedean purity for GLN) restrict to C

× ⊂ WR as recπ∞
(z) = zµ ·z̄−µ for some cocharacter

µ of the diagonal torus T ⊂ SON . Let {e∗i }
n
i=1 be the standard basis of X•(T ). Then the

most regular situation that can arise has recπ∞
(j) equal to the element c∞ above, and µ =∑n

i=1 pie
∗
i with p1, . . . , pn−1 distinct, and pn = 0 (using the Weil group relation jzj−1 = z̄).

Such an L-parameter is in fact SON -regular, but it is clearly not GLN -regular. We note
that these “most regular” lifts that might be possible would be the ℓ-adic representations
associated to cuspidal automorphic representations on (suitable forms of) SON that are non-
degenerate limits of discrete series at archimedean places. See [GK19] for important recent
progress on the problem of associating Galois representations to automorphic representations
that are non-degenerate limits of discrete series at infinity.

We can unconditionally rule out “many” candidates for regular lifts of θ̄ using potential
automorphy theorems:

Proposition 3.3. Let ρ : ΓQ → ON(Zℓ) for ℓ > 2(2N + 1) be a continuous representation
satisfying:

(1) ρ̄|ΓQ(ζℓ)
is GLN -irreducible.

(2) ρ|ΓQℓ
is as GLN -representation potentially diagonalizable in the sense of [BLGGT14,

§1.4] and has distinct Hodge-Tate weights.

Then Tr(ρ(c)) = 0. In particular, when N ≡ 2 (mod 4), ρ cannot factor through SON .

Proof. In this proof we freely use the terminology and notation of [BLGGT14]; we argue
as in, for instance, [BLGGT14, Proposition 3.3.1], making use of Harris’s tensor product
trick. Choose a quadratic imaginary field K/Q linearly disjoint from Q(ρ̄, µℓ)/Q, and let

ψ : ΓK → Z
×

ℓ be a geometric (hence potentially crystalline and potentially diagonalizable)

character such that r := Ind
ΓQ

ΓK
(ψ) satisfies:

• r∗ ∼= r ⊗ µ, where µ(c) = −1 (this imposes no condition on ψ).
• r|ΓQℓ

is Hodge-Tate regular, with Hodge numbers {m1, m2} having the property that

no two Hodge numbers of ρ differ by |m1 −m2|.
• (ρ̄⊗ r̄)|ΓQ(ζℓ)

is irreducible (a simple way to arrange this is to choose ψ such that at

an auxiliary prime q split in K/Q and unramified in ρ̄, ψ̄ is ramified at one prime
above q but not at the conjugate prime above q) .

To produce such a ψ, we can apply [BLGGT14, Lemma A.2.5], similarly to its use in
[BLGGT14, Proposition 3.3.1]. Consider then the representation ρ′ := ρ⊗r : ΓQ → GL2N(Zℓ).
Since ρ is orthogonal, and r is symplectic, ρ′ : ΓQ → GSp2N(Zℓ) is symplectic. Moreover,
(ρ′)∗ ∼= ρ′ ⊗ µ, and thus we see that ρ′ is totally odd polarizable. Moreover, ρ′|ΓQℓ

is still

2We learned from Wushi Goldring the observation that an SON -representation that is not odd can transfer
to an odd SON+1-representation.
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potentially diagonalizable with distinct Hodge-Tate weights. Thus we can apply the poten-
tial automorphy theorem of [BLGGT14, Corollary 4.5.2] to conclude that (ρ′, µ) is poten-
tially automorphic. Now we apply [BLGGT14, Lemma 2.2.4]: in the notation of loc. cit.,

(ρ′ = ρ⊗ r ∼= Ind
ΓQ

ΓK
(ρ|ΓK

⊗ψ), µ) is potentially automorphic and polarized, so (ρ|ΓK
⊗ψ, µ)

is also potentially automorphic and polarized. By [BLGGT14, Lemma 2.2.1, Lemma 2.2.2],
(ρ, 1) is potentially automorphic, i.e. there exists a regular algebraic, polarized cuspidal au-
tomorphic representation (π, χ) of GLN (AQ) such that (ρ, 1) ∼= (rℓ,ι(π), κ

1−N
ℓ rℓ,ι(χ)), where

κℓ denotes the ℓ-adic cyclotomic character, and rℓ,ι(π) is the automorphic Galois represen-
tation associated to π (see [BLGGT14, Theorem 2.1.1]; note that in their normalization,
rℓ,ι(π) is the Galois representation whose local restrictions correspond under local Langlands

to π ⊗ | · |
1−N

2 ). It follows that χ = | · |N−1, and π ⊗ | · |
1−N

2 is the (on the nose) self-dual
regular L-algebraic cuspidal automorphic representation corresponding to ρ under the lo-

cal Langlands correspondence. Applying [Täı16, Theorem A] to π ⊗ | · |
1−N

2 , we find that
|Tr(ρ(c))| ≤ 1, and thus (N is even) Tr(ρ(c)) = 0. �

Remark 3.4. The main limitation in this result is the potential diagonalizability assump-
tion. But in a compatible system of Hodge-Tate regular automorphic Galois representations,
almost all members will be potentially diagonalizable by the theory of Fontaine-Laffaille.
Calegari ([Cal12]) has proven a stronger result that a geometric and Hodge-Tate regular
ΓQ → GL2(Zℓ) must be odd, without a potential diagonalizability hypothesis.

4. Review of Zywina’s work

In this section we recall the construction of Zywina ([Zyw19]) that in many cases realizes
the simple groups of orthogonal type over Fℓ as Galois groups of regular extensions of Q(t),
and in particular as Galois groups over Q (in infinitely many ways). Some of the finer points–
namely, the simplicity itself–of this construction will not matter for our present purposes:
rather, we want to use this construction as a source of Galois groups over Q isomorphic
to large subgroups of even orthogonal groups, and we recall only what is necessary for our
purposes.

Fix an even integer N ≥ 6. Let R = Z[S−1], for a finite set of primes S that may be en-
larged as the construction proceeds. Zywina artfully chooses polynomials a2(t), a4(t), a6(t) ∈
R[t], such that the discriminant ∆(t) of the Weierstrass equation y2 = x3+a2(t)x

2+a4(t)x+
a6(t) is non-zero (and the j-invariant is non-constant) and considers a family of quadratic
twists of this Weierstrass equation. This leads to the following construction of a rank N
orthogonal local system on an open subset of P1

R, which we rapidly summarize:

• Let A = R[u,∆(u)−1]) and set M = Spec(A).
• Let j : U → P1

M be the inclusion of the defined by U = Spec(A[t, (t− u)−1,∆(t)−1]).
• Let E → U be the elliptic curve defined by the Weierstrass equation

(t− u)y2 = x3 + a2(t)x
2 + a4(t)x+ a6(t),

• Let π : P1
M →M be the structure morphism, and define

G = R1π∗(j∗E[ℓ]),

where E[ℓ] is the local system (of Fℓ-modules) on U defined by the ℓ-torsion subgroup
scheme of E. The sheaf G on M is clearly constructible, and Zywina shows ([Zyw19,
Lemma 3.3]) that it is lisse of rank N (this depends on the careful choice of the ai(t)
and is verified case-by-case in [Zyw19, §6]). Poincaré duality provides an orthogonal
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pairing G × G → Fℓ, and so given a geometric generic point χ̄ of M we obtain a
representation

θℓ : π1(M, ξ̄) → O(Gξ̄).

In fact Zywina must, in order to realize the simple groups as Galois groups, work with the
pull-back h∗(G) of this local system along a suitable finite étale cover h : W →M , where W
is again an open subscheme of P1

R (see the proof of [Zyw19, Theorem 4.1]). He denotes by

ϑℓ : π1(W ) → O(Vℓ)

the representation associated to h∗(G) (omitting reference to the choice of compatible base-
point).

Recall (see [Zyw19, §1.1]) that the spinor norm is a homomorphism sp : O(Vℓ) → F×
ℓ /(F

×
ℓ )

2,
and let Ω(Vℓ) ⊂ SO(Vℓ) be the subgroup of elements with trivial spinor norm. When the
discriminant disc(Vℓ) := sp(−1) is the trivial coset, −1 belongs to Ω(Vℓ). We will use the
following consequence of Zywina’s main theorem and arguments:

Proposition 4.1. Let N ≥ 6 be an even integer, and let ℓ ≥ 5 be a prime. Then the
elliptic curve E → U may be chosen to ensure that the quadratic space Vℓ has discriminant
(F×

ℓ )
2, there are infinitely many wi ∈ Q such that the specializations ϑℓ,wi

(defined up to
conjugation)

ΓQ
wi−→ π1(W )

ϑℓ−→ O(Vℓ)

are non-isomorphic and satisfy ϑℓ,wi
(ΓQ) = Ω(Vℓ).

When N ≡ 6 (mod 8), we also consider a second family E → U , where the above holds
except with the conclusion that ϑℓ,wi

(ΓQ) contains Ω(Vℓ) with index 2, and ϑℓ,wi
(ΓQ(i)) equals

Ω(Vℓ). We will refer to the two examples when N ≡ 6 (mod 8) as Case 6Ω and Case 6O.

Proof. When N ≡ 0, 2, 4 (mod 8), or in Case 6Ω, the existence of specializations wi with
ϑℓ,wi

(ΓQ) = Ω(Vℓ) is immediate from the proof of [Zyw19, Theorem 1.1] and the Hilbert
irreducibility theorem ([Ser08, §3.3-3.4]), which produces wi such that the fixed fields of the
ϑℓ,wi

are linearly disjoint over Q. Case 6O arises from an earlier version of [Zyw14], where the
root number calculation of [Zyw14, §6.4] shows that the root number εEh(w) at a specialization

w ∈ W (Fp) (for any sufficiently large prime p) is
(

−1
p

)
(not 1 as claimed). Consequently

det(ϑℓ)(Frobw) =
(

−1
p

)
for all p ≫ 0, w ∈ W (Fp), and so det(ϑℓ) : π1(W ) → F×

ℓ factors

through the non-trivial quadratic character π1(W ) → ΓQ → Gal(Q(i)/Q) → F×
ℓ (with the

first map induced by the structure morphism). The proof of [Zyw19, Theorem 4.1] still shows
that the geometric monodromy group ϑℓ(π1(WQ)) contains Ω(Vℓ), and that ϑℓ(π1(WQ(i))) is
contained in Ω(Vℓ) (since it is contained in SO(Vℓ), and the rest of the relevant calculation
only uses information about the Euler characteristic χ and the Tamagawa number cEh(w)

, in

the notation of loc. cit.). Thus π1(WQ) = π1(WQ(i)) = Ω(Vℓ), and π1(W ) ⊂ O(Vℓ) contains
Ω(Vℓ) with index 2. We can again invoke Hilbert irreducibility to produce the desired ui:
there is a thin set T ⊂W (Q) such that for all w ∈ W (Q)\ t, ϑℓ,w cuts out a Galois extension
of Q with Galois group isomorphic to ϑℓ(π1(W )). Since W (Q) \ T ⊂ Q(i) is not a thin
subset (see [Ser08, Proposition 3.2.1]), applying Hilbert irreducibility to ϑℓ|π1(WQ(i)) shows

that there are infinitely many wi ∈ W (Q) \ T such that ϑℓ,wi
(ΓQ(i)) equals Ω(Vℓ). The

resulting extensions are linearly disjoint over Q(i). �
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5. Complex conjugation

In our application of the lifting theorem of [FKP19], we most importantly have to under-
stand the action of complex conjugation in the Galois representations ϑℓ,w, w ∈ W (Q). The
Betti-étale comparison isomorphism reduces this to a transcendental calculation, which we
perform in this section. Recall that for any smooth variety X/R there is a “transport of
structure” isomorphism F∞ : H∗(X(C),Q) → H∗(X(C),Q) induced by the action of com-
plex conjugation on the points of the manifold X(C); and that functoriality of the Betti-étale
comparison isomorphism

H∗(X(C),Q)⊗Q Qℓ
∼
−→ H∗

ét(XC,Qℓ),

implies that the automorphism F∞ corresponds to the action of complex conjugation c ∈
Gal(C/R) on the étale cohomology. Moreover, in the Hodge decomposition Hr(X(C),Q)⊗Q

C =
⊕

p+q=rH
p,q(X(C)), F∞ exchanges Hp,q(X(C)) and Hq,p(X(C)). It follows that when

r is odd, Tr(c|Hr
ét(XC,Qℓ)) = 0. For r even, however, the contribution of H

r
2
, r
2 (X(C)) terms

can make it a subtle matter to compute the trace. In this section, we address this problem for
the middle cohomology of certain elliptic surfaces over R. We begin with a general lemma:3

Lemma 5.1. Let M be a compact differentiable manifold and f :M →M a diffeomorphism
such that fn = IdM for some positive integer n. Let F be the fixed point locus of f , i.e., the
set of points x ∈M such that f(x) = x. Then

Tr(f ∗|H∗(M,Q)) = χ(F )

where the LHS is the alternating sum of the traces and χ denotes the topological Euler
characteristic, i.e., the trace of the identity map.

Proof. By averaging any Riemannian metric on M with respect to the subgroup of Diff(M)
generated by f , we see thatM has an f -invariant Riemannian metric g. Using the exponen-
tial map with respect to this metric at any point of F , we see that F is a closed submanifold
of M (with connected components possibly of varying dimension). For 0 < ǫ′ < ǫ ≪ 0, let
Tǫ (resp. Tǫ′) be the tubular neighbourhood of F in M of radius ǫ (resp. ǫ′) constructed as
in [MS74, Theorem 11.1] using the metric g. Since g is f -invariant, so are these tubular
neighbourhoods.

Let Aǫ be the closure of Tǫ in M and Bǫ′ = M\Tǫ′. Both of these sets are f -invariant
compact manifolds with boundary. Since Bǫ′ ∩ F = ∅, f has no fixed points on Bǫ′. Thus,
by the “no fixed points” version of the Lefschetz fixed point theorem, Tr(f ∗|H∗(Bǫ′,Q)) = 0
and Tr(f ∗|H∗(Aǫ ∩Bǫ′,Q)) = 0.

We now consider the Mayer–Vietoris sequence for the cover of M given by Aǫ and Bǫ′.
Since f preserves these sets, it induces an endomorphism of this sequence, and exactness
implies that the alternating sums of the traces of f ∗ on the terms of this sequence must be
0. Since the inclusion of F in Aǫ is a homotopy equivalence, we get that

Tr(f ∗|H∗(M,Q)) = Tr(f ∗|H∗(Aǫ,Q)) = χ(F )

as claimed.
�

3We thank Prakash Belkale for help in simplifying our original proof of this Lemma.
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Lemma 5.2. Let X be a smooth projective variety over R, as before denoting by F∞ the
involution of X(C) and its cohomology induced by complex conjugation. Then

Tr(F∞|H∗(X(C),Q)) = χ(X(R))

Proof. This follows immediately from Lemma 5.1 since the fixed point locus of F∞ is precisely
X(R). �

We now turn to the study of real elliptic surfaces. The following lemma is standard for
elliptic surfaces over C.

Lemma 5.3. Let π : E → C be an elliptic surface over R. Then

χ(E(R)) =
∑

x∈S

χ(Ex(R)),

where S ⊂ C(R) is the set of real points over which π is not smooth and Ex is the fibre of π
over x.

Proof. For a topological space T we denote by χc(T ) the Euler characteristic with compact
supports. If U ⊂ T is open and Z = T\U , then the long exact sequence of cohomology with
compact supports implies that χc(T ) = χc(U)+χc(Z) (as long as all the cohomology groups
are finite dimensional).

Let U ′ = C(R)\S. The map πR induced by π from E(R) → C(R) is a proper fibre bundle
over each connected component of U ′ with fibre homeomorphic to a circle, two disjoint
circles, or the empty set. The Leray spectral sequence (with compact support) then shows
that χc(π

−1(U ′)) = 0. The lemma follows from this, the additivity of χc, and the fact that
E(R) is compact. �

The following lemma gives the Euler characteristic of the real points of some types of
singular fibres (in the Kodaira classification) of elliptic fibrations with a section over R. We
note that in general this depends on the real structure of the fibre, not just the Kodaira
symbol.

Lemma 5.4. In the notation of the Kodaira classification (see, e.g., [Sil94, IV.8]), and
allowing all n ≥ 0 in the I∗n case, we have the following Euler characteristic calculations:

χ(I1) =

{
−1 if the fibre is split,

1 if the fibre is non-split;
(5.1)

χ(I2) =

{
−2 if the fibre is split,

0 if the fibre is non-split;
(5.2)

χ(II) = 0;(5.3)

χ(III) = −1;(5.4)

χ(I∗n) =

{
−n− 4 if all components are defined over R,

−n− 2 if all but two components are defined over R.
(5.5)

χ(III∗) = −7.(5.6)

Proof. We will describe the real points explicitly in all cases, the formulae for χ being im-
mediate from this. For a description of the complex curves corresponding to the Kodaira
symbols, the reader may consult [Sil94, §IV.8-IV.9].
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For I1, the complex curve is an irreducible rational curve with a single node. The node
must be defined over R and is the image of two real points in the normalisation in the
split case or a pair of complex conjugate points in the non-split case. Thus, since P1(R) is
homeomorphic to a circle, the real points of such a curve form a “figure 8” in the split case
or it is a disjoint union of a circle and a point in the non-split case.

For I2, the complex curve is a union of two smooth rational curves intersecting transversally
in two points. Both components must be defined over R since at least one is. In the split
case the intersection points are defined over R, so the real points are homeomorphic to a
union of two circles meeting in two distinct points. In the non-split case, the intersection
points are not defined over R so the real points are homeomorphic to a circle or a disjoint
union of two circles.

For II, the complex curve is an irreducible rational curve with a single cusp. The real
points must therefore be homeomorphic to a circle.

For III, the complex curve is a union of two smooth rational curves intersecting tangen-
tially in a single point, which must therefore be defined over R. The real points therefore
form a “figure 8”.

For I∗n (including n = 0), we consider the Gal(C/R)-action on the dual graph of the fibre.
The (smooth) component of the identity section is defined over R and corresponds to an
end vertex of the dual graph, and the only possible graph automorphisms fixing this point
are the identity and the automorphism that swaps the two opposite end vertices. Thus all
components of the fibre except possibly those corresponding to these last two vertices are
defined over R. Since all components intersect in a single point, those components defined
over R must intersect over R, so the real picture is homotopy-equivalent either to a bouquet
of n+ 5 circles or to a bouquet of n + 3 circles.

For type III∗, we argue similarly: the Gal(C/R)-action on the dual graph of the fibre
must fix one end vertex, and the only possible graph automorphism with this property is
the identity. Thus all components are defined over R, and the real points are homotopy-
equivalent to a bouquet of 8 circles. �

Let W ⊂ H2(E(C),Q) be the subspace spanned by the fundamental classes of all irre-
ducible components of all the (complex) fibres of π as well as the fundamental class of a
section C of π (defined over R).

(5.7) W = Q[C]⊕Q[Esm]⊕
⊕

x∈P1(C)

(⊕iQ[Ex,i])

Q[Ex]
,

where Ex is the scheme theoretic fibre over x, the Ex,i are the reduced irreducible components
of Ex, Esm is any smooth fibre and [D], for an algebraic 1-cycle D, denotes the fundamental
class in H2(E(C),Q). The summand corresponding to any irreducible fibre Ex is zero, so
the sum is actually finite.

If a complex fibre is not defined over R, complex conjugation maps it to a distinct fibre, so
the trace of F∞ corresponding to the subspace of W spanned by all the irreducible compo-
nents of all these fibres is 0. Thus, as far as computing the trace goes, we only need consider

Ex for x ∈ C(R). In this case, the corresponding summand
(⊕iQ[Ex,i])

Q[Ex]
is preserved by F∞

so it suffices to consider the trace on each such fibre separately. We now make a list of the
possibilities in terms of the Kodaira type and the real structure as in Lemma 5.4.
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Lemma 5.5. For a Kodaira symbol ∗ we denote by Tr(∗), the trace of F∞ acting on
⊕iQ[Ex,i])

Q[Ex]
,

where Ex is a real fibre of type ∗.

Tr(I1) = 0(5.8)

Tr(I2) = −1(5.9)

Tr(II) = 0;(5.10)

Tr(III) = −1;(5.11)

Tr(I∗n) =

{
−n− 4 if all components are defined over R,

−n− 2 if all but two components are defined over R.
(5.12)

Tr(III∗) = −7.(5.13)

Proof. The formulae follow from the following elementary facts and the description of the
possible real structures as in the proof of Lemma 5.3:

• If Ex,i is a C-irreducible component of Ex defined over R then F∞ acts on Q[Ex,i] by
−1 since complex conjugation reverses orientation.

• If Ex,i and Ex,j are two distinct C-irreducible components of Ex which are conjugate,
then the trace of F∞ on Q[Ex,i]⊕Q[Ex,j ] is 0.

• F∞ acts on Q[Ex] by −1.

�

The fact that the numbers associated to I∗n in Lemmas 5.3 and 5.5 are the same greatly
simplifies the computations to follow.

5.1. Let U be the maximal open subset of CC over which the map π : EC → CC is smooth
and let j : U(C) → C(C) be the inclusion. Let Ei be the local system on U(C) given by
Riπ∗(Qπ−1(U)) and let F be the constructible sheaf j∗(E

1). Let V = H1(C(C),F). By the
decomposition theorem ([BBD82]) and the description of intermediate extension on a smooth
curve, we see (noting that the fibres of π are connected) that

Rπ∗(Q[2]) ∼= j∗E
0[2]⊕ j∗E

1[1]⊕ j∗E
2[0]⊕ PC\U(5.14)

∼= Q[2]⊕ j∗E
1[1]⊕Q[0](−1)⊕ PC\U ,(5.15)

where PC\U is a sheaf supported on C \ U : it is clear from the decomposition theorem that
PC\U must have punctual support, and to see that it is indeed a sheaf placed in degree zero
we note that it must be Verdier self-dual. Its stalks are easily computed using the proper
base-change theorem, and we obtain

H2(E(C),Q) = H2(C(C),Q)⊕H1(C(C), j∗E
1)⊕H0(C(C),Q(−1))⊕

⊕

x∈(C\U)(C)

(⊕iQ[Ex,i])

Q[Ex]
,

i.e. a direct sum decomposition

H2(E(C),Q) ∼= V ⊕W.

(Properties of the cycle class map imply that the cycle classes of the identity section and the
smooth fibre, respectively, account for the terms corresponding to E0 and E2.) Furthermore,
since U is defined over R, complex conjugation induces an involution on V (which we also
denote by F∞) and the isomorphism above is equivariant for this action.
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Since Tr(F∞|Hr(E(C),Q)) = 0 when r is odd (in fact, for our elliptic surface over P1

with non-constant j-invariant these odd cohomology groups are zero), it is clear that using
Lemma 5.2 we may compute the trace of F∞ on V if we know χ(E(R)) and the trace of F∞

on W , since the traces on both H0(E(C),Q) and H4(E(C),Q) are equal to 1.

Proposition 5.6. Let π : E → C be an elliptic fibration over R with a section, and assume
the singular fibres of π, defined over R, are of the following forms:

(1) There is one singular fibre of type I1 that is not split over R, a singular fibre of type
I2 that is not split over R, a singular fibre of type III3, and all other singular fibres
defined over R are of type I∗0 .

(2) There is one singular fibre of type I1 that is not split over R, a singular fibre of type
I1 that is split over R, two singular fibres of type II, and all other singular fibres
defined over R are of type I∗0 .

(3O) There is one singular fibre of type I2 that is split over R, one singular fibre of type
I2 that is not split over R, two singular fibres of type I∗4 , and all other singular fibres
defined over R are of type I∗0 .

(3Ω) There are two singular fibres of type I2 that are split over R, two singular fibres of
type I∗4 , and all other singular fibres defined over R are of type I∗0 .

(4) There is one singular fibre of type I1 that is not split over R, one singular fibre of
type I2 that is split over R, one singular fibre of type III∗, and all other singular
fibres defined over R are of type I∗0 .

Then

Tr(F∞|V ) =






2 in Case (1);

0 in Case (2);

0 in Case (3O);

−2 in Case (3Ω);

0 in Case (4).

Proof. By Lemma 5.2 and the preceding discussion,

(5.16) Tr(F∞|V ) = χ(E(R))− (2 + Tr(F∞|W )).

We now compute the RHS in each case.
Using Lemma 5.3 and the list of singular fibres, we see that in Case (1)

χ(E(R)) = 1 + 0− 1− 4a1 − 2a2,

where a1 (resp. a2) is the number of fibres of type I∗0 of the first (resp. second) type. On the
other hand, using Lemma 5.5 and the list of singular fibres

Tr(F∞|W ) = −2 + 0− 1− 1− 4a1 − 2a2,

where the first −2 corresponds to the sum of the traces on a smooth fibre and the section.
Inserting these numbers in (5.16) we get that the LHS is 2 as claimed.

By the same method, in Case (2) we have

χ(E(R)) = 1− 1 + 0− 4a1 − 2a2,

and
Tr(F∞|W ) = −2 + 0 + 0 + 0− 4a1 − 2a2,

so in this case Tr(F∞|V ) = 0 as claimed.



14 N. FAKHRUDDIN, C. KHARE, AND S. PATRIKIS

In Case (3O), we again have cancellation of the contribution from I∗0 and I∗n fibres, and we
find

Tr(F∞|V ) = −2 + 0− (2− 1− 1− 1− 1) = 0.

In Case (3Ω), computing similarly we find Tr(F∞|V ) = −2.
In Case (4), we likewise find Tr(F∞|V ) = 0. �

Finally, we return to the special case where C = P1 and note that the cases considered
in the previous Proposition do indeed correspond to the cases considered in [Zyw19, §6]
and (for Case (3O)) [Zyw14, §6.4]. We return to the setting and notation of §4, and we let
w ∈ W (R) be any real point, giving rise (fixing a C-valued geometric point w̄ over w) to
the stalk h∗(G)w̄ ∼= Gh(w̄)

∼= H1(P1
C, j∗Eh(w)[ℓ]) (we omit indicating the h(w)-specialization in

the notation for this P1 and j so as not to burden the notation). A minimal proper regular
model π : Eh(w) → P1

R of the Weierstrass equation (over R(t)) defines our elliptic surface.
The map π is smooth over an open subset Uh(w) ⊂ P1 that depends on w.

Lemma 5.7. The Cases (1)-(4) of Proposition 5.6 correspond to the singular fibres, and their
configurations over R, of the elliptic surfaces considered in [Zyw19, §6] as follows: Case (1)
describes the fibres when N ≡ 2 (mod 8); Case (2) when N ≡ 4 (mod 8); Case (3O) when
N ≡ 6 (mod 8), and we are in Case 6O, and Case (3Ω) when we are in Case 6Ω; and Case (4)
when N ≡ 0 (mod 8). Moreover, assuming ℓ is large enough as in [Zyw19, §2.5], the traces
recorded in Proposition 5.6 via analysis of the cohomology groups H1(P1

C, j∗R
1π∗Qπ−1(Uh(w)))

are the negatives of the traces of c ∈ Gal(C/R) on the Fℓ-vector spaces H1(P1
C, j∗Eh(w)[ℓ]).

Proof. The claim about the structure of the bad fibres follows almost immediately from
the descriptions in [Zyw19, §6]. The one point to note is that Tate’s algorithm shows that
Zywina’s description of when the In fibres are split or non-split is also valid over R (e.g.,
for N ≡ 2 (mod 8), the I1 fibre at ∞ is split if and only if −3 is a square in R, hence it is
non-split).

For the claim about the traces, note that [Zyw19, Equation (2.1)] shows that there is a
short exact sequence4

0 → H1(P1
C, j∗Tℓ(E))

·ℓ
−→ H1(P1

C, j∗Tℓ(E)) → H1(P1
C, j∗E[ℓ]) → 0,

so H1(P1
C, j∗Tℓ(E)) is a free Zℓ-module of rank equal to the Fℓ-dimension of H1(P1

C, j∗E[ℓ]).
Since ℓ 6= 2, the eigenvalues of c ∈ Gal(C/R) are the same on each space, and we can therefore
compute Tr(c|H1(P1

C, j∗E[ℓ])) by computing Tr(c|H1(P1
C, j∗Tℓ(E)⊗Qℓ)). This Galois module

is isomorphic to H1(P1
C, j∗R

1π∗Qℓ,π−1(Uh(w)))
∨(−1); dualizing leaves Tr(c) unchanged, and the

−1 Tate twist multiplies Tr(c) by −1, concluding the proof of the Lemma. �

6. Main theorem

It is now a simple matter to prove our main result:

Theorem 6.1. Let N ≥ 6 be an even integer, and let ℓ ≫N 0 be a sufficiently large prime.
There is a totally real field F and infinitely many non-isomorphic Galois representations

ρ̄ : ΓF → SON+1(Fℓ)

4This uses the assumption on ℓ: exactness of 0 → j∗Tℓ(E) → j∗Tℓ(E) → j∗E[ℓ] → 0 is equivalent to
there being no ℓ-torsion in (R1j∗Tℓ(E))x = Tℓ(E)/(γx − 1)Tℓ(E), where γx is the local monodromy at the
point of bad reduction x. This requires ℓ 6= 2, 3 and that ℓ does not divide ordx(j(E)) when this valuation
is negative, i.e. in the multiplicative reduction case.
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such that ρ̄ is irreducible as an SON+1-valued representation, but reducible as a GLN+1-valued
representation, and ρ̄ admits a geometric lift ρ : ΓF → SON+1(Zℓ) with Zariski-dense image.

Proof. Consider one of the specializations ϑℓ,wi
: ΓQ → O(Vℓ) from Proposition 4.1, where

Vℓ is a quadratic space over Fℓ of rank N and trivial discriminant. We have the following
four possibilities for these representations, and we define in each case ρ̄′wi

: ΓQ → ON+1(Fℓ) =

SON+1(Fℓ)×{±1} (note thatN+1 is odd) as follows, letting δK/Q be the non-trivial quadratic
character of an imaginary quadratic field linearly disjoint from the fixed field of ϑℓ,wi

:

N (mod 8) ϑℓ,wi
(ΓQ) Tr(ϑℓ,wi

(c)) ρ̄′wi

0 Ω(Vℓ) 0 ϑℓ,wi
⊕ 1

2 Ω(Vℓ) -2 ϑℓ,wi
⊕ 1

4 Ω(Vℓ) 0 ϑℓ,wi
⊕ 1

6, Case 6Ω Ω(Vℓ) 2 (δK/Q ⊗ ϑℓ,wi
)⊕ 1

6, Case 6O Ω(Vℓ) ( ϑℓ,wi
(ΓQ) ( O(Vℓ) 0 ϑℓ,wi

⊕ 1

We let ρ̄wi
be the projection to the SON+1-component; of course, ρ̄wi

= ρ̄′wi
except in Case

6O. Each ρ̄wi
is clearly reducible as GLN+1(Fℓ)-representation, and we claim that even after

restriction to ΓQ(i,ζℓ) each ρ̄wi
is irreducible as SON+1(Fℓ)-representation. First note that

since Ω(Vℓ)/{±1} is a non-abelian simple group, ϑℓ,wi
(ΓQ(i,ζℓ)) also equals Ω(Vℓ). A maximal

(proper) parabolic subgroup of SON+1 is the stabilizer of an isotropic subspace W ⊂ F
N+1

ℓ .
Since in all cases the image ϑℓ,wi

(ΓQ(i,ζℓ)) is Ω(Vℓ), ρ̄wi
stabilizes exactly two proper subspaces

of F
N+1

ℓ , namely Vℓ itself and the complementary line (the standard representation Ω(Vℓ) →
SO(Vℓ ⊗ Fℓ) is irreducible for ℓ ≫N 0). Clearly neither of these subspaces is isotropic, so in
all cases ρ̄|ΓQ(i,ζℓ)

is absolutely irreducible. (Note that in Case 6O, Q(i) is the field denoted

F̃ in [FKP19].)
Each ρ̄wi

is odd by the same calculation as in Proposition 3.1: this is what demands in
Case 6Ω incorporating the twist by δK/Q.

Finally, to apply Theorem 1.2, we have to check a local lifting hypothesis on ρ̄wi
; here is

where we will replace Q by a suitable totally real field. Namely, we do not know at present
that any ρ̄wi

|ΓQℓ
admits a Hodge-Tate regular de Rham lift to SON+1(Zℓ), so we circumvent

this problem by passing to a finite extension. For each wi, ρ̄wi
|ΓQℓ

cuts out a finite extension

of Qℓ, and as wi varies these extensions have bounded degree, so their composite L/Qℓ is
still finite. There is a solvable totally real extension F/Q, linearly disjoint from Q(i, ζℓ),
such that for all primes v of F above ℓ, the extension Fv/Qℓ is isomorphic to L/Qℓ. As
Ω(Vℓ) has no proper abelian quotient, it follows easily that such an F is linearly disjoint
from Q(ρ̄wi

) for all wi.
5 The required irreducibility (by linear disjointness) and oddness still

hold for ρ̄wi
|ΓF

, but now for all places v|ℓ of F , ρ̄wi
|ΓFv

is trivial, and so it is easy to see that
ρ̄wi

|ΓFv
admits a Hodge-Tate regular crystalline lift ΓFv

→ SON+1(Zℓ), simply by taking a
suitable sum of powers of the cyclotomic character. At all places v not above ℓ at which ρ̄wi

is ramified, there exists a lift ΓFv
→ SON+1(Zℓ) by [Boo18, Theorem 1.1]. We have therefore

satisfied all of the hypotheses of Theorem 1.2, and so for all wi there are Hodge-Tate regular
geometric lifts ρwi

: ΓF → SON+1(Zℓ) of ρ̄wi
. �

5A slightly simpler version of this argument would choose the extension F depending on wi. This would
also enable us to avoid invoking Booher’s theorem below, by also choosing F = F (wi) to trivialize ρ̄wi

at all
primes of ramification.
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Remark 6.2. As in Remark 3.2, perhaps the most interesting cases here are when N ≡ 2
(mod 8) and Case 6Ω when N ≡ 6 (mod 8), since then we begin with SON -valued rep-
resentations that are not odd. Again, existing lifting techniques cannot lift these SON -
representations to Hodge-Tate regular geometric SON -representations; of course, replacing
E[ℓ] by Tℓ(E) provides some geometric lift, but it has only three distinct Hodge-Tate weights,
with high multiplicities.
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singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–
171. MR 751966 (86g:32015) 12

[BLGGT14] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy

and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941 1, 2, 6, 7
[Boo18] J. Booher, Minimally Ramified Deformations when ℓ 6= p, preprint available at

http://math.arizona.edu/ jeremybooher/ (2018). 4, 5, 15
[Cal12] Frank Calegari, Even Galois representations and the Fontaine–Mazur conjecture. II, J. Amer.

Math. Soc. 25 (2012), no. 2, 533–554. MR 2869026 3, 5, 7
[CEG18] Frank Calegari, Matthew Emerton, and Toby Gee, Globally realizable components of local de-

formation rings, arXiv e-prints (2018), arXiv:1807.03529. 1
[FKP19] Najmuddin Fakhruddin, Chandrashekhar Khare, and Stefan Patrikis, Relative deformation the-

ory and lifting irreducible Galois representations, arXiv e-prints (2019), arXiv:1904.02374. 1, 2,
4, 9, 15

[GK19] Wushi Goldring and Jean-Stefan Koskivirta, Strata hasse invariants, hecke algebras and galois

representations, Inventiones mathematicae 217 (2019), no. 3, 887–984. 6
[Kha06] Chandrashekhar Khare, Serre’s modularity conjecture: the level one case, Duke Math. J. 134

(2006), no. 3, 557–589. MR 2254626 1
[KW09] Chandrashekhar Khare and Jean-Pierre Wintenberger, On Serre’s conjecture for 2-dimensional

mod p representations of Gal(Q/Q), Ann. of Math. (2) 169 (2009), no. 1, 229–253. MR 2480604
1

[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press,
Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathematics Studies, No.
76. MR 0440554 9
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