1. (4 points) Find equations of the following lines. Write your answer in slope-intercept form \(y = mx + b \).

(a) The line with slope 4 that passes through the point \((1, -2)\).

Answer:

(b) The line passing through \((2, 3)\) and \((-1, 5)\).

Answer:

Solution:
(a) We can use point-slope form to get \(y + 2 = 4(x - 1) \) or \(y = 4x - 6 \).

(b) The slope of the line is \(m = \frac{5 - 3}{1 - 2} = -\frac{2}{3} \). Then we use point-slope form to get \(y - 3 = -\frac{2}{3}(x - 2) \) or \(y = -\frac{2}{3}x + \frac{13}{3} \).
2. (4 points) Are the following expressions equal for all values of \(x \) and \(y \) (for which both sides of the equality make sense)? Answer true (T) or false (F). If true, show algebraically. If false, give an example using specific values of \(x \) and \(y \).

(a) \((x + y)^2 = x^2 + y^2\)

Answer: ________________

(b) \(\frac{1}{x} + \frac{1}{y} = \frac{1}{x + y}\)

Answer: ________________

Solution:
(a) False. Set \(x = y = 1 \). Then

\[
(x + y)^2 = 2^2 = 4 \neq 2 = 1 + 1 = x^2 + y^2.
\]

(b) False. Set \(x = y = 1 \). Then

\[
\frac{1}{x} + \frac{1}{y} = 1 + 1 = 2 \neq \frac{1}{2} = \frac{1}{(1 + 1)} = \frac{1}{x + y}.
\]

3. (14 points) Solve each expression by factoring the left-hand side. Answers should be real numbers only.

(a) \(3x^2 - 48 = 0\)

Answer: ________________

(b) \(2x^2 - 4x - 6 = 0\)

Answer: ________________

(c) \(x^2 + x - 3 = 0\)

Answer: ________________
(d) \(x^3 - 7x^2 + 10x = 0 \)

Answer:

(e) \(x^3 + 27 = 0 \)

Answer:

(f) \(x^3 + x^2 - 4x - 4 = 0 \)

Answer:

Solution:

(a) \(0 = 3(x^2 - 16) = 3(x + 4)(x - 4) \). So \(x = \pm 4 \).

(b) \(0 = 2(x^2 - 2x - 3) = 2(x - 3)(x + 1) \). So \(x = 3, -1 \).

(c) Use the quadratic formula:

\[
\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 - 4(1)(-3)}}{2} = \frac{-1 \pm \sqrt{13}}{2}
\]

(d) \(0 = x(x^2 - 7x + 10) = x(x - 5)(x - 2) \). So \(x = 0, 5, 2 \).

(e) You can observe that \(x = -3 \) is a solution. Then we can do polynomial long division to find that

\[x^3 + 27 = (x + 3)(x^2 - 3x + 9) \]

Since the discriminant of \(x^2 - 3x + 9 \) is \(3^2 - 4(1)(9) = -27 < 0 \), there are no other real factors. So \(x = -3 \) is the only solution.
(f) For this, you can guess integer factors by looking at the factors (with either
sign) of the constant term. So you can plug in \(x = \pm 1, \pm 2, \pm 4 \) to see which
ones yield zero. It turns out that

\[
0 = x^3 + x^2 - 4x - 4 = (x + 2)(x - 2)(x + 1),
\]

and so \(x = \pm 2, -1 \).

4. (8 points) Evaluate the following expressions or state that they are undefined.

(a) \(\left(\frac{1}{10} \right)^{-2} \)

Answer: ______________________

(b) \(8^{2/3} \)

Answer: ______________________

(c) \((-8)^{2/3} \)

Answer: ______________________

(d) \((-4)^{3/2} \)

Answer: ______________________

Solution:

(a) \(\left(\frac{1}{10} \right)^{-2} = (10)^2 = 100. \)

(b) \(8^{2/3} = (8^{1/3})^2 = (2)^2 = 4. \)

(c) \((-8)^{2/3} = ((-8)^{1/3})^2 = (-2)^2 = 4. \)

(d) Undefined. Since \((-4)^{3/2} = ((-4)^{1/2})^3 \) or \((-4)^{3/2} = ((-4)^3)^{1/2} = (-64)^{1/2} \) and
either way you can take the square root of a negative number.
5. (6 points) Evaluate the following, without a calculator.

(a) \(\cos\left(\frac{2\pi}{3}\right) \)

Answer: \(\frac{-1}{2} \)

(b) \(\cos\left(\frac{-\pi}{6}\right) \)

Answer: \(\frac{\sqrt{3}}{2} \)

(c) \(\arcsin\left(\frac{-\sqrt{2}}{2}\right) \)

Answer: \(\frac{7\pi}{4} = -\frac{\pi}{4} \)

Solution:

(a) \(-\frac{1}{2} \)

(b) \(\frac{\sqrt{3}}{2} \)

(c) \(\frac{7\pi}{4} = -\frac{\pi}{4} \)
6. (6 points) Solve the following trigonometric equations, giving all solutions for \(\theta \) in \(0 \leq \theta < 2\pi \).

(a) \(\sin^2 \theta = \frac{1}{4} \)

Answer:

(b) \(\sin \theta \cos \theta = \cos \theta \)

Answer:

Solution:

(a) If \(\sin^2 \theta = \frac{1}{4} \), then \(\sin \theta = \pm \frac{1}{2} \). The equation \(\sin \theta = \frac{1}{2} \) has solutions \(\theta = \frac{\pi}{6}, \frac{5\pi}{6} \). While the equation \(\sin \theta = -\frac{1}{2} \) has solutions \(\theta = \frac{7\pi}{6}, \frac{11\pi}{6} \). So \(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \).

(b) Since

\[
0 = \sin \theta \cos \theta - \cos \theta = \cos \theta (\sin \theta - 1)
\]

we will have solutions if \(\cos \theta = 0 \) (which happens at \(\frac{\pi}{2} \) and \(\frac{3\pi}{2} \)) or if \(\sin \theta = 1 \) (which happens at \(\frac{\pi}{2} \)). So the solutions are \(\theta = \frac{\pi}{2}, \frac{3\pi}{2} \).
7. (8 points) Find the domain of each function. Give your answer in interval notation.

(a) $f(x) = x + 3$

(b) $f(x) = \frac{x^2 - 9}{x - 3}$

(c) $f(x) = \sqrt{16 - x^3}$

(d) $f(x) = \frac{1}{\sqrt{16 - x^3}}$

Solution:

(a) $(-\infty, \infty)$

(b) $(-\infty, 3) \cup (3, \infty)$

(c) $(-\infty, \sqrt{16}]$

(d) $(-\infty, \sqrt[3]{16})$
8. (15 points) Assume that \(f(x) = x^2 + x - 1, g(x) = x + 2, \) and \(h \) is a nonzero number. Simplify the following expressions.

(a) \(f(g(x)) \)

Answer: __________________________

(b) \((g \circ f)(x) \)

Answer: __________________________

(c) \((f \circ f)(x) \)

Answer: __________________________

(d) \(f(x + h) \)

Answer: __________________________

(e) \(\frac{f(x + h) - f(x)}{h} \)

Answer: __________________________
Solution:
(a) \(f(g(x)) = (x + 2)^2 + (x + 2) - 1 = x^2 + 5x + 5 \)
(b) \((g \circ f)(x) = g(f(x)) = (x^2 + x - 1) + 2 = x^2 + x + 1 \)
(c) \((f \circ f)(x) = f(f(x)) = (x^2 + x - 1)^2 + (x^2 + x - 1) - 1 = x^4 + 2x^3 - x - 1 \)
(d) \(f(x + h) = (x + h)^2 + (x + h) - 1 = x^2 + 2hx + h^2 + x + h - 1 = \)
\hspace{1cm} \(x^2 + (2h + 1)x + h^2 + h - 1 \).
(e) \(\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 + (x+h) - 1 - (x^2 + x - 1)}{h} = \frac{2hx + h^2 + h}{h} = 2x + h + 1. \)
9. (4 points) Sketch graph of the following piecewise-defined function. What is another way to write this function?

\[f(x) = \begin{cases}
-x & \text{if } x < 0 \\
 x & \text{if } x \geq 0
\end{cases} \]

\textbf{Solution: } f(x) = |x|
10. (5 points) Explain why the Pythagorean Theorem implies \(\sec^2 \theta - \tan^2 \theta = 1 \).

Solution:
\[
\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}
\]

\[\tan^2 \theta + 1 = \sec^2 \theta\]

\[\sec^2 \theta - \tan^2 \theta = 1\]