The graded problems were 2.3.58, 2.4.26, 2.5.52.

2.3.58 At \(x = a \), the equation of the tangent line to \(y = x^2 \) is given by \(y - a^2 = 2a(x - a) \). The problem translates to finding \(a \) such that this line contains the point (4, 15), i.e. such that

\[
15 - a^2 = 2a(4 - a) = 8a - a^2.
\]

Rearranging, we get

\[
0 = a^2 - 8a + 15 = (a - 3)(a - 5),
\]

so \(a \) is 3 or 5. But the problem specifies that the space-traveler is moving left to right, so we must have \(a = 3 \).

2.4.26 The derivative of \(y = \tan^2(x) \) is

\[
y' = 2 \tan(x) \sec^2(x).
\]

Since \(\sec(x) \) is never zero, this is only zero when \(\sin(x) = 0 \), i.e. when \(x \) is an integer multiple of \(\pi \).

2.5.52 \(F(y) \) is some unspecified differentiable function of \(y \), and we are asked to compute (using the chain rule)

\[
\frac{d}{dy} \left(y^2 + \frac{1}{F(y^2)} \right) = 2y + \frac{-1}{F(y^2)} \cdot F'(y^2) \cdot 2y.
\]

Quiz Let \(f(x) = \sqrt{\sin(x)} \).

(a) since the domain of \(\sqrt{x} \) is all \(x \geq 0 \), the domain of \(f(x) \) will be those \(x \) such that

\[
\sin(x) \geq 0,
\]

i.e. the union of the closed intervals of the form \([2n\pi, (2n + 1)\pi]\), for all integers \(n \).

(eg, \([0, \pi]\) and \([2\pi, 3\pi]\) are allowed, but not \([\pi, 2\pi]\).)

(b) \[
f'(x) = \frac{\cos(x)}{2 \sqrt{\sin(x)}}
\]

valid in the open intervals \((2n\pi, (2n + 1)\pi]\), for all integers \(n \) (not at the endpoints).

(c) The equation of the tangent line is

\[
y - f'(\pi/6) = f'(\pi/6)(x - \pi/6).
\]

Since \(\sin(\pi/6) = 1/2 \) and \(\cos(\pi/6) = \sqrt{3}/2 \), we find

\[
y - \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2 \sqrt{2}} \left(x - \frac{\pi}{6} \right).
\]

(d) Yes. The formula computed in (b) shows that \(\lim_{x \to 0^+} f'(x) = \infty \), so there is some value of \(x_0 \), which we can clearly assume to be in \((0, \pi/2]\), such that \(f'(x_0) > 1000 \). Since the function \(f'(x) \) is continuous on \([x_0, \pi/2]\), and 1000 lies between \(f'(x_0) \) and \(f'(\pi/2) = 0 \), the intermediate value theorem ensures that for some \(c \in (x_0, \pi/2) \), we must have \(f'(c) = 1000 \).