Bio::SearchlO HOWTO

Jason Stajich
Duke University [http://www.duke.edu]
University Program in Genetics [http://upg.duke.edu]Center for Genome
Technology [http://cgt.genetics.duke.edu]

Duke University Medical Center
Box 3568
Durham,
North Carolina
27710-3568
USA

<j ason- at - bi oper| . org>

Brian Osborne
Cognia Corporation [http://www.cognia.com]

NYC, NY 10022
USA

<bri an- at - cogni a. con»

This document is copyright Jason Stajich, 2002. For reproduction other than personal use please contact jason-
at-bioperl.org

2002-07-14
Revision History
Revision 0.1 2002-07-14 js
first draft
Revision 0.2 2002-10-11 js
added info on extending Search objects
Revision 0.3 2003-02-13 BIO
added table and text to Parsing section
Revision 0.4 2003-09-10 BIO

updated Parsing section

This is a HOWTO written in DocBook (SGML) for the reasoning behind the creation of the Bio::SearchlO sys-
tem, how to use it, and how one goes about writing new adaptors to different output formats. We will also de-
scribe how the Bio::SearchlO::Writer modules work for outputting various formats from Bio::Search objects.

http://www.duke.edu
http://www.duke.edu
http://www.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://upg.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://cgt.genetics.duke.edu
http://www.cognia.com
http://www.cognia.com

Bio::SearchiIO HOWTO

Table of Contents

T.BACKGIOUNG ..ottt ettt e e et e e e et et e e e et e e e aaaaaaas 2
D T3 .« o Y 2
BUNEW FUNCHONALIEY ..ivuiitiieiit et e e et et et e e e e e e et e et e et e ate e s e e s e et e et e eneanaanaesnees 3
4. Parsing with Bio::SearchlOooiiiiii e 3
5. Creating Reports for SearchlOoiieiiiniiiiiie e e e e e e eans 7
L a0 o) (e300 (<3 110 o P 7
7. Writing and formatting OULPULuiiieiiie it e e e e e e e e et e et e et e et e et eenaeaneeanaeans 9
8.Extending SearchlO ... e e 9

1. Background

One of the most common and necessary tasks in bioinformatics is parsing analysis reports so that one can write
programs which can help interpret the sheer volume of data that can be produced by processing many sequences.
To this end the Bioperl project has produced a number of parsers for the ubiquitous BLAST report. Steve
Chervitz wrote one of the first Bioperl modules for BLAST called Bio::Tools::Blast. Ian Korf allowed us to im-
port and modify his BPlite (Blast Parser) Bio::Tools::BPlite module into Bioperl. This is of course in a sea of
BLAST parsers that have been written by numerous people, but we will only cover the ones associated directly
with the Bioperl project in this document. One of the reasons for writing yet another BLAST parser in the form
of Bio::SearchlO is that even though both Bio::Tools::Blast and Bio::Tools::BPlite did their job correctly, and
could parse WU-BLAST and NCBI-BLAST output, they did not adequately genericize what they were doing.
By this we mean everything was written around the BLAST format and was not easily applicable to parsing say,
FastA alignments or a new alignment format. One of the powerful features of the Object-Oriented framework in
Bioperl is the ability to read in say, a sequence file, in different formats or from different data sources like a
database or XML-flatfile, and have the program code process the sequences objects in the same manner. We
wanted to have this capability in place for analysis reports as well and thus the generic design of the
Bio::SearchIO module.

2. Design

The Bio::SearchlO system was designed with the following assumptions: That all reports parsed with it could be
separated into a hierarchy of components. The Result is the entire analysis for a single query sequence, and mul-
tiple Results can be concatenated together into a single file (i.e. running blastall with a fasta database as the in-
put file rather than a single sequence). Each Result is a set of Hits for the query sequence. Hits are sequences in
the searched database which could be aligned to the query sequence and met the minimal search parameters,
such as e-value threshold. Each Hit has one or more High-scoring segment Pairs (HSPs) which are the align-
ments of the query and hit sequence. Each Result has a set of one or more Hits and each Hit has a set of one or
more HSPs, and this relationship can be used to describe results from all pairwise alignment programs including
BLAST, FastA, and implementations of the Smith-Waterman and Needleman-Wunsch algorithms.

A design pattern, called Factory, is utilized in object oriented programming to separate the entity which process
data from objects which will hold the information produced. In the same manner that the Bio::SeqlO module is
used to parse different file formats and produces objects which are Bio::PrimarySeql compliant, we have written
Bio::SearchlO to produce the Bio::Search objects. Sequences are a little less complicated so there is only one
primary object (Bio::PrimarySeql) which Search results need three main components to represent the data pro-
cessed in a file: Bio::Search::Result::Resultl (top level results), Bio::Search::Hit::Hitl (hits) and
Bio::Search::HSP::HSPI (HSPs). The Bio::SearchlO object is then a factory which produces
Bio::Search::Result::Resultl objects and the Bio::Search::Result::Resultl objects contain information about the
query, the database searched, and the full collection of Hits found for the query.

2

Bio::SearchiIO HOWTO

3. New Functionality

The generality of the SearchlO approach is demonstrated by large number of report formats that have appeared
since its introduction. These formats include AXT format reports (BLAT, BLASTZ), NCBI tabular output (-m 8
or -m 9 options), NCBI Blast XML, chadosxpr format flat databases, Exonerate output, FASTA output, hmm-
search output (HMMER), megablast output, PSL format output (BLAT), sim4 output, WABA output, and out-
put from Wise.

4. Parsing with Bio::SearchlO

This section is going to describe how to use the SearchlO system to process reports. We'll describe BLAST re-
ports but the idea is that once you understand the methods associated with the objects you won't need to know
anything special about other SearchlO parsers.

Before we get into the details we should admit that there is some confusion about the names and functions of the
objects for historical reasons. Both Steve Chervitz and Jason Stajich have implemented parsers in this system.
Steve created the psiblast parser (which does parse regular BLAST files too) and a host of objects named
Bio::Search:: XXX::BlastXXX where XXX is HSP, Hit, and Result. These objects are created by his
Bio::SearchlO:psiblast implementation. The objects Jason has created are called
Bio::Search:: XXX::GenericXXX where, again, XXX is HSP, Hit, and Result. Because of some of the assump-
tions made in Steve's implementation and his utilization of what is known as 'lazy parsing', it is probably not go-
ing to be very easy to maintain his system without his help. On the other hand Jason has tried to make his imple-
mentations much easier to follow because all the parsing is done in one module.

The important take home message is that you cannot assume that methods in the BlastXXX objects are in fact
implemented by the GenericHSP objects. More likely than not the BlastXXX objects will be deprecated and dis-
mantled as their functionality is ported to the GenericHSP objects. For this reason we'll only be discussing the
Generic* objects, though we'll use the terms 'hit', 'HSP', and 'result'.

Here's example code which processes a BLAST report finding all the hits where the HSPs are greater than 100
residues and the percent identity is less than 75 percent. This code demonstrates that a result, in this case from a
BLAST report, contains one or more hits, and a hit contains one or HSPs.

use strict;
use Bio::Searchl G

ny $in = new Bio::SearchlQ(-format => 'blast',
-file => 'report.bls');
while(nmy $result = $in->next_result) {
while(my $hit = $result->next_hit) {
le(my $hsp = $hit->next_hsp)
$hsp->l ength(' total') > 100)
f ($hsp->percent_identity >= 75) {
print "Ht=", $hi t - >nane,
", Lengt h=", $hsp->l ength('total '),
", Percent _id=", S$hsp->percent_identity, "\n";

The example above shows just a few of the many methods available in SearchlO. In order to display all these
methods and what they return let's use a report as input, a simple BLASTX result:

BLASTX 2. 2.4 [Aug- 26-2002]

Ref erence: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Ji nghui Zhang, Zheng Zhang, Webb M Iler, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search

3

Bio::SearchiIO HOWTO

prograns”, Nucleic Acids Res. 25:3389-3402.

Query= gi| 20521485| dbj | AP004641.2 Oryza sativa (japonica
cul tivar-group) genom c DNA, chronpsone 1, BAC cl one: B1147B04, 3785
bases, 977CE9AF checksum

(3059 letters)

Dat abase: test.fa
5 sequences; 1291 total letters

Score E
Sequences producing significant alignnents: (bits) Val ue
gb| 443893| 124775 LaForas sequence 92 2e-022

>gb| 443893| 124775 LaForas sequence
Length = 331

Score = 92.0 bits (227), Expect = 2e-022
ldentities = 46/52 (88%, Positives = 48/52 (91%
Frame = +1

Query: 2896 DMGRCSSGCNRYPEPMIPDTM KLYREKEGLGAYI WWPTPDMSTEGRVOMLP 3051
D+ + SSGCNRYPEPMIPDTM KLYRE EGL AYl WWPTPDVSTEGRVQWLP
Sbjct: 197 DI VONSSGCNRYPEPMIPDTM KLYRE- EGL- AYl WWPTPDVSTEGRVQWMLP 246

Dat abase: test.fa

Posted date: Feb 12, 2003 9:51 AM
Nunmber of letters in database: 1291
Nurmber of sequences in database: 5

Lanbda K H
0. 318 0. 135 0. 401

Gapped
Lanbda K H
0.267 0.0410 0. 140

Matri x: BLOSUMB2

Gap Penalties: Existence: 11, Extension: 1

Nunber of Hits to DB: 7140

Nunber of Sequences: 5

Nunber of extensions: 180

Nunber of successful extensions: 2

Nunber of sequences better than 10.0: 2

Nunber of HSP's better than 10.0 wi thout gapping: 1
Nunber of HSP's successfully gapped in prelimtest: 0
Nunber of HSP's that attenpted gapping in prelimtest: 0O
Nunber of HSP's gapped (non-prelim: 1

| ength of database: 1291

effective HSP length: 46

effective | ength of database: 1061

ef fective search space used: 1032353

frameshi ft w ndow, decay const: 50, 0.1

T. 12
A 40
X1: 16 (
X2: 38 (1
X3: 64 (24.
S1: 32 (1

Table 1 shows all the data returned by methods used by the Result, Hit, and HSP objects when the report shown
above is used as input. Note that many of the methods shown can be used to either get or set values, but we're
just showing what they get.

Object Method Example Description
Result algorithm BLASTX algorithm
Result algorithm_version 2.2.4 [Aug-26-2002] algorithm version

Bio::SearchiIO HOWTO

Object
Result

Result
Result
Result

Result
Result

Result
Result

Result

Result
Result

Hit
Hit
Hit
Hit
Hit
Hit
Hit
Hit

Hit

Hit

Hit

HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP

Method

query_name

query_accession
query_length

query_description

database_name

database_letters

database_entries

available_statistics

available parameters

num_hits

hits

name
accession
description
algorithm
raw_score
significance
bits

hsps

num_hsps

locus
accession_number
algorithm

evalue

expect
frac_identical
frac_conserved
gaps
query_string
hit_string
homology string
length('total")
length('hit")
length('query")

Example

gi[20521485|dbj|AP00464
1.2

AP004641.2
3059

Oryza sativa ... 977CE9AF
checksum.

test.fa
1291

5

effectivespaceused
dbletters

gapext matrix allowgaps
gapopen
1

gb|443893|124775
443893

LaForas sequence
BLASTX

92

2e-022

92.0

1

124775

443893

BLASTX

2e-022

2e-022
0.884615384615385
0.923076923076923
2

DMGRCSSG ...
DIVONSS ...

D+ + SSGCN ...

52

50

156

Description

query name

query accession
query length

query description

database name

number of residues in
database

number of database entries

.. statistics used

parameters used

number of hits

Search::Hit::GenericHit
object

hit name

accession

hit description
algorithm

hit raw score

hit significance

hit bits
Search::HSP::GenericHSP
object

number of HSPs in hit
locus name

accession number
algorithm

e-value

alias for evalue()
Fraction identical
desc

number of gaps

string from alignment
string from alignment
string from alignment
length of HSP

length of hit minus gaps

length of query minus gaps

Bio::SearchiIO HOWTO

Object
HSP
HSP
HSP

HSP

HSP
HSP

HSP

HSP
HSP

HSP
HSP
HSP
HSP
HSP
HSP
HSP
HSP

HSP

HSP

HSP

HSP

HSP

HSP

Method
hsp_length
frame

num_conserved

num_identical

rank

seq_inds('query','identical') (966,971,972,973,974,975

Example
52

0

48

46

1

)

seq_inds('query','conserve (967,969)

d")
seq_inds('hit',"identical')

seq_inds('hit','conserved")

score
bits
range('query")
range('hit")
percent identity
strand(‘hit")
strand('query")
start('query')

end('query’)

start(‘hit")

end('hit')

matches(‘hit')

matches('query')

alignment

(197,202,203,204,205 ...)
(198,200)

227
92.0

(2896,3051)
(197,246)
88.4615384615385
1

1

2896

3051

197

246

(46,48)

(46,48)

Description
desc
frame, GFF convention

number of conserved
residues

number of identical
residues

rank of HSP

identical positions as array

conserved positions as ar-
ray

identical positions as array

conserved positions as ar-
ray

score
bits

start and end as array
start and end as array
% identical

strand of the hit
strand of the query

start position from align-
ment

end position from align-
ment

start position from align-
ment

end position from align-
ment

number of identical and
conserved as array

number of identical and
conserved as array

Bio::SimpleAlign object

Table 1. SearchlO Methods

Table 1 shows that a method can return a string, an array, or an object. When an object is returned some addi-
tional code will probably be needed to get the data of interest. For example, if you wanted a printable alignment
after you'd parsed BLAST output you could use the get aln() method, retrieve a Bio::SimpleAlign object and

use it like this:

Bio::SearchiIO HOWTO

use Bio::AlignlQ

$aln will be a Bio::SinpleAign object

ny $aln = $hsp- >get _ al n;

ny $alnl O = Bio: AI|gn|O>new(format =>"nmsf");
nmy $alignment_as_string = $alnlO>wite_al n($aln);

On one hand it appears to be a complication, but by entering the worlds of the AlignlO and SimpleAlign objects
you now have access to their functionality and flexibility. This is the beauty of Bioperl!

Some of these methods deserve a bit more explanation since they do more than simply extract data directly from
the output. For example, the ambiguous_aln() method is designed to tell us whether two or more HSPs from a
given hit overlap, and whether the overlap refers to the queries or the hits, or both. One situation is where over-
laps would be found in one but not the other arises where there are repeats in the query or hit. The ambigu-
ous_aln() method will return one of these 4 values:
ous_aln() method will return one of these 4 values:

Another method that's useful in dissecting an HSP is the seq_inds() method of the HSP object. What this method
does is tell us what the positions are of all the identical or conserved residues in an alignment, query or hit. It
could be used like this:

put all the conserved matches in query strand into an array
ny @tr_array = split "", $hsp->query_strand;
foreach ($hsp->seq_i nds(' query','conserved')){

push @onserved, $str_array[$_ - 1];

In most cases the SearchlO methods extract data directly from output but there's one important exception, the
frame() method of the HSP object. Instead of using the values in the BLAST report it converts them to values
according to the GFF specification, which is a format used by many Bioperl modules involved in gene annota-
tion (for more on GFF see http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml).

Specifically, the frame() method returns 0, 1, or 2 instead of the expected -3, -2, -1, +1, +2, or +3 in BLAST.
GFF frame values are meaningful relative to the strand of the hit or query sequence so in order to reconstruct the
BLAST frame you need to both the strand, 1 or -1, and the GFF frame value:

ny $blast_franme = ($hsp->query->frane + 1) * $hsp->query->strand,

Our simple table of methods does not show all available arguments or returned values for all the SearchIO meth-
ods. The best place to explore any method in detail is http://doc.bioperl.org which provides the HTML versions
of the Perl POD (Plain Old Documentation) that is embedded in every well-written Perl module. Another
sources of code are the examples/searchio/ and scripts/searchio directories in the Bioperl package.

5. Creating Reports for SearchlO

One note on creating reports that can be parsed by SearchlO: the developers haven't attempted to parse all the
possible reports that could be created by programs with many command-line options, like blastall. Certainly you
should be able to parse reports created using the default settings, but if you're running blastall, say, using some
special set of options and you've encountered a parsing problem this may be the explanation.

For example, one can currently parse BLAST output created with the default settings as well as the reports cre-
ated when using the "-m 8" or "-m 9" options (use format "blasttable") or the XML-formatted reports but it's still
possible to find sets of options that SearchlO can't parse.

6. Implementation

This section is going to describe how the SearchlO system was implemented, it is probably not necessary to un-

7

http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml
http://doc.bioperl.org

Bio::SearchiIO HOWTO

derstand all of this unless you are curious or want to implement your own Bio::SearchIO parser. We have uti-
lized an event-based system to process these reports. This is analagous to the SAX (Simple API for XML) sys-
tem used to process XML documents. Event based parsing can be simply thought of as simple start and end
events. When you hit the beginning of a report a start event is thrown, when you hit the end of the report an end
event is thrown. So the report events are paired, and everything else that is thrown in between the paired start
and end events is related to that report. Another way to think of it is as if you pick a number and color for a card
in a standard deck. Let's say you pick red and 2. The you start dealing cards from our deck and pile them one on
top of each other. When you see your first red 2 you start a new pile, and start dealing cards onto that pile until
you see the next red 2. Everything in your pile that happened between when you saw the beginning red 2 and
ending red 2 is data you'll want to keep and process. In the same way all the events you see between a pair of
start and end events (like 'report' or 'hsp') are data associated with object or child object in its hierarchy. A lis-
tener object processes all of these events, in our example the listener is the table where the stack of cards is sit-
ting, and later it is the hand which moves the pile of cards when a new stack is started. The listener will take the
events and process them. We've neglected to tell you of a third event that is thrown and caught. This is the char-
acters event in SAX terminology, which is simply data. So one sends a start event, then some data, then an end
event. This process is analagous to a finite state machine in computer science (and I'm sure the computer scien-
tists reading this right are already yawning) where what we do with data received is dependent on the state we're
in. The state that the listener is in is affected by the events that are processed.

A small caveat: in an ideal situation a processor would throw events and not need to maintain any state informa-
tion, it would just be processing data and the listener would manage the information and state. However, a lot of
the parsing of these human-readable reports requires contextual information to apply the correct regular expres-
sions. So in fact the event thrower has to know what state it is in and apply different methods based on this. In
contrast the XML parsers simply keep track of what state they are in, but can process all the data with the same
system of reading the tag and sending the data that is in between the XML start and end tags.

All of this framework has been built up so to implement a new parser one only needs to write a module that pro-
duces the appropriate start and end events and the existing framework will do the work of creating the objects
for you. Here's how we've implemented event-based parsing for Bio::SearchlO. The Bio::SearchlO is just the
front-end to this process, in fact the processing of these reports is done by different modules in the Bio/SearchlO
directory. So if you look at your bioperl distribution and the modules in Bio/SearchlO you'll see modules in
there like blast.pm, fasta.pm, blastxml.pm, SearchResultEventBuilder.pm, EventHandlerl.pm (depending on
what version of the toolkit there may be more modules in there). There is also a SearchWriterl.pm and Writer
directory in there but we'll save that for later. If you don't have the distribution handy you can navigate this at
the bioperl CVS web page
[http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchlO/?cvsroot=bioperl].

Let's use the blast.pm module as an example to describe the relationship of the modules in this dir (could have
substituted any of the other format parsers like fasta.pm or blastxml.pm - these are always lowercase for histori-
cal reasons). The module has some features you should look for - the first is the hash in the BEGIN block called
%MAPPING. This key/value pairs here are the shorthand for how we map events from this module to general
event names. This is only necessary because if we have an XML processor (see the blastxml.pm module) the
event names will be the same as the XML tag names (like <Hsp_bit-score> in the NCBI BLAST XML DTD).
So to make this general we'll make sure all of the events inside our parser map to the values in the %MAPPING
hash - we can call them whatever we want inside this module. Some of the events map to hash references (like
Statistics_db-len) and this is so we can map multiple values to the same top-level attribute field but we know
they will be stored as a hash value in the subsequent object (in this example, keyed by the name 'dbentries’). The
capital "RESULT", "HSP", or "HIT" in the value name allow us to encode the event state in the event so we
don't have to pass in two values. It also easy for someone to quickly read the list of events and know which ones
are related to Hits and which ones are related to HSPs. The listener in our architecture is the
Bio::SearchlO::SearchResultEventBuilder. This object is attached as a listener through the Bio::SearchlO
method add_EventListener. In fact you could have multiple event listeners and they could do different things. In
our case we want to create Bio::Search objects, but an event listener could just as easily be propagating data di-
rectly into a database based on the events. The SearchResultEventBuilder takes the events thrown by the Sear-

8

http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchIO/?cvsroot=bioperl
http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchIO/?cvsroot=bioperl
http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-live/Bio/SearchIO/?cvsroot=bioperl

Bio::SearchiIO HOWTO

chlO classes and builds the appropriate Bio::Search::HSP object from it.

Sometimes special objects are needed that are extensions beyond what the GenericHSP or GenericHit objects
are meant to represent. For this case we have implemented Bio::SearchlO::SearchResultEventBuilder so that it
can use factories for creating its resulting Bio::Search objects - see the Bio::SearchlO::hmmer:: _initialize
method for an example of how this can be set.

7. Writing and formatting output

Often people want to write back out a BLAST report for users who are most comfortable with that output or if
you want to visualize the context of a weakly aligned region to use human intuition to score the confidence of a
putative homologue. Bio::SearchlO is for parsing in the data but Bio::SearchlO::Writer is for outputting the in-
formation. The simplest way to output data as a pseudo-BLAST HTML format is as follows.

ny $witerhtm = new Bio::SearchlO:Witer::HTM.Resul tWiter();
ny $outhtm = new Bio::SearchlQ-witer => $witerhtm,
-file => ">searchio. htm");
get a result fromBio::Searchl O parsing or build it up in menory
$outhtm ->wite result($result);

If you wanted to get the output as a string rather than write it out to a file, simply use the following.

$witerhtm ->to_string($result);

The HTMLResultWriter supports setting your own remote database url for the sequence links in the event you'd
like to point to your own SRS or local HTTP-based connection to the sequence data. Simply use the re-
mote database url method which accepts a sequence type as input (protein or nucleotide).

You can also override the id_parser() method to define what the unique IDs are from these sequence ids in the
event you would like to use something other than the accession number that is gleaned from the sequence string.

If your data is instead stored in a database you could build the Bio::Search objects up in memory directly from
your database and then use the Writer object to output the data. Currently there is also a
Bio::SearchlO::Writer:: TextResultWriter which supports writing BLAST text file output.

8. Extending SearchlO

The framework for Bio::SearchlO is just a starting point for parsing these reports and creating objects which
represent the information. If you would like to create your own set of objects which extend the current function-
ality we have built the system so that it will support this. For example, you may have built your own HSP object
which supports a special operation like realign_with_sw(), which might realign the HSP via a Smith-Waterman
algorithm, pulling extra bases from the flanking sequence. You might call your module
Bio::Search::HSP::RealignHSP and put it in a file called Bio/Search/HSP/RealignHSP.pm. Note that you don't
have to put this file directly in the bioperl source directory - you can create your own local directory structure
that is in parallel to the bioperl release source code as long as you have updated your PERLSLIB to contain your
local directory or you are using the 'use lib' directive in your script. Also, you don't have to use the namespace
Bio::Search::HSP as namespaces don't mean anything to perl with respect to object inheritance, but do we rec-
ommend you name things in a logical manner so that others might read and understand your code (and if you
feel encouraged to donate your code to the project it might easily integrated with existing modules).

So, you're going to write your new special module, you do need to make sure it inherits from the base
Bio::Search::HSP::HSPI object. Additionally unless you want to reimplement all the initialization state in the
current Bio::Search::HSP::GenericHSP you should just plan to extend that object. You need to follow the
chained constructor system that we have set up so that the arguments are properly processed. Here is a sample of

9

Bio::SearchiIO HOWTO

what your code might look like (don't forget to write your own POD so that it will be documented, we've left it
off here to keep things simple).

package Bi o:: Search: : HSP: : Real i gnHSP;

use strict;

use Bi o::Search:: HSP: : Generi cHSP;

use vars qw(@ SA); # for inheritance

@ SA = gWM Bi 0o:: Search: : HSP: : Generi cHSP) ; # Real i gnHSP inherits from Generi cHSP

sub new {
ny ($class, @rgs) = @;
nmy $self = $cl ass->SUPER: : new(@rgs); # chained contructor

process the 1 additional argunent this object supports
ny ($ownargl) = $sel f-> rearrange(][ONARGL], @r gs) ;

return $self; # remenber to pass the object reference back out

sub realign_hsp {
my ($self) = @; _ _
inmpl ement ny special realign nethod here

The above code gives you a skeleton of how to start to implement your object. To register it so that it is used
when the SearchlO system makes HSPs you just need to call a couple of functions. The code below outlines
them.

use Bio::Searchl O
use Bi o:: Search:: HSP: : HSPFact or y;
use Bio::Search::Ht::HtFactory;

setup the blast parser, you can do this with and Searchl O parser however
ny $searchio = new Bio::Searchl(-file => $blastfile,
-format =>'blast');
build HSP factory with a certain type of HSPs to nmake
the default is Bio::Search:: HSP:: Generi cHSP
ny $hspfact = new Bio:: Search:: HSP: : HSPFact ory(-type =>
" Bi 0::Search:: HSP: : Real i gnHSP') ;
if you wanted to replace the Hit factory you can do this as well
additionally there Is an anal agous
Bio::Search::Result::ResultFactory for setting custom Result objects
ny $hitfact = new Bio::Search::Ht::H tFactory(-type =>
"Bio::Search::Ht:: SUPERDUPER Hit');
$sear chi o->_event Handl er->regi ster_factory(' hsp', $hspfact);
$sear chi o->_event Handl er->regi ster_factory('hit', $hitfact);

We have to register the HSPFactory, which is the object which will create HSPI objects, by allowing this to be
built by a factory rather than a hard-coded Bio::Search::HSP::GenericHSP->new(...) call. We are allowing the
user to take advantage of the whole parsing structure and the ability to slot their own object into the process
rather than re-implementing very much. We think this is very powerful and worth the system overhead, but it
may not permit this to be as efficient in parsing as we would like. Future work will hopefully address speed and
memory issues with this parser. Volunteers and improvement code are always welcome.

10

	Bio::SearchIO HOWTO
	Table of Contents
	1. Background
	2. Design
	3. New Functionality
	4. Parsing with Bio::SearchIO
	5. Creating Reports for SearchIO
	6. Implementation
	7. Writing and formatting output
	8. Extending SearchIO

