Bio::Graphics HOWTO

Lincoln Stein
Cold Spring Harbor Laboratory [http://www.cshl.org]

<| stei n@shl . or g>

This document is copyright Lincoln Stein, 2002. It can be copied and distributed under the terms of the Perl
Artistic License.
2002-09-01
Revision History
Revision 0.2 2003-05-15 1ds
Current as of BioPerl 1.2.2

This HOWTO describes how to render sequence data graphically in a horizontal map. It applies to a variety of
situations ranging from rendering the feature table of a GenBank entry, to graphing the positions and scores of a
BLAST search, to rendering a clone map. It describes the programmatic interface to the Bio::Graphics module,
and discusses how to create dynamic web pages using Bio::DB::GFF and the gbrowse package.

Table of Contents

L B3T3 (o Ta L1 1110 4 K P PPN 1
2 PTEIIMINATIES ..o cee ettt ettt et ettt e e et e e 2
I G 1S ¥ 1<« PN 2
4. Adding a Scale tO the TMAZEvvuiiviieeiie ettt e e e e e et e e e e aans 4
5. IMProving the IMAGEc.nieiiiii et ettt et e et e e e et e e eanas 5
6. Parsing Real BLAST OULPULvuuiitiiiiie et e et e e e e et e et e et e et e et e aneeaneeanaeans 7
7. Rendering Features from a GenBank or EMBL Fileoooiiiiiiiiii e 10
8. A Better Version of the Feature Rendererooooiiiiiiiiiiiiiii e 12
LB 1112 o P 15

1. Introduction

This HOWTO describes the Bio::Graphics module, and some of the applications that were built on top of it.
Bio::Graphics was designed to solve the following common problems:

* You have a list of BLAST hits on a sequence and you want to generate a picture that shows where the hits
go and what their score is.

* You have a big GenBank file with a complex feature table, and you want to render the positions of the
genes, repeats, promoters and other features.

* You have a list of ESTs that you've mapped to a genome, and you want to show how they align.
* You have created a clone fingerprint map, and you want to display it.

The Bio::Graphics module was designed to solve these problems. In addition, using the Bio::DB::GFF module

1

http://www.cshl.org
http://www.cshl.org
http://www.cshl.org
http://www.cshl.org

Bio::Graphics HOWTO

(part of BioPerl) and the gbrowse program (available from http://www.gmod.org) you can create interactive web
pages to explore your data.

This document takes you through a few common applications of Bio::Graphics in a cookbook fashion.
2. Preliminaries

Bio::Graphics is dependent on GD, a Perl module for generating bitmapped graphics written by the author. GD
in turn is dependent on libgd, a C library written by Thomas Boutell, formerly also of Cold Spring Harbor Labo-
ratory (www.boutell.com/gd). To use Bio::Graphics, you must have both these software libraries installed.

If you are on a Linux system, you might already have GD installed. To verify, run the following command:

% perl -M3D -e 'print $GD:: VERSI ON ;

If the program prints out a version number, you are in luck. Otherwise, if you get a "Can't locate GD.pm" error,
you'll have to install the module. For users of ActiveState Perl this is very easy. Just start up the PPM program
and issue the command "install GD". For users of other versions of Perl, you should go to www.cpan.org, down-
load a recent version of the GD module, unpack it, and follow the installation directions. You may also need to
upgrade to a recent version of the libgd C library.

You may need to upgrade to a recent version of the libgd C library. At the time this was written, there were two
versions of libgd. libgd version 1.8.4 is the stable version, and corresponds to GD version 1.43. libgd version
2.0.1 is the beta version; although it has many cool features, it also has a few known bugs (which Bio::Graphics
works around). If you use libgd 2.0.1 or higher, be sure it matches GD version 2.0.1 or higher.

You will also need to install the Text::Shellwords module, which is available from CPAN.
3. Getting Started

All the code examples and BLAST input files we'll use are available in the doc/howto/examples/graphics direc-
tory in the BioPerl package.

Our first example will be rendering a table of BLAST hits on a sequence that is exactly 1000 residues long. For
now, we're ignoring finicky little details like HSPs, and assume that each hit is a single span from start to end.
Also, we'll be using the BLAST score rather than P or E value. Later on, we'll switch to using real BLAST out-
put parsed by the Bio::SearchIO module, but for now, our table looks like this:

hit score start end
hsHOX3 381 2 200
scHOX3 210 2 210

x| HOX3 800 2 200
hsHOX2 1000 380 921
scHOX2 812 402 972

x| HOX2 1200 400 970
BUM 400 300 620
PRES1 127 310 700

Figure 1. Simple blast hit file (datal.txt)

Our first attempt to parse and render this file looks like this:

Bio::Graphics HOWTO

Example 1. Rendering the simple blast hit file (render_blast1.pl)

0 #!/usr/bin/perl

1 # This is code exanple 1 in the G aphi cs- HOMO

2 use strict;

3 use Bio:: G aphics;

4 use Bio::SeqgFeature:: Generic;

5 ny $panel = Bio:: G aphics::Panel->new-length => 1000,-wi dth => 800);

6 ny $track = $panel ->add_track(-glyph => 'generic',-label => 1);

7 while (<>) { # read blast file

8 chonp;

9 next if /”"\#/; # ignore coments
10 ny($nane, $score, $start, $end) = split /\t+/;
11 ny $feature = Bio:: SeqFeature:: Generic->new-display_nanme=>$nane, - scor e=>$scor e,
12 -start=>%start, - end=>%end) ;
13 $track->add_f eature($feature);
14 }
15 print $panel - >png;

The script begins by loading the Bio::Graphics module (line 3), which in turn brings in a number of other mod-
ules that we'll use later. We also load Bio:: SeqFeature:: Generic in order to create a series of
Bio::SeqFeaturel objects for rendering. We then create a Bio::Graphics::Panel object by calling its new()
method, specifying that the panel is to correspond to a sequence that is 1000 nucleotides long, and has a physical
width of 800 pixels (line 5). The Panel can contain multiple horizontal tracks, each of which has its own way of
rendering features (called a "glyph"), color, labeling convention, and so forth. In this simple example, we create
a single track by calling the panel object's add_track() method (line 6), specify a glyph type of "generic", and
ask that the objects in the track be labeled by providing a true value to the -label argument. This gives us a track
object that we can add our hits to.

We're now ready to render the blast hit file. We loop through it (line 7-14), stripping off the comments, and
parsing out the name, score and range (line 10). We now need a Bio::SeqFeaturel object to place in the track.
The easiest way to do this is to create a Bio::SeqFeature::Generic object, which is similar to Bio::PrimarySeq,
except that it provides a way of attaching start and end positions to the sequence, as well as such nebulous but
useful attributes as the "score" and "source". The Bio::SeqFeature::Generic->new() method, invoked in line 11,
takes arguments corresponding to the name of each hit, its start and end coordinates, and its score.

After creating the feature object, we add it to the track by calling the track's add_feature() method (line 13).

After processing all the hits, we call the panel's png() method to render them and convert it into a Portable Net-
work Graphics file, the contents of which are printed to standard output. We can now view the result by piping it
to our favorite image display program.

Important

If you are on a Windows platform, you need to put STDOUT into binary mode so that the PNG file
does not go through Window's carriage return/linefeed transformations. Before the final print state-
ment, put the statement "binmode(STDOUT)".

This advice also applies to certain versions of RedHat, which ship with a patched (and possibly broken) version
of Perl.

Bio::Graphics HOWTO

% render_blastl.pl datal.txt | display -
rsHDKS FUM

2cHOXS PRES1
[[
x1HOXS
[

hsHOX2

[
*1HO®2
[
scHORZ
[

Figure 2. Rendering BLAST hits

Users of operating systems that don't support pipes can simply redirect the output to a file and view it in their fa-
vorite image program.

4. Adding a Scale to the Image

This is all very nice, but it's missing two essential components:

* Itdoesn't have a scale.
» It doesn't distinguish between hits with different scores.

Example 2 fixes these problems

Example 2. Rendering the blast hit file with scores and scale

0 #!/usr/bin/perl

1 # This is code exanple 2 in the G aphi cs- HOMO

2 use strict;

3 wuse lib '"/hone/lstein/projects/bioperl-live';

4 use Bio:: G aphics;

5 use Bio:: SeqFeature:: Generic;

6 ny $panel = Bio:: G aphics:: Panel ->new(-1ength => 1000,

7 -width => 800,

8 -pad_l eft => 10,

9 -pad_right => 10,
10 ;

11 ny $full _length = Bio:: SeqFeature:: Generi c- >new - start=>1, - end=>1000) ;
12 $panel ->add_track($full _I ength,

13 -gl yph => "arrow ,

14 -tick = 2,

15 -fgcolor => 'black',

16 -double => 1,

17)

18 ny $track = $panel ->add_track(-glyph => 'graded_segnents',

19 -l abel => 1,

20 -bgcol or => ' bl ue',

21 -mn_score => 0,

22 -max_score => 1000);

23 while (<>) { # read blast file

24 chonmp;

25 next if /~\#/; # ignore coments

26 ny($nane, $score, $start, $end) = split /\t+/;

27 ny $feature = Bio::SeqFeature:: Generic->new-di spl ay_nane=>$nane, - scor e=>$scor e,
28 -start=>%start, - end=>%end) ;

29 $track->add_feature($feature);

Bio::Graphics HOWTO

30 }
31 print $panel - >png;

There are several changes to look at. The first is minor. We'd like to put a boundary around the left and right
edges of the image so that the features don't bump up against the margin, so we specify a 10 pixel leeway with
the - pad_| ef t and - pad_ri ght arguments in lines 8 and 9.

The next change is more subtle. We want to draw a scale all the way across the image. To do this, we create a
track to contain the scale, and a feature that spans the track from the start to the end. Line 11 creates the feature,
giving its start and end coordinates. Lines 12-17 create a new track containing this feature. Unlike the previous
example, in which we created the track first and then added features one at a time with add_feature(), we show
here how to add feature(s) directly in the call to add_track(). If the first argument to add_track is either a single
feature or a feature array ref, then add track() will automatically incorporate the feature(s) into the track in a
single efficient step. The remainder of the arguments configure the track as before. The -glyph argument says to
use the "arrow" glyph. The -tick argument indicates that the arrow should contain tick marks, and that both ma-
jor and minor ticks should be shown (tick type of "2"). We set the foreground color to black, and request that ar-
rows should be placed at both ends (-double =>1).

1

In lines 18-22, we get a bit fancier with the blast hit track. Now, instead of creating a generic glyph, we use the
"graded segments" glyph. This glyph takes the specified background color for the feature, and either darkens or
lightens it according to its score. We specify the base background color (-bgcolor => 'blue'), and the minimum
and maximum scores to scale to (-min_score and -max_score). (You may need to experiment with the min and
max scores in order to get the glyph to scale the colors the way you want.) The remainder of the program is the
same.

When we run the modified script, we get this image.

1
100 200 300 400 500 600 700 800 300

hzHORS BLIM

=cHORS PRES1

3 1HORS heHOXZ
I

«*1HO%2
scHORE

Figure 3. The improved image

Important

Remember that if you are on a Windows platform, you need to put STDOUT into binary mode so that
the PNG file does not go through Window's carriage return/linefeed transformations. Before the final
print statement, write binmode(STDOUT).

5. Improving the Image

Before we move into displaying gapped alignments, let's tweak the image slightly so that higher scoring hits ap-
pear at the top of the image, and the score itself is printed in red underneath each hit. The changes are shown in

10btain the list of glyphs by running perldoc on Bio::Graphics::Glyph. Obtain a description of the glyph options by running perldoc on indi-
vidual glyphs, for example "perldoc Bio::Graphics::Glyph::arrow."

Bio::Graphics HOWTO

Example 3.

Example 3. Rendering the blast hit file with scores and scale

0 #!/usr/bin/perl

1 # This is code exanple 3 in the G aphi cs- HOMO

2 use strict;

3 wuse lib '"/hone/lstein/projects/bioperl-live';

4 use Bio:: G aphics;

5 use Bio:: SeqFeature:: Generic;

6 ny $panel = Bio:: G aphics:: Panel ->new(-1ength => 1000,
7 -width => 800,
8 -pad_l eft => 10,
9 -pad_right => 10,
10 ;

11 ny $full _length = Bio:: SeqFeature:: Generi c- >new(- start=>1, - end=>1000) ;
12 $panel ->add_track($full _length,

13 -glyph => "arrow ,

14 -tick = 2,

15 -fgcolor => 'black',

16 -double => 1,

17)

18 ny $track = $panel ->add_track(-glyph => 'graded_segnents',

19 -l abel => 1,

20 -bgcol or => ' bl ue',

21 -mn_score => 0,

22 -max_score => 1000,

23 -font 2col or = 'red',

24 -sort_order => ' high_score',
25 -description => sub {

26 ny $feature = shift;

27 nmy $score = $f eat ure->score;
28 return "score=$score";

29 1

30 while (<>) { # read blast file

31 chonp;

32 next if /"\#/; # ignore coments

33 ny($nane, $score, $start, $end) = split /\t+/;

34 ny $feature = Bio:: SeqFeature:: Generic->new -score=>$score,
35 - di spl ay_nane=>$nane,
36 -start=>%start, - end=>%$end) ;
37) $track->add_feature($feature);

38

39 print $panel - >png;

There are two changes to look at. The first appears in line 24, where we pass the - sort _or der option to the
call that creates the blast hit track. - sort _or der changes the way that features sort from top to bottom, and
will accept a number of prepackaged sort orders or a coderef for custom sorting. In this case, we pass a prepack-
aged sort order of hi gh_scor e, which sorts the hits from top to bottom in reverse order of their score.

The second change is more complicated, and involves the -description option that appears in the add_t r ack()
call on lines 25-28. The value of - descri pti on will be printed beneath each feature. We could pass -
descri pti on a constant string, but that would simply print the same string under each feature. Instead we pass
-descri ption a code reference to a subroutine that will be invoked while the picture is being rendered. This
subroutine will be passed the current feature, and must return the string to use as the value of the description. In
our code, we simply fetch out the BLAST hit's score using its scor e() method, and incorporate that into the
description string.

Tip

Bio::Graphics HOWTO

The ability to use a code reference as a configuration option isn't unique to - descri pti on. In fact,
you can use a code reference for any of the options passed to add_track().

Another minor change is the use of - f ont 2col or in line 23. This simply sets the color used for the description
strings. Figure 3 shows the effect of these changes.

1
01K 0.2 0.3k 04K 0.5K 0.6k 0.7K 0.5K =

*1HOR3 *1HO%Z
. |
Feore=g00 soore=1200
hzHO%3 hzHOX2
sCore=351 SCare=1000
=cHORS scHORE
zoore=210 soore=glz
BUM
soore=d400
PRES1
zoore=127

Figure 4. The image with descriptions and sorted hits

6. Parsing Real BLAST Output

From here it's just a small step to writing a general purpose utility that will read a BLAST file, parse its output,
and output a picture. The key is to use the Bi o: : Sear chl Oinfrastructure because it produces Bio::SeqFeaturel
similarity hits that can be rendered directly by Bi o: : G- aphi cs.

Code example 4 shows the new utility.

Example 4. Parsing and Rendering a Real BLAST File with Bio::SearchlO

#1 [/ usr/ bi n/ perl

This is code exanple 4 in the G aphi cs- HOMO
use strict;

use |ib "$ENV{HOVE}/ proj ects/bioperl-live";

use Bi o0:: G aphi cs;

use Bio::Searchl QG

ny $file = shift or die "Usage: render_blast4.pl <blast file>\n";

ny $searchio = Bio::Searchl O>new-file = $file,
-format => "blast') or die "parse failed";

o~ [e)] aabhwWNE o

9 ny $result = $searchio->next_result() or die "no result”;

10 ny $panel = Bio:: G aphics:: Panel ->new -1 ength => $resul t->query_| ength,

11 -width => 800,

12 -pad_l eft => 10,

13 -pad_right => 10,

14)

15 ny $full _length = Bio::SeqFeature:: Generic->new(-start=>1, -end=>%resul t - >query_I| engt h,
16 -di spl ay_name=>%r esul t - >query_nane) ;
17 $panel ->add_track($full _Iength,

18 -glyph => "arrow ,

19 -tick = 2,

20 -fgcolor => 'black',

21 -double => 1,

22 - | abel = 1,

Bio::Graphics HOWTO

23)

24 ny $track = $panel ->add_track(-glyph => 'graded_segnents',

25 - | abel = 1,

26 - connect or => 'dashed',

27 - bgcol or => 'bl ue',

28 -font2color => 'red',

29 -sort_order => 'high_score',

30 -description => sub {

31 ny $feature = shift;

32 return unl ess $feature->has_tag(' description');
33 ny ($description) = $feature->each_tag_val ue(' description');
34 ny $score = $feature->score;

35 "$description, score=$score";

36 1

37 while(ny $hit = $result->next_hit) {

38 next unl ess $hit->significance < 1E-20;

39 ny $feature = Bio:: SeqFeature:: Generic->new -score => $hit->raw _score,

40 -di spl ay_nanme => $hit- >nane,

41 -tag = {

42 description => $hit->description
43 I

44)

45 while(my $hsp = $hit->next_hsp) {
46 $f eat ur e- >add_sub_SeqFeat ur e($hsp, ' EXPAND) ;
47 }

48 $track->add_f eature($feature);
49

50 print $panel - >png;

In lines 6-8 we read the name of the file that contains the BLAST results from the command line, and pass it to
Bi 0: : Sear chl O >new), returning a Bi o: : Sear chl O object. We read a single result from the searchlO ob-
ject (line 9). This assumes that the BLAST output file contains a single run of BLAST only.

We then initialize the panel and tracks as before. The only change here is in lines 24-36, where we create the
track for the BLAST hits. The - descri pti on option has now been enhanced to create a line of text that incor-
porates the "description” tag from the feature object as well as its similarity score. There's also a slight change in
line 26, where we introduce the - connect or option. This allows us to configure a line that connects the seg-
ments of a discontinuous feature, such as the HSPs in a BLAST hit. In this case, we asked the rendering engine
to produce a dashed connector line.

The remainder of the script retrieves each of the hits from the BLAST file, creates a Feature object representing
the hit, and then retrieves each HSP and incorporates it into the feature. Line 37 begins a whi | e() loop that re-
trieves each of the similarity hits in turn. We filter the hit by its significance, throwing out any that have an ex-
pectation value greater than 1E-20 (you will have to adjust this in your own utilities). We then use the informa-
tion in the hit to construct a Bi o: : SeqFeat ur e: : Generi c object (lines 39-44). Notice how the name of the
hit and the score are used to initialize the feature, and how the description is turned into a tag named "descrip-
tion."

The start and end bounds of the hit are determined by the union of its HSPs. We loop through each of the hit's
HSPs by calling its next _hsp() method, and add each HSP to the newly-created hit feature by calling the fea-
ture's add_sub_SeqFeat ur e() method (line 46). The EXPAND parameter instructs the feature to expand its
start and end coordinates to enclose the added subfeature.

Once all the HSPs are added to the feature, we insert the feature into the track as before using the track's
add_f eat ure() function.

Figure 4 shows the output from a sample BLAST hit file.

Bio::Graphics HOWTO

31677)
1k 2k
US1677
----------]
Human non-histone chroamatin protein HMGL (HMGL) gene, complete cos., score=4129
L35477
------------ R L e L L L L e L LR IR RERERLRERE
Muzs musculus (clone Clebp=1) high mobility group 1 protein C(HMG-1), score=353
wa0dE7
--- R A B o nmmmemeees -----------
M.musculus HAGL gene, score=353
g 31
------------ T - ----- - s ene e eemeeeeeeees SRR ity RELEISRRSN
Mus muzculus HAG-1 mRMNA, complete cds., score=353
Logods
-- - - I
Human non-histone chromosomal protein CHAG-1) retropseudogens. . score=349
wlz25e7?
-- § R
Humarn mRMA for high mobility group-1 protein CHMG-1)., score=349
ME4936
11997
-- - - -
M.musculus mRENA For non-histone chromosomal high-mobility group 1, score=345
053574
------------ B b B e L e L e EE L L LI EEEEELRLEELEENEEEERE RERRLRRRRE
Humar mRMA For HMG-1, complete cos., score=349
295115
-- § R
Human ONA =equence from BAC 443C9 on chromosome 22gl2.1., score=337
w12796
- S - --- - oo eneeerosesseseeeees L R B - I
Bowirne mRMA for high mobility group 1 CHMGL) protein, score=335
XB0dE6 Mz2a110
------------ k| Bl LR
M.musculus HAGL-R-227 gene, score=210 Bowine high-mobility-group protein CHMG-1) mEMA. 37 end.. scores=327
AF 09343
| R T - -+ --vcne e nneenaneeesssnasenaias e - L
Mus musculus HAG-like protein CTrfd mEMA. complete cds., score=303
MZ1683 :M21654
R R —
Pig nonhiztone protein HMGL mRMA, complete cds., score=303
wa0dE2 - L13805
M.musculus HAGL-R-154 gene, score=184 Homo =zapiens
014718
- T - - e eneme s seemneses e I - - - e enenneesseessissississiasisssssessssiosissesesiess -]
Human chromosomal protein HMGL related gene., score=252
Y0036 -
Chinese hamster HMG-1 gene for high mobility group protein 1, score=246
M&3852
-- -
Rat high mobility group 1 protein synthetic gene, complete cds., score=zZ6
YO0dEa3
------------ L it R LRty RELRESRRE |
Rat mRMA for high mohility group protein HHMGL, score=z26
®E04e1
-]
M.musculus HAGL-R-145 gene, scores1d47
H“and5a
M.musculus HAGL-R-177 gene, score=133
Ha0dET
-]]
M.musculus HAGL-R-87 gene, score=133
HE04E5
- L
M.muzculus HAGL-R-168 gene, score=133
H#a0d63
............. -
M.musculus HAGL-R-159 gene, score=131
Ha0dE0
I - |
M.musculus HMGL-R-135 gene, score=127
L32552 -
Rainbow trout HMG-1 gene exons 2-5, complete cds., score=127
XE0ded
-] |
M.musculus HAGL-R-161 gene, score=1295
ROZE6E6

I] L
Aenopus laewis high mobility group protein-1 (HMG-1) mEMA. complete, score=107

Figure 5. Output from the BLAST parsing and rendering script

The next section will demonstrate how to parse and display feature tables from GenBank and EMBL.

Bio::Graphics HOWTO

Important

Remember that if you are on a Windows platform, you need to put STDOUT into binary mode so that
the PNG file does not go through Window's carriage return/linefeed transformations. Before the final
print statement, write binmode(STDOUT).

7. Rendering Features from a GenBank or EMBL File

With Bi o: : Gr aphi cs you can render the feature table of a GenBank or EMBL file quite easily. The trick is to
use Bi o: : Seql Oto generate a set of Bi 0: : SeqFeat ur el objects, and to use those features to populate tracks.
For simplicity's sake, we will sort each feature by its primary tag (such as "exon") and create a new track for
each tag type.

Code example 5 shows the code for rendering an EMBL or GenBank entry.

Example 5. The embl2picture.pl script turns any EMBL or GenBank entry into a
graphical rendering

0 #!/usr/bin/perl

1 # file: enbl2picture. pl

2 # This |s code exanple 5 in the G aphics- HOMO

3 # Author: Lincoln Stein

4 use strict;

5 wuse |ib "$ENV{HOVE}/ proj ect s/ bi operl-1ive";

6 use Bio:: G aphics;

7 use Bio::Seql O

8 use Bio::SeqFeature:: Generic;

9 ny $file = shift or die "provide a sequence file as the argunent”
10 ny $io = Bio::Seql O >new(-file=>$file) or die "couldn't create Bio::Seql O;
11 ny $seq = $io->next_seq or die "couldn't find a sequence in the file";
12 ny $whol eseq = Bio:: SeqFeat ure:: Generi c->new -start=>1, -end=>$seq- >l engt h,
13 - di spl ay_nane=>%$seq- >di spl ay_nane) ;

14 ny @eatures = $seq->al | _SeqFeat ures;

15 # partition features by their primry tags
16 ny Y%orted_features;

17 for ny $f (@eatures) {

18 ny $tag = $f->primary_tag;

19 } push @ $sorted features{$t ag}}, $f;

20

21 ny $panel = Bio:: G aphics:: Panel - >new

22 -length => $seq- >l engt h,
23 -key_style => 'between',
24 -width => 800,

25 -pad_l eft => 10,

26 -pad_right => 10,

27)

28 $panel - >add_t r ack($whol eseq,

29 -glyph => "arrow ,

30 -bunp => 0,

31 - doubl e=>1,

32 -tick => 2);

33 $panel - >add_t r ack($whol eseq,

34 -glyph => 'generic',

35 -bgcol or => "blue',

36 -l abel => 1,

37)

38 # general case
39 ny @olors = gw(cyan orange blue purple green chartreuse magenta yel |l ow aqua);

10

Bio::Graphics HOWTO

40 ny $idx = 0;

41 for ny $tag (sort keys Y%sorted_features) {
42 ny $features = $sorted_features{S$tag};
43 $panel - >add_t r ack($f eat ur es,

44 -gl yph => 'generic',
45 -bgcol or => $col ors[$i dx++ % @ol ors],
46 -fgcolor => 'black',

47 -font2color => "red',

48 - key = "${tag}s",
49 - bunmp = +1,

50 - hei ght = 8,

51 - | abel = 1,

52 -description => 1,

53)s

54 }

55 print $panel - >png;
56 exit O;

The way this script works is simple. After the library load preamble, the script reads the name of the GenBank
or EMBL file from the command line (line 8). It passes the filename to Bi o: : Seql Os new() method, and reads
the first sequence object from it (lines 9-11). If anything goes wrong, the script dies with an error message.

The returned object is a Bio::Seql object, which has a length but no defined start or end coordinates. We would
like to create a drawable Bio::SeqFeaturel object to use for the scale, so we generate a new
Bio::SeqFeature::Generic object that goes from a start of 1 to the length of the sequence. (lines 12-13).

The script reads the features from the sequence object by calling al | _SeqFeat ur es(), and then sorts each fea-
ture by its primary tag into a hash of array references named %sor t ed_f eat ur es (lines 14-20).

Next, we create the Bi o: : Gr aphi cs: : Panel object (lines 21-27). As in previous examples, we specify the
width of the image, as well as some extra white space to pad out the left and right borders.

We now add two tracks, one for the scale (lines 28-32) and the other for the sequence as a whole (33-37). As in
the earlier examples, we pass add_t r ack() the sequence object as the first argument before the options so that
the object is incorporated into the track immediately.

We are now ready to create a track for each feature type. In order to distinguish the tracks by color, we initialize
an array of 9 color names and simply cycle through them (lines 39-54). For each feature tag, we retrieve the cor-
responding list of features from %sor t ed_f eat ur es (line 42) and create a track for it using the "generic" glyph
and the next color in the list (lines 43-53). We set the - | abel and - descri pti on options to the value "1". This
signals Bi o: : Gr aphi cs that it should do the best it can to choose useful label and description values on its
own.

After adding all the feature types, we call the panel's png() method to generate a graphic file, which we print to
STDOUT. If we are on a Windows platform, we would have to include bi nmode(STDOUT) prior to this state-
ment in order to avoid Windows textmode carriage return/linefeed transformations.

Figure 5 shows an example of the output of this script.

11

Bio::Graphics HOWTO

HSCFYII
.
CD5s
0 1] []]]] —
EMEL #GenBank. SwizsProt
eHons
= [m] —
EMBL AGenBank.SwissProt EMBL/GenBank./SwissProt EMEL /GenBank./SwissProt EMBL/GenBank SwissPr
1] 1]
EMEL/GenBank. SwizzProt EMEL #GenBank,SwizsProt EMBEL/GenBank. SuizzProt
[m]]
EMEL /GenBank./SwizsPrat EMELGenBank. SwizsProt
genes
EMBL AGenBank.SwissProt
introns
] .] I
EMBL /GenBank, SwizsPraot EMEL #GenBank,SwizsProt EMBL /GenBank,<SwissPraot
- | [] []
EMEL /GenBank.SwizsProt EMEL/GenBank /SuizsPrat EMEL /GenBank,/SwizsProt
. |]
EMBL/GenBank./SwissProt EMEL /GenBank./SwissProt

prin_transcripts
EMBL/GenBank. SwissProt
EMEL/GenBank, SwissProt
EMEL/GenBank. SwizsProt

SOUrces

ENBLKGenBanKKSwiSSPPDt

Figure 6. The embl2picture.pl script

8. A Better Version of the Feature Renderer

The previous example's rendering has numerous deficiencies. For one thing, there are no lines connecting the
various CDS rectangles in the CDS track to show how they are organized into a spliced transcript. For another,
the repetition of the source tag "EMBL/GenBank/SwissProt" is not particularly illuminating.

However, it's quite easy to customize the display, making the script into a generally useful utility. The revised
code is shown in example 6.

Example 6. The embl2picture.pl script turns any EMBL or GenBank entry into a
graphical rendering

#1 / usr/ bi n/ per|

fi
Th

I e: enbl 2pi cture. pl
i
Aut

e
s is code exanmple 6 in the G aphi cs- HOMO
hor: Lincoln Stein

use strict;

use lib "$ENV{ HOVE}/ proj ect s/ bi operl-live";

use Bi o:: G aphi cs;

use Bio::Seql G

use constant USAGE =><<END;

Usage: $0 <file>
Render a GenBank/EMBL entry into drawable form
Return as a G F or PNG i nage on standard out put.

H
[@X{eNeo] ~Noolrh WN - o

[EnY
[EY

File nmust be in enbl, genbank, or another Seql &
recogni zed format. Only the first entry will be
render ed.

= e
rWN

A
(&)]

Exanple to try:

12

Bio::Graphics HOWTO

16
17

18
19
20
21
22

23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83

enbl 2pi cture.pl factor7.enbl | display -

END

ny $file = shift or di e USAGE;
ny $io = Bio::Seql O>new-file=>%file) or die USAGE;
ny $seq = $i o->next_seq or di e USAGE;

ny $whol eseq = Bi o:: SeqFeat ure: : Generi c- >new(- st art =>1, - end=>%$seq- >l engt h,
- di spl ay_nane=>$seq- >di spl ay_nan®) ;

ny @eatures = $seq->al | _SeqFeat ures;

sort features by their primary tags
nmy %orted_features;
for nmy $f (@eatures) {
ny $tag = $f->primary_tag
push @ $sorted features{$t ag}}, f;

ny $panel = Bio:: G aphics:: Panel - >new(

-length => $seq- >l engt h,
-key_style => 'between',
-width => 800,

-pad_l eft => 10,
-pad_right => 10,
$panel - >add_t r ack($whol eseq,
-glyph => "arrow ,
-bump => 0,
- doubl e=>1,
-tick => 2);

$panel - >add_t r ack($whol eseq,
-glyph => 'generic',
-bgcol or => "blue',
-label =>1,

)

special cases
if ($sorted_features{CDS}) {
$panel - >add_t rack($sorted_f eat ures{ CDS},

-glyph => 'transcript2',
- bgcol or => 'orange',
-fgcol or => 'bl ack',
-font2color => 'red',

- key = 'CDS',

- bunmp = +1,

- hei ght = 12,

- | abel => \ &gene_| abel ,

-description=> \ &ene_descri pti on,

)
del ete $sorted_features{' CDS' };

if ($sorted_features{tRNA})
$panel - >add_track($sort ed_f eat ures{t RNA},

-glyph => 'transcript2',
- bgcol or = 'red',

-fgcol or => 'black',
-font2color => 'red',

- key => 't RNAs',

- bump = 4],

- hei ght => ,

- | abel => \ &gene_| abel ,

);
del ete $sorted_features{tRNA};

general case
ny @ol ors = qw(cyan orange blue purple green chartreuse nmagenta yel |l ow aqua);

3
©®

for rTy $t ag (sort keys %sorted_features) {
ny $features = $sorted_features{$tag};
$pane| ->add_tr ack($f eat ur es,
-glyph => 'generic',
-bgcolor => $col ors[$i dx++ % @ol ors],
-fgcolor => 'black',

13

Bio::Graphics HOWTO

84 -font2color => "red',

85 - key => "${tag}s",

86 - bunmp = +1,

87 - hei ght = 8,

88)- description => \ &generic_description
89 ;

90 }

91 print $panel ->png;
92 exit O;

93 sub gene_l abel {

94 ny $feature = shift;

95 nmy @otes;

96 foreach (gw product gene)) {

97 next unless $feature->has_tag($);
98 @not es = $f eature->each_tag_val ue($_);
99 | ast;

100 }

101 $not es[0] ;

102 }

103 sub gene_description {
104 ny $feature = shift;
105 nmy @notes;

106 foreach (gwmnote)) {

107 next unl ess $feature->has_tag($_);

108 @otes = $f eature->each_tag_val ue($_);

109 | ast;

110

111 return unl ess @otes;

112 substr($notes[0],30) = "'..." if length $notes[0] > 30;
113 $notes[0] ;

114 }

115 sub generic_description {

116 ny $feature = shift;

117 ny $descri ption;

118 foreach ($feature->all_tags) {

119 ny @al ues = $feature->each_tag val ue($_);
120 $description .= $_ eq 'note' ? "@alues" : "$_=@al ues;
121

}
122 $description =~ s/; $//; # get rid of |ast
123 $descripti on;
124 }

At 124 lines, this is the longest example in this HOWTO, but the changes are straightforward. The major differ-
ence occurs in lines 47-61 and 62-74, where we handle two special cases: "CDS" records and "tRNAs". For
these two feature types we would like to draw the features like genes using the "transcript2" glyph. This glyph
draws inverted V's for introns, if there are any, and will turn the last (or only) exon into an arrow to indicate the
direction of transcription.

First we look to see whether there are any features with the primary tag of "CDS" (lines 47-61). If so, we create
a track for them using the desired glyph. Line 49 shows how to add several features to a track at creation time. If
the first argument to add_t r ack() is an array reference, all the features contained in the array will be incorpo-
rated into the track. We provide custom code references for the - | abel and - descri pti on options. As we
shall see later, the subroutines these code references point to are responsible for extracting names and descrip-
tions for the coding regions. After we handle this special case, we remove the CDS feature type from the
%sorted_f eatures array.

We do the same thing for tRNA features, but with a different color scheme (lines 62-74).

Having dealt with the special cases, we render the remaining feature types using the same code we used earlier.
The only change is that instead of allowing Bi o: : Gr aphi cs: : Panel to guess at the description from the fea-
ture's source tag, we use the - descri pti on option to point to a subroutine that will generate more informative
description strings.

14

Bio::Graphics HOWTO

The gene_I abel () (lines 93-102) and gene_descri ption() (lines 103-114) subroutines are simple. The
first one searches the feature for the tags "product” and/or "gene" and uses the first one it finds as the label for
the feature. The gene_descri ption() subroutine is similar, except that it returns the value of the first tag
named "note". If the description is over 30 characters long, it is truncated.

The generic_description() (lines 115-124) is invoked to generate descriptions of all non-gene features.
We simply concatenate together the names and values of tags. For example the entry:

source 1..12850
/ db_xref ="t axon: 9606"
/ organi sn" Hono sapi ens”
/ map="13q34"

will be turned into the description string "db_xref=taxon:9606; organism=Homo Sapiens; map=13q34".

After adding all the feature types, we call the panel's png() method to generate a graphic file, which we print to
STDOUT.

Figure 6 shows an example of the output of this script.

HSCFYII
.
cDs
o | e —— I e | p e O e e B e
factor ¥II
eHons
i a 1 [m] [m] e—
gene=F7; factor YWII; GOO-119-597 number=2 rumber=3 rmber=5 number-=5 factor WII
1] [m]]
optional number=d number=7
genes
gene=F7
introns
. ;. N __________§ _ _§ |
intron A1 intron A intron B Intron O Intron E Intron F
[|]
intron C Intraon G

prin_transcripts
factor WII pre-mEMA Calt.?
factor WII pre-mEMA Calt.?

factor VII pre-mEMA Calt.)
sources

map=1303d: organizm=Homo sapienz; db_xref=taxon: 608

Figure 7. The embl2picture.pl script

9. Summary

In summary, we have seen how to use the Bi 0: : G aphi cs module to generate representations of sequence fea-
tures as horizontal maps. We applied these techniques to two common problems: rendering the output of a
BLAST run, and rendering the feature table of a GenBank/EMBL entry.

The graphics module is quite flexible. In addition to the options that we have seen, there are glyphs for generat-
ing point-like features such as SNPs, specialized glyphs that draw GC content and open reading frames, and
glyphs that generate histograms, bar charts and other types of graphs. Bi o: : Gr aphi cs has been used to repre-
sent physical (clone) maps, radiation hybrid maps, EST clusters, cytogenetic maps, restriction maps, and much
more.

Although we haven't shown it, Bi o:: Graphi cs provides support for generating HTML image maps. The
Generic Genome Browser [http://www.gmod.org] uses this facility to generate clickable, browsable images of

15

http://www.gmod.org
http://www.gmod.org
http://www.gmod.org

Bio::Graphics HOWTO

the genome from a variety of genome databases.

Another application you should investigate is the render sequence.pl script. This script uses the BioFetch inter-
face to fetch GenBank/EMBL/SwissProt entries dynamically from the web before rendering them into PNG im-
ages.

Finally, if you find yourself constantly tweaking the graphic options, you might be interested in
Bi o: : Graphi cs: : Feat ur eFi | e, a utility module for interpreting and rendering a simple tab-delimited format
for sequence features. feature draw.PLS is a Perl script built on top of this module, which you can find in the
scripts/graphics directory in the Bioperl distribution.

16

	Bio::Graphics HOWTO
	Table of Contents
	1. Introduction
	2. Preliminaries
	3. Getting Started
	4. Adding a Scale to the Image
	5. Improving the Image
	6. Parsing Real BLAST Output
	7. Rendering Features from a GenBank or EMBL File
	8. A Better Version of the Feature Renderer
	9. Summary

