Feature and Annotation HOWTO

Brian Osborne
Cognia Corporation [http://www.cognia.com]|

<bri an_osbor ne- at - cogni a. con®

This document is copyright Brian Osborne, 2003. For reproduction other than personal use please contact brian
at cognia.com
2003-10-14

This is a HOWTO written in DocBook format that explains how to use the SeqFeature and Annotation objects
of Bioperl.

Table of Contents

L L8 (oG 10167 5 1o) AP PTNN 1
2. TREBASICS ..ttt et e 1
3. Features from Genbank ... e 3
O oY 00§ O o) 1<l PR 6
I 01 113 o] o] T £ PPN 7
6. Annotations from GEenbANKccooiiiiiii e 8
7. Directly from the Sequence ODJECTeiuniitii e 10
8. Other sequence file fOIMALSoieuiiiiiiiiii et e e e e e e et e e e eaneeens 10
9. BUilding YOUT OWIN SEQUEIICESuuevuniieneieniieetineetnettettetnettnesaneetneetesteaeesessnessnesteensenaasnaesnaeens 13
10. Additional INFOrmMationcouiuiii i e e e e e e e e e et e e e e e e ans 14
11, ACKNOWIEAZEIMENESiuniiiiieeii ettt et e e e e et e e e e et e et e et e et e et e e aneeaneeaneaaneeteatesnaaaenns 14

1. Introduction

There's no more central notion in bioinformatics than the idea that portions of protein or nucleotide sequence
have specific characteristics. A given stretch of DNA may have been found to be essential for the proper tran-
scriptional regulation of a gene, or a particular amino acid sequence may bind a particular ion. This simple idea
turns out to be a bit more complicated in the bioinformatics world where there's a need to represent the actual
data in all its varied forms. The promoter region may not be precisely defined down to the base pair, a tran-
scribed region may be divided into discontinuous exons, a gene may have different numbered positions on dif-
ferent maps, a sequence may have a sub-sequence which itself possesses some characteristic, an experimental
observation may be associated with a literature reference, and so on. This HOWTO describes aspects of Biop-
erl's approach. The problem is how to create software that accepts, analyzes, and displays any and all of this se-
quence annotation with the required attention to detail yet remains flexible and easy to use. The general names
for the modules or objects that serve these purposes in Bioperl are SeqFeature and Annotation.

This HOWTO will discuss these objects, or modules, and the differences between them. I'll also show how to
parse files with these objects and discuss the basics of how to annotate sequence using the objects.

2. The Basics

http://www.cognia.com
http://www.cognia.com

Feature and Annotation HOWTO

Some Bioperl neophytes may also be new to object-oriented programming (OOP) and this notion of an object.
OOP is not the subject of this HOWTO but I do want to touch on how objects are used in Bioperl. In the object-
oriented world parsing a Genbank file doesn't give you data, it gives you an object and you can ask the object, a
kind of variable, for data. While annotating you don't create a file or database entry directly. You might create a
"sequence object" and an "annotation object”, then put these two together to create an "annotated sequence ob-
ject". You could then tell this object to make a version of itself as a file, or pass this object to a "database object"
for entry. In a sense a bit more complicated but in another way very flexible and logical, since each kind of data
is treated independently.

The Bioperl authors use Perl in an object-oriented way so each module, or object, inherits at least some of its ca-
pabilities from another object, a parent. The OOP approach also allows new modules to modify or add function-
ality, distinct from the parent. Practically speaking this means that there's not one definitive SeqFeature or An-
notation object but many, each a variation on a theme. The details of the these varieties will be discussed in
other sections, but for now we could use some broad definitions that apply to all the variations.

A SeqFeature object is designed to be associated with a sequence, and can have a location on that sequence - it's
a way of describing the characteristics of a specific part of a sequence. SeqFeature objects can also have features
themselves, which you could call sub-features but which, in fact, are complete SeqFeature objects. SeqFeature
objects can also have one or more Annotations associated with them.

An Annotation object is also associated with a sequence, as you'd expect, but it does not have a location on the
sequence, so it's associated with an entire sequence. This is one of the important differences between a SeqFea-
ture and an Annotation. Annotations also can't have SeqFeatures, which makes sense since SeqFeature objects
typically have locations. The relative simplicity of the Annotation has made it amenable to the creation of a use-
ful set of Annotation objects, each devoted to a particular kind of observation or attribute.

I mentioned locations, above. Describing locations can be complicated in certain situations, say when some fea-
ture is located on different sequences with varying degrees of precision. One location could also be shared be-
tween disparate objects, such as two different kinds of SeqFeatures. You may also want to describe a feature
with many locations, like a repeated sequence motif in a protein. Because of these sorts of complexities and be-
cause one may want to create different types of locations the Bioperl authors elected to keep location functional-
ity inside dedicated Location objects.

SeqFeatures and Annotations will make the most sense if you're already somewhat familiar with Bioperl and its
central Seq and SeqlO objects. The reader is referred to the bptutorial
[http://bioperl.org/Core/Latest/bptutorial.html], the module documentation, and the SeqlO HOWTO
[http://bioperl.org/HOWTOs/html/SeqlO.html] for more information on these topics. Here's a bit of code, to
summarize:

BAB55667.gb is a Genbank file, and Bioperl knows that it
is a CGenbank file because of the '.gb' file suffix
use Bio::Seql G

ny $seqio_object = Bio::Seql O->new-file => "BAB55667.gh");
ny $seq_object = $seqi o_obj ect - >next _seq;

Note

This object, $seq_obj ect, is actually a Bio::Seq::RichSeq
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq/RichSeq.html] object - can a PrimarySeq
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html] object, the simple parent of all Se-
quence objects, have a feature or an annotation? No.

Now that we have a sequence object in hand we can examine its features and annotations.

2

http://bioperl.org/Core/Latest/bptutorial.html
http://bioperl.org/HOWTOs/html/SeqIO.html
http://bioperl.org/HOWTOs/html/SeqIO.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq/RichSeq.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html

Feature and Annotation HOWTO

3. Features from Genbank

I'll be focusing on the Genbank format but bear in mind that most of the code shown here will also work on
other formats containing features or annotations (EMBL, Swissprot, BSML, Chado XML, GAME, KEGG, Lo-
cuslink, TIGR XML). When the file comes from Genbank it's easy to see where most of the features are, they're
in the Feature table section, something like this:

FEATURES Location/Qualifiers

source 1..1846
/ organi sn=" Hono sapi ens”
/ db_xref ="t axon: 9606"
/ chr omosone=" X"
[map="Xp11. 4"

gene 1..1846
/ gene=" NDP"
/ not e=" ND"
/ db_xref ="Locusl D: 4693"
/ db_xref="M M 310600"

CDSs 409. . 810
/ gene=" NDP"
/note="Norrie disease (norrin)"
/codon_start=1
[product="Norrie disease protein"
/ protein_id="NP_000257. 1"
/ db_xref="G:4557789"
[db_xref="Locusl D: 4693"
/db_xref="M M 310600"
/transl ati on="MRKHVLAASFSM_SLLVI MGDTDSKTDSSFI MDSDPRRCVRHHY
VDSI SHPL YKCSSKMWLLARCEGHCSQASRSEPL VSFSTVLKQPFRSSCHCCRPQI'SK
LKALRLRCSGGVRLTATYRYI LSCHCEECNS"

Features in Bioperl are accessed using their tags, either a "primary tag" or a plain "tag". Examples of primary
tags in this text are "source", "gene", and "CDS". Plain tags in this table include "organism" (/organism="Homo
sapiens”), "note" (/note="ND"), "db xref" (/db_xref="taxon:9606"), and "translation" /transla-
(tion="MRKHVL...HCEECNS").

When a Genbank file like this is parsed the feature data is converted into objects, specifically
Bio::SeqFeature::Generic [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html] objects.
How many? In this case 3, one for each of the primary tags.

In other parts of the Bioperl documentation one finds discussions of the "SeqFeature object", but there's more
than one of these, so what is this a reference to? More than likely it's referring to this same
Bio::SeqFeature::Generic [http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html] object.
Think of it as the default SeqFeature object. Now, should you care what kind of object is being made? For the
most part, no, you can write lots of useful and powerful Bioperl code without ever knowing these specific de-
tails.

Tip

By the way, how does one know what kind of object one has in hand? Try something like:

print ref($seq_object);
results in "Bio::Seq:: R chSeq"

The SeqFeature::Generic object uses tag/value pairs to store information, and the values are always returned as
arrays. A simple way to access all the data in the features of a Seq object would look something like this:

foreach ny $feat_object ($seq_object->get_SeqFeatures) {
print "primary tag: ", $feat_object->prinmary_tag, "\n";

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html

Feature and Annotation HOWTO

foreach ny $tag ($feat_object->get_all_tags) {

print * tag: ", $tag, "\n";
foreach ny $val ue ($feat_object->get_tag_val ues($tag)) {
print " value: ", $value, "\n";

This bit would print out something like:

primary tag: source
tag: chronosome

val ue: X
tag: db_xref

val ue: taxon: 9606
tag: map

val ue: Xpll.4
tag: organi sm
val ue: Honp sapi ens
primary tag: gene
tag: gene
val ue: NDP
tag: note
val ue: ND
primary tag: CDS
tag: codon_start
value: 1
tag: db_xref
val ue: d:4557789
val ue: Locusl D: 4693
val ue: M M 310600
tag: product
val ue: Norrie disease protein
tag: protein_id
val ue: NP_000257.1
tag: translation
val ue: MRKHVLAASFSMLSLLVI MDTDSKTDSSFI MDSDPRRCVRHHYVDSI
SHPL YKCSSKMWL L ARCEGHCSQASRSEPL VSFSTVL KQPFRSSCHCC
RPQT SKLKALRLRCSGGVRLTATYRYI LSCHCEECNS

So to retrieve specific values, like all the database identifiers, you could do:

foreach ny $feat_object ($seq_object->get_SeqFeatures) ({
push @ds, $f eat _obj ect->get _tag_val ues("db_xref")
if ($feat_object->has_tag("db_xref"));

Important
Make sure to include that "if ($feat_object->has_tag(<tag>))" part, otherwise you'll get errors when the
feature does not have the tag you're requesting.

One commonly asked question is "How do I get the sequence of a SeqFeature?" The answer is "it depends on
what you're looking for". If you'd like the sequence of the parent, the sequence object that the SeqFeature is as-
sociated with, then use enti re_seq():

$seq_obj ect = $f eat _obj ect->entire_seq;

This doesn't return the parent's sequence directly but rather a Bio::PrimarySeq
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html] object corresponding to the parent sequence.

http://doc.bioperl.org/releases/bioperl-1.4/Bio/PrimarySeq.html

Feature and Annotation HOWTO

Now that you have this object you can call its seq() method to get the sequence string, or you could do this all
in one step:

ny $sequence_string = $feat_object->entire_seq->seq;

There are 2 other useful methods, seq() and spl i ced_seq() . Consider the following Genbank example:

FEATURES Location/Qualifiers
source 1..177
[organi sm=" Mus nuscul us"
/ol _t ype=" genomi ¢ DNA"
[db_xr ef ="t axon: 10090"
t RNA j oi n(103 111, 121..157)
/ gene=" Phe-t RNA"

To get the sequence string from the start to the end of the tRNA feature use seq() . To get the spliced sequence
string, accounting for the start and end locations of each sub-sequence, use spl i ced_seq() . Here are the meth-
ods and the corresponding example coordinates:

Method Coordinates
entire_seq() 1..177

seq() 103..157
spliced_seq() 103..111,121..157

Table 1. Sequence string methods

It's not unusual for a Genbank file to have multiple CDS or gene features (and recall that 'CDS' or 'gene' are
common primary tags in Genbank format), each with a number of tags, like 'note', 'protein_id', or 'product'. How
can we get, say, the nucleotide sequences and gene names from all these CDS features? By putting all of this to-
gether we arrive at something like:

use Bio::Seql G

ny $seqi o_object = Bio::Seql O>new(-file => $gb_file);
ny $seq_object = $seqi o_obj ect - >next _seq;

foreach ny $feat_object ($seq_obj ect >get _SeqgFeatures) {
if ($feat_object->primary_tag eq CDS) {
print $f eat _obj ect->spliced_seq->seq, "\ n"
e.g. ' ATTATTTTCGCTCGCTTCTCGCCCT TTTTGAGATAAGGT CGCGT. .
foreach nmy $val ($feat->get_tag_val ues(gene’)
i f ($feat >has_t ag(' gene')) {
print "gene: ", %$val,"\n"
e.g. 'NDP', froma Iine like '/gene="NDP"'

Many people wouldn't write code in the rather deliberate style I've used above. The following is more compact
code that gets all the features with a primary tag of 'CDS', starting with a Genbank file:

ny @ds_features = grep { $_->primary_tag eq 'CDS }

Feature and Annotation HOWTO

Bi 0:: Seql O >new(-file => $gb_fil e)->next_seq->get _SeqFeat ures;

With this array of SeqFeatures you could do all sorts of useful things, such as find all the values for the 'gene’'
tags and their corresponding spliced nucleotide sequences and store them in a hash:

ny %gene_sequences = map {$_->get tag_val ues(' gene'),
$_->spliced_seqg->seq } @ds_features;

Because you're asking for a specific primary tag and tag, 'CDS' and 'gene' respectively, this code would only
work when there are features that looked something like this:

CDSs 735..1829
/ gene="M3001"
/codon_start=1
/ product ="DNA pol ynerase 111, subunit beta (dnaN)"
[protein_id="AAC71217. 1"
/transl ati on="MANVI | SNNKI KPHHSYFLI| EAKEKEI NFYANNEYFSVKCNLNK
NI DI LEQGSLI VKGKI FNDLI NG KEEI | TI QEKDQTLLVKTKKTSI NLNTI NVNEFP
RI' RFNEKNDL SEFNQFKI NYSLLVKA KKI FHSYSNNREI SSKFNGYNFNGSNGKEI F
LEASDTYKLSVFEI KQETEPFDFI LESNLLSFI NSFNPEEDKSI VFYYRKDNKDSFST
EMLI SMDNFM SYTSVNEKFPEVNYFFEFEPETKI VWQKNELKDALQRI QTLAQNERT
FLCDMQ NSSELKI RAI VNNI GNSLEEI SCLKFEGYKLNI SFNPSSLLDHI ESFESNE
| NFDFQGNSKYFLI TSKSEPELKQ LVPSR!

One last note on Genbank features. The Bioperl parsers for Genbank and EMBL are built to respect the specifi-
cation for the feature tables agreed upon by Genbank, EMBL, and DDBJ (see Feature Table Definition
[http://www.ncbi.nlm.nih.gov/projects/collab/FT/] for the details). Check this page if you're interested in a com-
plete listing and description of all the Genbank, EMBL, and DDBJ feature tags.

Despite this specification some non-standard feature descriptors have crept into Genbank, like "bond". When the
Bioperl Genbank parser encounters a non-standard feature like this it's going to throw a fatal exception. The
work-around is to use eval {} so your script doesn't die, something like:

use Bio::Seql G

ny $seq_object;

ny $seqio_object = Bio::SeqlO->newm-file => $gb file,
-format => "genbank");

eval { $seq_object = $seqi o_obj ect->next_seq; };

if there's an error

print "Problemin $gb_file. Bad feature perhaps?\n" if $@

4. Location Objects

There's quite a bit to this idea of location, so much that it probably deserves its own HOWTO. This is my way of
saying that if this topic interests you should take a closer look at the modules that are concerned with both Loca-
tion and Range. Together these modules offer the user a number of useful methods to handle both exact and
"fuzzy" locations, where the "start" and "end" of a particular sub-sequence are precise or themselves have start
and end positions, or are not precisely defined. You'll also find methods like uni on() and i nt er secti on()
that act on pairs of ranges. The table below is meant to illustrate some of the modules' capabilities.

Type Example
EXACT (5..100)
BEFORE (<5..100)

http://www.ncbi.nlm.nih.gov/projects/collab/FT/
http://www.ncbi.nlm.nih.gov/projects/collab/FT/
http://www.ncbi.nlm.nih.gov/projects/collab/FT/
http://www.ncbi.nlm.nih.gov/projects/collab/FT/

Feature and Annotation HOWTO

Type Example
AFTER (>5..100)
WITHIN ((5.10)..100)
BETWEEN (997100)

Table 2. Location Examples

One type that might not be self-explanatory is "WITHIN'. The example means "starting somewhere between po-
sitions 5 and 10, inclusive, and ending at 100". 'BETWEEN' is interesting - the example means "between 99 and
100, exclusive". A biological example of such a location would be a cleavage site, between two bases or
residues, but not including them.

In their simplest form the Location objects are used to get or set start and end positions, getting the positions
could look like this:

pol yA_si gnal 1811..1815

/ gene=" NDP"
ny $start = $feat _object->location->start;
ny $end = $f eat _obj ect->| ocati on->end;

By now you know that the | ocati on() method returns a Location object, and this object has end() and
start () methods.

Another way of describing a feature in Genbank involves multiple start and end positions. These could be called
"split" locations, and a very common example is the join statement in the CDS feature found in Genbank entries
(e.g. "join(45..122,233..267)"). This calls for a specialized object, SplitLocation, which is a container for Loca-
tion objects:

foreach ny $feature ($seqobj->top_SeqgFeat ures){
if ($feature->location-> sa('Bio::Location::SplitLocationl")
&& $feature->prinmary_tag eq ' CDS
foreach ny $location ($feature->location->sub_Location) {
print $location->start . ".." . $location->end . "\n";

5. Other objects

As an aside I should mention that certain data associated in a Genbank file is accessible both as a feature and
through a specialized object. Taxonomic information on a sequence, below, can be accessed through a Species
object as well as a value to the "organism" tag, and you'll get more information from the Bio::Species object
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html].

SOURCE human.
ORGANI SM Honp sapi ens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Eutel eoston;
Manmmal i a; Eutheria; Primates; Catarrhini; Hom ni dae; Hono.

You can create this Species object and use its methods or you can use the Perlish shorthand:

http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html

Feature and Annotation HOWTO

legible and | ong
my $speci es_obj ect
my $species_string
Perlish

ny $species_string = $seq_obj ect - >speci es- >speci es;

either way $species_string is "Honp sapiens”

nmy $cl assification = $seq_obj ect->speci es->cl assification;

"sapi ens Hono Hom nidae Catarrhini Prinmates Eutheria Mamali a
Eutel eostom Vertebrata Crani ata Chordata Metazoa Eukaryota"

$seq_obj ect - >speci es;
$speci es_obj ect - >speci es;

The reason that ORGANISM isn't treated only as a plain tag is that there are a variety of things one would want
to do with taxonomic information, so returning just an array wouldn't suffice. See the documentation on
Bio::Species [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html] for more information.

6. Annotations from Genbank

There's still quite a bit of data left our Genbank files that's not in a SeqFeature, and much of it is parsed into An-
notation objects. In order to get access to these objects we can get an AnnotationCollection object, which is ex-
actly what it sounds like:

ny $io = Bio::Seql O >new(-file => $file, -format => "genbank");
ny $seq_obj = $i o->next_seq;
ny $anno_col | ecti on = $seq_obj - >annot ati on;

Now we can access each Annotation in the AnnotationCollection object. The Annotation objects can be re-
trieved in arrays:

foreach ny $key ($anno_coll ection->get _all _annotation_keys) {
ny @nnotati ons = $anno_col | ecti on->get _Annot at i ons($key);
foreach ny $value (@nnotations) {

print "tagnanme : ", $val ue->tagnane, "\n";
$value is an Bio::Annotation, and has an "as_text" nethod
print " annotation value: ", $val ue->as_text, "\n";

It turns out the value of $key, above, and $value->tagname are the same. The code will print something like:

tagnanme : conment

annot ati on val ue: Conment: REVI EMED REFSEQ This record has been curated by
NCBlI staff. The reference sequence was derived from X65882.1. Summary: NDP is the
genetic locus identified as harboring nutations that result in Norrie disease.
tagname : reference

annot ati on val ue: Reference: The nol ecul ar biology of Norrie's disease
tagnane : date_changed

annot ati on val ue: Val ue: 31-OCT-2000

If you only wanted a specific annotation, like COMMENT, you could do:

ny @nnotati ons = $anno_col | ecti on->get _Annot ati ons(' conment');

And if you'd simply like all of the Annotations, regardless of key, you can do this:

http://doc.bioperl.org/releases/bioperl-1.4/Bio/Species.html

Feature and Annotation HOWTO

ny @nnotations = $anno_col | ecti on->get _Annot ati ons();

The following is a list of some of the common Annotations, their keys in Bioperl, and what they're derived from
in Genbank files:

Genbank Text Key Object Type Note

COMMENT comment Comment

SEGMENT segment SimpleValue e.g. "l of 2"

ORIGIN origin SimpleValue e.g. "X Chromosome."
REFERENCE reference Reference

INV date _changed SimpleValue e.g. "08-JUL-1994"
KEYWORDS keyword SimpleValue

ACCESSION secondary accession SimpleValue 2nd of 2 accessions

Table 3. Genbank Annotations

Some Annotation objects, like Reference, make use of a hash_t r ee() method, which returns a hash reference.
This is a more thorough way to look at the actual values than the as_t ext () method used above. For example,
as_t ext () for a Reference object is only going to return the title of the reference, whereas the keys of the hash
from hash_t ree() will be "title", "authors", "location", "medline", "start", and "end".

if ($val ue->tagnane eq "reference") {
ny $hash_ref = $val ue->hash_tree;
foreach nmy $key (keys % $hash ref}) {
print $key,": ", $ref->{$key}, "\ n";

Which yields:

authors: Meitinger,T., Meindl,A , Bork,P., Rost,B., Sander,C., Haasemann, M and
Mur ken, J.

|l ocation: Nat. Genet. 5 (4), 376-380 (1993)

nmedl i ne: 94129616

title: Mbdlecular nodelling of the Norrie disease protein predicts a cystine knot
growmh factor tertiary structure

end: 1846

start: 1

Other Annotation objects, like SimpleValue, also have a hash_t r ee() method but the hash isn't populated with
data and as_t ext () will suffice.

The simplest bits of Genbank text, like KEYWORDS, end up in these Annotation::SimpleValue objects, the

COMMENT ends up in a Bio::Annotation::Comment
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Annotation/Comment.html] object, and references are tran-
formed into Bio::Annotation::Reference

[http://doc.bioperl.org/releases/bioperl-1.4/Bio/Annotation/Reference.html] objects. Some of these specialized
objects will have specialized methods. Take the Annotation::Reference object, for example:

http://doc.bioperl.org/releases/bioperl-1.4/Bio/Annotation/Comment.html
http://doc.bioperl.org/releases/bioperl-1.4/Bio/Annotation/Reference.html

Feature and Annotation HOWTO

if ($val ue->tagnane eq "reference") {
print "author: ", $val ue->authors(), "\n";

There's also title(), publisher(), nedline(), editors(), database(), pubnmed() and a number of
other methods.

7. Directly from the Sequence object

This is just a reminder that some of the "annotation" data in your sequence files can be accessed directly, with-
out looking at SeqFeatures or Annotations. For example, if the Sequence object in hand is a Seq::RichSeq object
then here are some useful methods:

Method Returns
get_secondary_accessions array
keywords array
get_dates array
seq_version string
pid string
division string

Table 4. RichSeq methods

These Bio::Seq::RichSeq [http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq/RichSeq.html] objects are created
automatically when you use SeqlO to read from EMBL, GenBank, GAME, Chado XML, TIGR XML, Lo-
cuslink, BSML, KEGG, and SwissProt sequence files. However, it's not guaranteed that each of these formats
will supply data for all of the methods above.

8. Other sequence file formats

It is worth mentioning other sequence file formats. The table below shows what sorts of objects, Annotation or
SeqFeature, you'll get when you parse other sequence formats.

Format SeqlO name SeqFeature Annotation
Genbank embl yes yes

EMBL genbank yes yes

GAME game yes -

Chado XML chadoxml yes yes

TIGR XML tigr yes yes
Locuslink locuslink - yes

BSML bsml yes yes

KEGG kegg yes yes
SwissProt SWiss yes yes

Table 5. Formats, SeqFeatures, and Annotations

10

http://doc.bioperl.org/releases/bioperl-1.4/Bio/Seq/RichSeq.html

Feature and Annotation HOWTO

How does one find out what data is in which object in these formats? In general the individual module docu-
mentation is not going to provide all the answers, you'll need to do some investigation yourself. Let's use an ap-
proach we used earlier to dissect a Locuslink entry in a file, "148.11". Here's the file:

LOCUSI D: 148

LOCUS_CONFI RVED: yes

LOCUS TYPE: gene with protein product, function known or inferred
ORGANI SM Honmo sapi ens

STATUS: REVI EVED

NM NM 000680| 4501960| na

NP: NP_000671| 4501961

PROT: AAA93114| 409029

ACCNUM ML1313| 177869| na| na| na

TYPE:

PROT: P35348| 1168246

OFFI Cl AL_SYMBOL: ADRALA

OFFI Cl AL_GENE_NAME: adrenergic, al pha-1A-, receptor

ALl AS _SYMBOL: ADRALC

SUVMMARY: Sunmary: Al pha-1-ARs are nenbers of the GPCR superfamly.
CHR 8

STS: SGC35557| 8| 8124| na| seq_map| epcr

COWP: 10090| Adralal| 14| 14 cM 11549| 8| ADRALA| nchi _ngd

ALI AS PROT: adrenergic, alpha-1C, receptor

BUTTON: uni gene. gi f

LI NK: http://ww. nchi.nl mnih. gov/Uni Gene/cl ust. cgi 20RG=Hs&Cl D=52931
UNI GENE: Hs. 52931

OM M 104221

MAP: 8p21-pll. 2| Ref Seq| C|

MAPLI NK: def aul t _human_gene| ADRALA

GO cellular conponent|integral to plasma nenbrane| Pl GO 0005887| Pr ot eone| 8396931

First collect all the annotations:

use Bio::Seql G
my @nnotati ons = Bio:: Seql O >new

(-file =>"148.11", -format => "l ocuslink")
- >next _seq- >annot ati on- >get _Annot ati ons;

And from this array of Annotations let's extract a hash containing the as_t ext strings as keys and the concate-
nated tagnames and object types as values:

ny % agnane_type = map {$_->as_text,($_->tagnane . " " . ref($)) }
@nnot at i ons;

The contents of the % agname_t ype hash will look like the table below.

as_text() tagname() ref()

Direct database link to AAA93114 dblink Bio::Anno tation::DBLink
in database GenBank

Value: URL Bio: :Annotation::SimpleValue
http://www.ncbi.nlm.nih.gov/UniGe
ne/clust.cgi?ORG=Hs&CID=52931

Value: 8 CHR Bio::Annotation::SimpleValue
Direct database link to NP_000671 dblink Bio::Annotation::DBLink
in database RefSeq

11

Feature and Annotation HOWTO

as_text() tagname() ref()

Direct database link to SGC35558 dblink Bio::Annotation::DBLink

in database STS

Comment: Summary: Alpha-1-ARs comment Bio::Annotation::Comment
are members of the GPCR super-

family

Value: adrenergic, alpha-1A-, re- OFFICIAL GENE NAME Bio::Annotation::SimpleValue
ceptor

Value: ADRA1C ALIAS SYMBOL Bio::Annotation::SimpleValue
Value: adrenergic, alpha -1A-, re- ALIAS PROT Bio::Annotation::SimpleValue
ceptor

Direct database link to NM_000680 dblink Bio::Annotation::DBLink

in database RefSeq

Value: ADRATA OFFICIAL _SYMBOL Bio::Annotation::SimpleValue
Direct database link to SGC35557 dblink Bio::Annotation::DBLink

in database STS

Value: 8p21-p11.2 MAP Bio::Annotation::SimpleValue
Direct database link to 104221 in dblink Bio::Annotation::DBLink
database MIM

Direct database link to D8S2033 in dblink Bio::Annotation::DBLink
database STS

Direct database link to none in dblink Bio::Annotation::DBLink
database GenBank

cellular component|integral ~ to cellular component Bio::Annotation::OntologyTerm
plasma membrane|GO:0005887

Direct database link to Hs.52931 in dblink Bio::Annotation::DBLink
database UniGene

Direct database link to M11313 in dblink Bio::Annotation::DBLink
database GenBank

Direct database link to P35348 in dblink Bio::Annotation::DBLink
database GenBank

Table 6. Locuslink Annotations

The output from the script shows that Locuslink Annotations come in a variety of types, including DBLink, On-
tologyTerm, Comment, and SimpleValue. In order to extract the exact value you want, as opposed to the one re-
turned by the as_t ext method, you'll need to find the desired method in the documentation for the Annotation
in question.

If you were only interested in a certain type of Annotation you could retrieve it efficently with something like
this:

@ermannotations = map { $_->isa("Bio::Ontology:: Term"); }
$seq_obj ect - >get _Annot ati ons();

12

Feature and Annotation HOWTO

To completely parse these sequence formats you may also need to use methods that don't have anything to do
with Features or Annotations per se. For example, the di spl ay_i d method returns the LOCUS name of a Gen-
bank entry or the ID from a SwissProt file. The desc() method will return the DEFINITION line of a Genbank
file or the DE field in a SwissProt file. Again, this is a situation where you may have to examine a module, per-
haps a SeqlO::* module, to find out more of the details.

9. Building your own sequences

We've taken a look at getting data from SeqFeature and Annotation objects, but what about creating these ob-
jects when you already have the data? The Bio::SeqFeature::Generic
[http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html] object is probably the best SeqFeature
object for this purpose, in part because of its flexibility.

use Bio:: SegFeature:: Generic;

create the feature and add additional data while initializing,
an author and a note
ny $feat = new Bio:: SeqFeature:: Generic(-start => 10,

-end = 22,
-strand => 1,
-tag => {aut hor => 'john',

not e => ' TATA box' });

The SeqFeature::Generic object offers the user a "tag system" for addition of data that's not explicitly accounted
for by its methods, that's what the "-tag" is for, above. If you want to add your own custom data to a feature you
could use the "-tag" tag or you could add values after the object has been created:

$f eat - >add_t ag_val ue("mat chl", " PF000123

_ e-7.2")
$f eat - >add_t ag_val ue(" mat ch2", " PF002534 e-3.1"

):
ny @rr = $feat->get_all _tags;

foreach ny $tag (@rr) {
print $tag,":", $feat->get_tag_val ues($tag)," ;

prints out:
aut hor:john matchl: PFO00123 e-7.2 match2: PF002534 e-3.1 note: TATA box

Since the value passed to "-tag" could be any kind of scalar, like a reference, it's clear that this approach should
be able handle just about any sort of data.

Once the feature is created it can be associated with a sequence:

use Bio:: Seq;

create a s

i mpl e Sequence obj ect
ny $seq_obj = Bio

::Seqg->new -seq => "attcccccttataaaattttttttttgaggggt ggg”,
-display_id => "Bl GB2");

then add the feature to the sequence

$seq_obj - >add_SeqgFeat ur e($f eat) ;

The add_SeqFeat ur e() method will also accept an array of SeqFeature objects.

What if you wanted to add an Annotation to a sequence? You'll create the Annotation object, add data to it, cre-
ate an AnnotationCollection object, add the Annotation to the AnnotationCollection along with a tag, and then
add the AnnotationCollection to the sequence object:

13

http://doc.bioperl.org/releases/bioperl-1.4/Bio/SeqFeature/Generic.html

Feature and Annotation HOWTO

use Bio:: Annotation:: Collection;
use Bi o:: Annot ati on: : Conment ;

my $conment = Bi o:: Annot ati on: : Conment - >new,
$comment - >text ("This | ooks |ike a good TATA box");
my $coll = new Bio::Annotation::Collection;

$col | - >add_Annot ati on(' conment ', $conment) ;
$seq_obj - >annot ati on($col 1) ;

Now let's examine what we've created by writing the contents of $seq_obj to a Genbank file:

use Bio::Seql G

ny $io = Bio::Seql O>new-format => "genbank",
-file => ">test.gb");
$i o->wite_seq($seq_obj);

Voila!
LOCUS Bl C62 36 bp dna i near UNK
DEFI NI TI ON
ACCESSI ON unknown
COMVENT This | ooks |like a good TATA box
FEATURES Location/ Qualifiers

10.. 22

/ mat ch2="PF002534 e-3.1"

/ mat ch1="PF000123 e-7.2"

[aut hor ="j ohn"

/ not e=" TATA box"
BASE COUNT 7 a 5c¢ 8¢ 16 t
ORIG N

1 attccccctt ataaaatttt ttttttgagg ggtggg

I

10. Additional Information

If you would like to learn about representing sequences and features in graphical form take a look at the Graph-
ics HOWTO [http://bioperl.org/HOWTOs/html/Graphics-HOWTO.html]. The documentation for each of the in-
dividual SeqFeature, Range, Location and Annotation modules is also very useful, here's a list of them. If you
have questions or comments that aren't addressed herein then write the Bioperl community at bioperl-
l@bioperl.org.

SeqFeature Modules
SeqFeature Modules

Annotation Modules
Annotation Modules

Location Modules
Location Modules

Range Modules
Range Modules

11. Acknowledgements

Thanks to Steven Lembark for comments and neat code discussions.

14

http://bioperl.org/HOWTOs/html/Graphics-HOWTO.html
http://bioperl.org/HOWTOs/html/Graphics-HOWTO.html
http://bioperl.org/HOWTOs/html/Graphics-HOWTO.html

	Feature and Annotation HOWTO
	Table of Contents
	1. Introduction
	2. The Basics
	3. Features from Genbank
	4. Location Objects
	5. Other objects
	6. Annotations from Genbank
	7. Directly from the Sequence object
	8. Other sequence file formats
	9. Building your own sequences
	10. Additional Information
	11. Acknowledgements

