Derivation of fundamental trigonometric (circular function) identities
Our starting point will be the basic addition formulas:

cos(fy + 02) = cos By cos Oy — sin By sin Oy

sin(fy + 62) = sin by cos B2 + cos 01 sin Oy

and the symmetry properties of cos and sin.

cos(—0) = cos

sin(—#) = —sin@

Substituting —f, for 63 and using symmetries, we get the subtraction formulas:

cos(f1 — 02) = cos 01 cos O3 + sin 01 sin Oy
sin(fy — 02) = sin 6 cos O — cos 01 sin Oy
Adding cosine addition and subtraction formulas, we get a cosine product formula:
1
cos 0y cos By = 5((:05(91 + 02) + cos(0; — 62))
Subtracting them gives a sine product formula:

(cos(01 — 02) — cos(f1 + 03))
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sin 91 sin 92 =
Adding sine addition formulas gives a sine-cosine product formula:
. L . .
sin 0y cos B = 5(5111(91 + 02) + sin(0; — 62))

which may be obtained in reverse order by instead subtracting them, or just by inter-
changing #; and s in the earlier formula:

1
COS 91 sin 92 = E(Sin(ﬁl + 92) — Sin(91 — 92))

Setting u = 01 +60 and v = 01 — 05, so 0, = “—‘2“’ and 0 = #57, gives different addition
and subtraction formulas for cosine and sine, where the operation is performed after the

function, rather than before:

U+ v U—v

cosu + cos v = 2 cos(



COSU — COS U = —QSin(u;—U)sin(u;v)

u+v u—v

sinwu + sinv = 2 sin( ) cos( 5 )
sinu — sinw = ZSin(u+ U)sin(u _ U)
2 2
Setting #2 = —601, and using a special value of cosine, we get the Pythagorean rela-

tionship:
cos0 =1 = (cos0)? + (sin)?

Setting 0, = 03 = 0 gives the double-angle formulas:
cos 20 = (cos #)? — (sin 6)?

sin 20 = 2sinf cos O

Beginning with the Pythagorean relationship and adding or subtracting the cosine
double angle formula, gives formulas which represent the second powers of cosf and sin6,
and cosine of twice # in terms of each other:

1 1
(cos6)? = 5 + 5 €08 20

(sin@)? = = — = cos 26
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cos 20 = 2(cosf)? — 1 =1 — 2(sin H)?

Similar formulas can be obtained representing the powers of cosf and sinf up to the
nth power, and cosine and sine of whole multiples of § up to n, in terms of each other (see
below.)

Taking square roots, and substituting g for 6,

cos 2] = /% + Leost
cos —| = 4/ = + = cos
2 2 2
and
0 1 1
|sin—| =14/= — = cos#@
2 2 2

A useful informal definition of (cos#,sin@) is that they represent the horizontal and
vertical coordinates of a point on the unit circle, with # measuring the distance along
the circle from (1,0) in the clockwise direction, usually given in proportion to the full
circumference, 27. This is good enough when simple fractions of the circle are involved,
but fails to be useful in generality. A good formal definition involves first defining the
inverse of the sine function, whose output is the arc length 6 between (1,0) and a point
(z,y) on the unit circle 22 + y? = 1, calculated as an integral, so that y = sin 6.



(x,y) = (rcosf,rsinf)

with

= T
r =112 —y?
y=+\r2—ax2
cosf) = +4/1 — (sin )2

sinf) = +£4/1 — (cos 6)?



tanf =
n cosf
cos B 1
cot 0 = =
sin @ tan 6
1
sec =
cosf
1
6 =
os¢ sin 6
SO .
cosf = —
r
sin @ = L
r
tanf = ¥
T
cotf = z
Yy
r
secl = —
T
r
csch = —
Yy

Shift properties and Periodicity
cos(f + 2m) = cos(h)
sin(f + 27) = sin(0)

cos(f — g) = sin(0)

Special values
(cos0,sin0) = (1,0)
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feos Tsin ™) = (5, %)
(cos g,smg) =(0,1)



By looking at the diagram, one can see that the first three of these special points
determine all of the rest by various reflections. The first is straightforward. To see the
second, construct an equilateral triangle by reflecting the point in the z-axis, so that twice

the vertical coordinate must equal the radius, 1, and sin § = % Solve Pythagoras for the

horizontal coordinate: (cos Z)? + ()2 =150 cos T = (3)7 = § Finally, when ¢ = 7,

the horizontal and vertical coordinates of the point (cos 7,sin 7) are equal, so solving

Pythagoras we see that twice the square of either coordinate equals 1, so that the square
13 = V2

of either coordinate equals % and cos T =sin T = (5 5 -
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