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We begin with two types of ssDNA, ssDNA1 with initial concentration [ssDNAI]
and ssDNA2 with initial concentration [ssDNA2] > [ssDNA1]|. The when all strands are
coiled, we have a final concentration of dsDNA, [dsDNA1] = [ssDNA1]| and an excess
concentration of ssDNA2 equal to [ssDNA2] — [ssDNA1]. If p represents the proportion of
final dsDNA product that is uncoiled so that (1 — p)[dsDNA] represents the concentration
of coiled dsDNA, then p is also the uncoiled proportion of ssDNA1, with p[ssDNA1] and
[ssDNA2] — (1 — p)[ssDNA1] the concentrations of ssDNA1 and ssDNA2 respectively. The

expression [dsDNA] becomes
[ssSDNATjssDNA2j

T(p) =
dS — Rln

l—p
p([ssDNA2] — (1 — p)[ssDNA1])

When p = 1/2, at Ty, this is

1
[ssDNA2] — 1/2[ssDNA1]).

so since inverting an expression inside a log corresponds to a change of sign outside,

dH dH

e [dsDNA] ~ dS + RIn|ssDNA2| — 1/2[ssDNAT1])’
dS — Rln [ssDNATjssDNA2j | ] /2 D

T(p)

the form in TmCalculators and TmPrecalc.

— 1-p 1-p
When [ssDNA2] = [ssDNAT], S(SSDNAZ - (1) ssDNAT) becomes ssDNAT] 5°
since the log of a quotient is the difference of the logs,

dH dH

oo [dsDNA] " dS + RInfssDNAT] — Rln =2
dS — Rln [ssDNAT]ssDNA2] nfss | n

T(p)

In the equal concentrations case, we proceed as follows.
Setting K = RIn[ssDNA1] and solving

_dH dH
dS+C(p) dS-i—K—Rlnlp_f

T(p)

for p, we get
2 _
ap"+p—-1=0
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Here p is the proportion uncoiled and 1 — p is the proportion coiled, and a = e~ 4G(T)

where G = (dH —TdS — KT)/RT, where K depends only on probe and target concentra-
tions, and dH and dS depend only upon the nearest neighbor parameters and properties
of the oligo under consideration.

Since we know C(.5), we can obtain

K =C(.5)+ RIn.5.

Dividing by a and setting v = 1/a, we solve for the positive root p of the quadratic
equation
p?+vp—v=0,

—v 4+ Vv +4v
5 )

Some observations about the dependence of G, a, and v on T

Since dH < 0,dS < 0, K < 0 (depending upon [ssDNA1]), as T' — 0, dG = (dH —
TdS — KT)/RT = (S =95=K —_, o0 50 a — +00, v — 0.

Interestingly, as T' — 400, dG — _dST_K >0,a — a, with 0 < a, << 1, v — v, with
1 << v, << +00.

Soas T — 0, p— 0 and the fraction coiled 1 —p — 1. but as T'— 400, p — p, with
0 <1-—pe << 1. A minimum proportion of DNA remains coiled no matter how great T
becomes.

Rewriting

v+ VUt 4
B 2
in terms of w = v + 2 to complete the square, we obtain

—(v+2)+24+/(v+2)2-4
2

p =
or
w— w2 -4
p=1- 1Y
2
from which the fraction coiled, 1 — p becomes
w w2
l-p=— /= —1
P=5 V2
where § = @ = 1+%edG(T). Sow — 1 asT — 0. The melting temperature T}, is where

this difference is 1/2. Solving  — 1/2 = v/z? — 1, we get this occurs when x = w/2 = 5/4.

So the sharp phase transition is due to the fact that e?“(T) remains very small until
the melting temperature then grows quickly to its large positive limit e?C+. e4G(T) ig of
the form ea_%, where a > 0,b > 0, so when T is small, the second term is dominant and
the result is extremely small, but as 7' grows, the first term eventually dominates, with
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a rapid transition to extremely large values. This function becomes the argument of a
function with values near 1 for small values of its argument, and near zero for large values
of its argument, hence the form of the melting curves.

In the general case,

T(p) il ‘
p = - —
dsDNA, - 17
dS — RIn opNATeDNAY 0 T (sDNAZI- (1-5)ssDNAT))

Rearranging again,

dH—-TdS

p([ssDNA2] — (1 — p)[ssDNAl))e "Rt +p—-1=0

dH—-TdS

[ssDNA1])e™ " =t p? + (1 + ([ssDNA2] — [ssDNA1])e™ =T ) —1=0

ap® +bp—1=0

dH—-TdS _dH-TdS

where a = [ssDNAlle=™ 77 and b = 1 + ([ssDNA2] — [ssDNA1])e™— =t )

We note that when the initial concentrations are equal, the general case reduces to the
original equal concentration case, since the expression for b becomes 1, and the expression
for a is identical to the expression for a only depends on the smaller initial concentration.
Also, since the equal concentration case K = RIn[ssDNAI1] a may also be written as

dH—-TdS—KT . . . .
e~ — rr, no different than in the equal concentration case, and in that case,

If we let d = [ssDNA2] — [ssDNA1] so that b = 1 + d, and again dividing through by
a, so the quadratic equation becomes monic, p? + @ — % =0, we call v = % (which has
the same value as before in terms of the initial concentration of ssDNA1 and dH,dS, and

R so p? + (1 + d)vp — v = 0 and the melting curve solution is given by

=+ dv+ /(1 +dw)?+ 4
p= 5 :

Exercise: Complete the square and try to make analogous transformations to obtain
a simpler form for 1 — p as in the equal concentration case.




In the equal concentrations case, we are able to compute T'(p) for different p by
determining C(p) = K — Rln 1p_2p , and either using the formula K = RIn[ssDNA1] or
c(.5)=RIn[ssDNA1
(.5)=R 2[SS ] 0(5)

solving for K from the known value of C(p) when p = .5,
K —1In2,s0 K = C(.5) +1n2. Another form is C(p) = C(.5)+In2 — Rln 1p_2p so we only
need to know C(.5) the factor used in the melting temperature calculator to compute all

other T'(p)s.
This is not so in the general case. To compute C(p), hence T(p), use

T(p) e =
p) = - -
[dsDNA] - 1=p
dS — Rln SSDNAT]ssDNAZ] dS — Rln p([ssDNA2]—(1-p)ssDNAT))

- _ 1—p — _ ;
Here, C'(.5) = —RIn (sSDNAZ - (1 sDNAT) — RIn([ssDNA2] — .5[ssDNA1]) is

not enough to compute C(p).

Note that p([ssDNA2]—(1—p)[ssDNA1]) may be rewritten p?[ssDNA1]+p([ssDNA2]—
[ssDNAT1]J)

TmCalculators and TmPrecalculators computed C(.5) and for the equal concentration
first example, we did use this to compute other Tj;s for parameter inversion. To do
this in more generality, “T(p)-Precalc” must provide the data necessary to compute the
coefficients for melting curve inversion and computing the temperature for an arbitrary
fraction uncoiled, p. so TpPrecalc.vi delivers [ssDNA1] and [ssDNA2] — [ssDNA1] along
with the salt dependent length factor.

T'(p)-calculator takes these values and given p, as well as the values of dH and dS
and the length of the oligo, computes T'(p). The default is p = .5, which reduces to a Ty,
calculator.

Curve.vi takes values of dH, dS and the length of an oligo, combines them with the
initial concentrations and salt factor from T(p)-precalc, and for any value of T, computes
the coefficients of the quadratic and solves them for p(T).



