$$
T(p)=\frac{d H}{d S-R \ln \frac{[\mathrm{dsDNA}]}{[\mathrm{SSDNA} 1][\mathrm{SSDNA} 2]}}
$$

We begin with two types of ssDNA, ssDNA1 with initial concentration [ssDNA1] and ssDNA2 with initial concentration [ssDNA2] \geq [ssDNA1]. The when all strands are coiled, we have a final concentration of dsDNA, [dsDNA1] $=$ [ssDNA1] and an excess concentration of ssDNA2 equal to [ssDNA2] - [ssDNA1]. If p represents the proportion of final dsDNA product that is uncoiled so that $(1-p)[\mathrm{dsDNA}]$ represents the concentration of coiled dsDNA, then p is also the uncoiled proportion of ssDNA1, with $p[\operatorname{ssDNA} 1]$ and [ssDNA2] $-(1-p)$ [ssDNA1] the concentrations of ssDNA1 and ssDNA2 respectively. The expression $\frac{[\text { dsDNA }]}{[\text { SSDNA1][SSDNA2] }}$ becomes

$$
\frac{1-p}{p([\operatorname{ssDNA} 2]-(1-p)[\operatorname{ssDNA} 1])}
$$

When $p=1 / 2$, at T_{M}, this is

$$
\frac{1}{[\operatorname{ssDNA} 2]-1 / 2[\operatorname{ssDNA}]])}
$$

so since inverting an expression inside a log corresponds to a change of sign outside,

$$
T(p)=\frac{d H}{d S-R \ln \frac{[\mathrm{dsDNA}]}{[\text { [SDNA1][SSDNA2] }}}=\frac{d H}{d S+R \ln [\mathrm{ssDNA} 2]-1 / 2[\text { ssDNA1 }])}
$$

the form in TmCalculators and TmPrecalc.
When [ssDNA2] $=[\operatorname{ssDNA} 1], \frac{1-p}{p([\operatorname{SSDNA} 2]-(1-p)[\operatorname{SSDNA}])}$ becomes $\frac{1-p}{p^{2}[\operatorname{SSDNA} 1]}$ so since the log of a quotient is the difference of the logs,

$$
T(p)=\frac{d H}{d S-R \ln \frac{[\mathrm{dsDNA}]}{[\text { SSDNA1 }][\mathrm{SSDNA} 2]}}=\frac{d H}{d S+R \ln [\mathrm{SsDNA} 1]-R \ln \frac{1-p}{p^{2}}}
$$

In the equal concentrations case, we proceed as follows.
Setting $K=R \ln [s s D N A 1]$ and solving

$$
T(p)=\frac{d H}{d S+C(p)}=\frac{d H}{d S+K-R \ln \frac{1-p}{p^{2}}}
$$

for p, we get

$$
a p^{2}+p-1=0
$$

Here p is the proportion uncoiled and $1-p$ is the proportion coiled, and $a=e^{-d G(T)}$, where $G=(d H-T d S-K T) / R T$, where K depends only on probe and target concentrations, and $d H$ and $d S$ depend only upon the nearest neighbor parameters and properties of the oligo under consideration.

Since we know $C(.5)$, we can obtain

$$
K=C(.5)+R \ln .5
$$

Dividing by a and setting $v=1 / a$, we solve for the positive root p of the quadratic equation

$$
\begin{gathered}
p^{2}+v p-v=0 \\
p=\frac{-v+\sqrt{v^{2}+4 v}}{2}
\end{gathered}
$$

Some observations about the dependence of G, a, and v on T.
Since $d H<0, d S<0, K<0$ (depending upon [ssDNA1]), as $T \rightarrow 0, d G=(d H-$ $T d S-K T) / R T=\left(\frac{d H}{R T} \frac{-d S-K}{R}=\rightarrow-\infty\right.$ so $a \rightarrow+\infty, v \rightarrow 0^{+}$.

Interestingly, as $T \rightarrow+\infty, d G \rightarrow \frac{-d S-K}{R}>0, a \rightarrow a_{*}$ with $0<a_{*} \ll 1, v \rightarrow v_{*}$ with $1 \ll v_{*} \ll+\infty$.

So as $T \rightarrow 0, p \rightarrow 0$ and the fraction coiled $1-p \rightarrow 1$. but as $T \rightarrow+\infty, p \rightarrow p_{*}$ with $0<1-p_{*} \ll 1$. A minimum proportion of DNA remains coiled no matter how great T becomes.

Rewriting

$$
p=\frac{-v+\sqrt{v^{2}+4 v}}{2}
$$

in terms of $w=v+2$ to complete the square, we obtain

$$
p=\frac{-(v+2)+2+\sqrt{(v+2)^{2}-4}}{2}
$$

or

$$
p=1-\frac{w-\sqrt{w 2-4}}{2}
$$

from which the fraction coiled, $1-p$ becomes

$$
1-p=\frac{w}{2}-\sqrt{\frac{w^{2}}{2}-1}
$$

where $\frac{w}{2}=\frac{w(T)}{2}=1+\frac{1}{2} e^{d G(T)}$. So $w \rightarrow 1$ as $T \rightarrow 0$. The melting temperature T_{M} is where this difference is $1 / 2$. Solving $x-1 / 2=\sqrt{x^{2}-1}$, we get this occurs when $x=w / 2=5 / 4$.

So the sharp phase transition is due to the fact that $e^{d G(T)}$ remains very small until the melting temperature then grows quickly to its large positive limit $e^{d G_{*}} . e^{d G(T)}$ is of the form $e^{a-\frac{b}{T}}$, where $a>0, b>0$, so when T is small, the second term is dominant and the result is extremely small, but as T grows, the first term eventually dominates, with
a rapid transition to extremely large values. This function becomes the argument of a function with values near 1 for small values of its argument, and near zero for large values of its argument, hence the form of the melting curves.

In the general case,

$$
T(p)=\frac{d H}{d S-R \ln \frac{[\mathrm{dsDNA}]}{[\mathrm{SSDNA}][\mathrm{SSDNA} 2]}}=\frac{d H}{\left.d S-R \ln \frac{1-p}{p([\mathrm{SSDNA} 2]-(1-p)[\mathrm{SSDNA}])}\right)}
$$

Rearranging again,

$$
\begin{gathered}
p([\operatorname{ssDNA} 2]-(1-p)[\operatorname{ssDNA} 1]) e^{-\frac{d H-T d S}{R T}}+p-1=0 \\
[\operatorname{ssDNA} 1]) e^{-\frac{d H-T d S}{R T}} p^{2}+\left(1+([\operatorname{ssDNA} 2]-[\operatorname{ssDNA} 1]) e^{-\frac{d H-T d S}{R T}}\right)-1=0 \\
a p^{2}+b p-1=0
\end{gathered}
$$

where $a=[\operatorname{ssDNA} 1] e^{-\frac{d H-T d S}{R T}}$ and $\left.b=1+([\operatorname{ssDNA} 2]-[\operatorname{ssDNA} 1]) e^{-\frac{d H-T d S}{R T}}\right)$
We note that when the initial concentrations are equal, the general case reduces to the original equal concentration case, since the expression for b becomes 1 , and the expression for a is identical to the expression for a only depends on the smaller initial concentration. Also, since the equal concentration case $K=R \ln [\operatorname{ssDNA} 1] a$ may also be written as $e^{-\frac{d H-T d S-K T}{R T}}$, no different than in the equal concentration case, and in that case,

If we let $d=$ [ssDNA2] - [ssDNA1] so that $b=1+d$, and again dividing through by a, so the quadratic equation becomes monic, $p^{2}+\frac{(1+d)}{a}-\frac{1}{a}=0$, we call $v=\frac{1}{a}$ (which has the same value as before in terms of the initial concentration of ssDNA1 and $d H, d S$, and R so $p^{2}+(1+d) v p-v=0$ and the melting curve solution is given by

$$
p=\frac{-(1+d) v+\sqrt{((1+d) v)^{2}+4 v}}{2}
$$

Exercise: Complete the square and try to make analogous transformations to obtain a simpler form for $1-p$ as in the equal concentration case.

In the equal concentrations case, we are able to compute $T(p)$ for different p by determining $C(p)=K-R \ln \frac{1-p}{p^{2}}$, and either using the formula $K=R \ln [\operatorname{ssDNA} 1]$ or solving for K from the known value of $C(p)$ when $p=.5, \frac{C(.5)=R \ln [\mathrm{SsDNA} 1]}{2} C(.5)=$ $K-\ln 2$, so $K=C(.5)+\ln 2$. Another form is $C(p)=C(.5)+\ln 2-R \ln \frac{1-p}{p^{2}}$ so we only need to know $C(.5)$ the factor used in the melting temperature calculator to compute all other $T(p) \mathrm{s}$.

This is not so in the general case. To compute $C(p)$, hence $T(p)$, use

$$
T(p)=\frac{d H}{d S-R \ln \frac{[\mathrm{dsDNA}]}{[\text { SSDNA1 }][\mathrm{SSDNA} 2]}}=\frac{d H}{d S-R \ln \frac{1-p}{p([\mathrm{SSDNA} 2]-(1-p)[\mathrm{SSDNA} 1])}}
$$

Here, $C(.5)=-R \ln \frac{1-p}{p([\operatorname{ssDNA} 2]-(1-p)[\mathrm{SSDNA}])}=R \ln ([\mathrm{ssDNA} 2]-.5[\operatorname{ssDNA} 1])$ is not enough to compute $C(p)$.

Note that $p([\operatorname{ssDNA} 2]-(1-p)[\operatorname{ssDNA} 1])$ may be rewritten $p^{2}[\mathrm{ssDNA} 1]+p([\mathrm{ssDNA} 2]-$ [ssDNA1])

TmCalculators and TmPrecalculators computed $C(.5)$ and for the equal concentration first example, we did use this to compute other $T_{M} \mathrm{~S}$ for parameter inversion. To do this in more generality, " $T(p)$-Precalc" must provide the data necessary to compute the coefficients for melting curve inversion and computing the temperature for an arbitrary fraction uncoiled, p. so TpPrecalc.vi delivers [ssDNA1] and [ssDNA2] - [ssDNA1] along with the salt dependent length factor.
$T(p)$-calculator takes these values and given p, as well as the values of $d H$ and $d S$ and the length of the oligo, computes $T(p)$. The default is $p=.5$, which reduces to a T_{M} calculator.

Curve.vi takes values of $d H, d S$ and the length of an oligo, combines them with the initial concentrations and salt factor from $\mathrm{T}(\mathrm{p})$-precalc, and for any value of T, computes the coefficients of the quadratic and solves them for $p(T)$.

