
T (p) =
dH

dS − R ln [dsDNA]

[ssDNA1][ssDNA2]

We begin with two types of ssDNA, ssDNA1 with initial concentration [ssDNA1]
and ssDNA2 with initial concentration [ssDNA2] ≥ [ssDNA1]. The when all strands are
coiled, we have a final concentration of dsDNA, [dsDNA1] = [ssDNA1] and an excess
concentration of ssDNA2 equal to [ssDNA2]− [ssDNA1]. If p represents the proportion of
final dsDNA product that is uncoiled so that (1− p)[dsDNA] represents the concentration
of coiled dsDNA, then p is also the uncoiled proportion of ssDNA1, with p[ssDNA1] and
[ssDNA2]− (1− p)[ssDNA1] the concentrations of ssDNA1 and ssDNA2 respectively. The

expression [dsDNA]

[ssDNA1][ssDNA2]
becomes

1 − p

p([ssDNA2] − (1 − p)[ssDNA1])

.
When p = 1/2, at TM , this is

1

[ssDNA2] − 1/2[ssDNA1]).

so since inverting an expression inside a log corresponds to a change of sign outside,

T (p) =
dH

dS − R ln [dsDNA]

[ssDNA1][ssDNA2]

=
dH

dS + R ln [ssDNA2] − 1/2[ssDNA1])
,

the form in TmCalculators and TmPrecalc.
When [ssDNA2] = [ssDNA1], 1−p

p([ssDNA2]−(1−p)[ssDNA1])
becomes 1−p

p2[ssDNA1]
so

since the log of a quotient is the difference of the logs,

T (p) =
dH

dS − R ln [dsDNA]

[ssDNA1][ssDNA2]

=
dH

dS + R ln[ssDNA1] − R ln 1−p
p2

.

In the equal concentrations case, we proceed as follows.
Setting K = R ln[ssDNA1] and solving

T (p) =
dH

dS + C(p)
=

dH

dS + K − R ln 1−p

p2

for p, we get

ap2 + p − 1 = 0
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Here p is the proportion uncoiled and 1− p is the proportion coiled, and a = e−dG(T ),
where G = (dH −TdS −KT )/RT , where K depends only on probe and target concentra-
tions, and dH and dS depend only upon the nearest neighbor parameters and properties
of the oligo under consideration.

Since we know C(.5), we can obtain

K = C(.5) + R ln .5.

Dividing by a and setting v = 1/a, we solve for the positive root p of the quadratic
equation

p2 + vp − v = 0,

p =
−v +

√
v2 + 4v

2
.

Some observations about the dependence of G, a, and v on T .
Since dH < 0, dS < 0, K < 0 (depending upon [ssDNA1]), as T → 0, dG = (dH −

TdS − KT )/RT = ( dH
RT

−dS−K
R

=→ −∞ so a → +∞, v → 0+.

Interestingly, as T → +∞, dG → −dS−K
R

> 0, a → a∗ with 0 < a∗ << 1, v → v∗ with
1 << v∗ << +∞.

So as T → 0, p → 0 and the fraction coiled 1 − p → 1. but as T → +∞, p → p∗ with
0 < 1 − p∗ << 1. A minimum proportion of DNA remains coiled no matter how great T
becomes.

Rewriting

p =
−v +

√
v2 + 4v

2

in terms of w = v + 2 to complete the square, we obtain

p =
−(v + 2) + 2 +

√

(v + 2)2 − 4

2

or

p = 1 −
w −

√
w2 − 4

2

from which the fraction coiled, 1 − p becomes

1 − p =
w

2
−

√

w

2

2
− 1

where w
2

= w(T )
2

= 1+ 1
2
edG(T ). So w → 1 as T → 0. The melting temperature TM is where

this difference is 1/2. Solving x− 1/2 =
√

x2 − 1, we get this occurs when x = w/2 = 5/4.
So the sharp phase transition is due to the fact that edG(T ) remains very small until

the melting temperature then grows quickly to its large positive limit edG∗ . edG(T ) is of
the form ea− b

T , where a > 0, b > 0, so when T is small, the second term is dominant and
the result is extremely small, but as T grows, the first term eventually dominates, with
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a rapid transition to extremely large values. This function becomes the argument of a
function with values near 1 for small values of its argument, and near zero for large values
of its argument, hence the form of the melting curves.

In the general case,

T (p) =
dH

dS − R ln [dsDNA]

[ssDNA1][ssDNA2]

=
dH

dS − R ln 1−p

p([ssDNA2]−(1−p)[ssDNA1])

.
Rearranging again,

p([ssDNA2] − (1 − p)[ssDNA1])e−
dH−T dS

RT + p − 1 = 0

[ssDNA1])e−
dH−T dS

RT p2 + (1 + ([ssDNA2] − [ssDNA1])e−
dH−TdS

RT ) − 1 = 0

ap2 + bp − 1 = 0

where a = [ssDNA1]e−
dH−T dS

RT and b = 1 + ([ssDNA2] − [ssDNA1])e−
dH−T dS

RT )
We note that when the initial concentrations are equal, the general case reduces to the

original equal concentration case, since the expression for b becomes 1, and the expression
for a is identical to the expression for a only depends on the smaller initial concentration.
Also, since the equal concentration case K = R ln[ssDNA1] a may also be written as

e−
dH−T dS−KT

RT , no different than in the equal concentration case, and in that case,
If we let d = [ssDNA2] − [ssDNA1] so that b = 1 + d, and again dividing through by

a, so the quadratic equation becomes monic, p2 + (1+d)
a

− 1
a

= 0, we call v = 1
a

(which has
the same value as before in terms of the initial concentration of ssDNA1 and dH, dS, and
R so p2 + (1 + d)vp − v = 0 and the melting curve solution is given by

p =
−(1 + d)v +

√

((1 + d)v)2 + 4v

2
.

Exercise: Complete the square and try to make analogous transformations to obtain
a simpler form for 1 − p as in the equal concentration case.
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In the equal concentrations case, we are able to compute T (p) for different p by
determining C(p) = K − R ln 1−p

p2 , and either using the formula K = R ln[ssDNA1] or

solving for K from the known value of C(p) when p = .5, C(.5)=R ln[ssDNA1]
2

C(.5) =

K − ln 2, so K = C(.5) + ln 2. Another form is C(p) = C(.5) + ln 2 − R ln 1−p

p2 so we only

need to know C(.5) the factor used in the melting temperature calculator to compute all
other T (p)s.

This is not so in the general case. To compute C(p), hence T (p), use

T (p) =
dH

dS − R ln [dsDNA]

[ssDNA1][ssDNA2]

=
dH

dS − R ln 1−p

p([ssDNA2]−(1−p)[ssDNA1])

.
Here, C(.5) = −R ln 1−p

p([ssDNA2]−(1−p)[ssDNA1])
= R ln([ssDNA2] − .5[ssDNA1]) is

not enough to compute C(p).
Note that p([ssDNA2]−(1−p)[ssDNA1]) may be rewritten p2[ssDNA1]+p([ssDNA2]−

[ssDNA1])
TmCalculators and TmPrecalculators computed C(.5) and for the equal concentration

first example, we did use this to compute other TM s for parameter inversion. To do
this in more generality, “T (p)-Precalc” must provide the data necessary to compute the
coefficients for melting curve inversion and computing the temperature for an arbitrary
fraction uncoiled, p. so TpPrecalc.vi delivers [ssDNA1] and [ssDNA2] − [ssDNA1] along
with the salt dependent length factor.

T (p)-calculator takes these values and given p, as well as the values of dH and dS
and the length of the oligo, computes T (p). The default is p = .5, which reduces to a TM

calculator.
Curve.vi takes values of dH, dS and the length of an oligo, combines them with the

initial concentrations and salt factor from T(p)-precalc, and for any value of T , computes
the coefficients of the quadratic and solves them for p(T ).
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