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The advent of digital computers has made the routine use of pattern-matching possible in various applications.
This has also stimulated the development of many algorithms. In this paper, we propose a new algorithm
that offers improved performance compared to those reported in the literature so far. The new algorithm has
been evolved after analyzing the well-known algorithms such as Boyer-Moore, Quick-search, Raita, and
Horspool. The overall performance of the proposed algorithm has been improved using the shift provided
by the Quick-search bad-character and by defining a fixed order of comparison. These result in the reduction
of the character comparison effort at each attempt. The best- and the worst- case time complexities are also
presented in this paper. Most importantly, the proposed method has been compared with the other widely
used algorithms. It is interesting to note that the new algorithm works consistently better for any alphabet
size.

1. INTRODUCTION

Over the years, pattern-matching has been routinely used
in various computer applications, for example, in editors,
retrieval of information (from text, image, or sound), and
searching nucleotide or amino acid sequence patterns in
genome and protein sequence databases. The present day
pattern-matching algorithms match the pattern exactly or
approximately within the text. An exact pattern-matching is
to find all the occurrences of a particular pattern (x) x1 x2

... xm) of m-characters in a text (y) y1 y2 ... yn) of
n-characters which are built over a finite set of characters
of an alphabet set denoted byΣ and the size of this set is
equal toσ.

The direct way to this problem is to compare the first
m-characters of the text and the pattern in some predefined
order and, after a match or a mismatch, slide the entire pattern
by one character in the forward direction of the text. This
process is repeated until the pattern is positioned at the (n-
m+1) position of the text. This approach is commonly known
as a brute-force method. To facilitate this task, several
algorithms have been proposed, and these have their own
advantages and limitations based on the pattern length,
periodicity, and the type of the text (for e.g., nucleotide or
amino acid sequences or language characters, etc.). Most of
the well-known algorithms (see below for details) work in
two phases: i.e., the preprocessing phase and the search
phase. In the preprocessing phase, these algorithms process
the pattern and use this information in the search phase to
reduce the total number of character comparisons and hence
reduce the overall execution time. The efficiency of an
algorithm mainly depends on the search phase. The main
objective behind the pattern-matching algorithms is to reduce

the total number of character comparisons between the
pattern and the text to increase the overall efficiency. The
improvement in the efficiency of a search can be achieved
by altering the order in which the characters are compared
at each attempt and by choosing a shift factor that permits
the skipping of a predefined number of characters in the text
after each attempt.

Pattern-matching algorithms scan the text with the help
of a window, whose size is equal to the length of the pattern.
The first step is to align the left ends of the window and the
text and then compare the corresponding characters of the
window and the pattern; this procedure is known as attempt.
After a match or a mismatch of the pattern, the text window
is shifted to the right. The question is how many characters
are required to shift the window on the text. This shift value
varies based on the methodology used by various algorithms.
This procedure is repeated until the right end of the window
is within the right end of the text.

2. SURVEY ON THE EXISTING ALGORITHMS

The algorithms reported in the literature are ranked based
on their average-case and worst-case time complexities. The
Boyer-Moore1 algorithm and its variants are widely used in
the software industry. The algorithm, Quick-search,2 performs
better, when the pattern length is small and the alphabet size
is large (which is true in most of the practical situations). In
the Raita3 algorithm, the order of the comparison is modified
to attain maximum efficiency. The Horspool4 algorithm
performs the comparison in a simple way, which works for
most of the practical cases. The algorithms are further
discussed in detail in the subsequent sections.

The Boyer-Moore Algorithm (BM). Theoretically, the
Boyer-Moore1 algorithm is one of the efficient algorithms
compared to the other algorithms available in the literature.
The algorithm preprocesses the pattern and creates two tables,
which are known as Boyer-Moore bad character (bmBc) and
Boyer-Moore good-suffix (bmGs) tables. For each character
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in the alphabet set, a bad-character table stores the shift value
based on the occurrence of the character in the pattern. On
the other hand, a good-suffix table stores the matching shift
value for each character in the pattern. The maximum of
the shift value between the bmBc (character in the text due
to which a mismatch occurred) dependent expression and
from the bmGs table for a matching suffix is considered after
each attempt, during the searching phase. This algorithm
forms the basis for several pattern-matching algorithms.

The Quick-Search Algorithm (QS). The Quick-search2

algorithm uses the Quick-search bad-character (qsBc) shift
table, generated during the preprocessing stage. The shift
value for a character in the qsBc table is defined as its
corresponding position in the pattern from right to left order.
If the character is not present in the pattern, then the shift
value is equal to m+1. After an attempt, when the window
is positioned on y[j.. j+m-1], the length of the shift is at
least equal to one. Therefore, the character y[j+m] is
necessarily involved in the next attempt and is used for the
bad-character shift of the current attempt. During each
attempt of the searching phase, the comparisons between the
pattern and the text characters can be performed in any order.

The Horspool Algorithm (HORSPOOL). The Horspool4

algorithm is a derivative of Boyer-Moore1 and is easy to
implement. When the alphabet size is large and the length
of the pattern is small, it is not efficient to use Boyer-Moore’s
bad-character technique. Instead, it is always enough to find
the bad-character shift of the right-most character of the
window to compute the value of the shift. These shift values
are computed in the preprocessing stage for all the characters
in the alphabet set. Hence, the algorithm is more efficient in
practical situations where the alphabet size is large and the
length of the pattern is small.

The Raita Algorithm (RAITA). Raita3 designed an
algorithm in which the order of character comparisons has
been changed to attain maximum efficiency. First, the
rightmost character of the pattern and the window are
compared, and on a match, the leftmost character of the
pattern and the window are compared. If they match, it
compares the middle character of both the pattern and the
window. Second, if they match, it compares the characters
from the second to the penultimate (n-1) position of the
pattern and the window. The skip for the window is
computed by applying the bmBc (computed during the
preprocessing phase) shift of the rightmost character in the
window.

3. THE PROPOSED ALGORITHM

The idea behind the proposed algorithm is as follows. The
order of comparisons is carried out by comparing the last
character of the window and the pattern, and after a match,
the algorithm further compares the first character of the
window and the pattern. By doing so, an initial resemblance
can be established between the pattern and the window, and
the remaining characters are compared from right to left until
a complete match or a mismatch occurs. After each attempt,
the skip of the window is gained by the Quick-Search bad-
character (qsBc) shift value for the character that is placed
next to the window.

The reason for successively comparing the last character
first and the first character second and then continuing the

comparison of characters in the right to left order of the
pattern and window is mainly due to the fact that the
dependency of the neighboring characters is strong compared
to the other characters. Hence, it is always better to postpone
the comparisons on the neighboring characters. This forms
the basis for the new algorithm proposed in this paper. The
probability of assessing an exact match between the pattern
with the window is increased with a minimum number of
comparisons by incorporating the concept of initial resem-
blance. In addition, the maximization of the skip for the
window reduces the number of character-character compari-
sons and hence increases the performance.

3.1. Preprocessing Phase.This is performed using the
Quick-search bad-character function (qsBc) for all the
characters in the alphabet set. A table is formed with a size
σ, storing the character and its corresponding skip value. The
value qsBc for a particular alphabet is defined as the position
of that character in the pattern from right to left, and if it
does not occur in the pattern, then the value is equal to m+1.
The skip value for each character is stored in the qsBc table
in such a way that it can be used readily in the searching
phase to calculate the skip on the window over the text. In
the searching phase, after each attempt, the skip of the
window is computed by obtaining the shift value of the
character immediately after the window. The maximum skip
value for the window is realized when the character
(character immediately after the window) is not present in
the pattern. The probability of a character occurring in the
pattern becomes less when the alphabet size is big, and it
helps to get a maximum skip of the window. In the proposed
algorithm, we consider the Quick-search bad-character (qsBc)
over the Boyer-Moore bad-character (bmBc) for the follow-
ing reasons:

(1) The qsBc value is always defined to beg1, and hence
this could work independently to implement a fast algorithm.
On the other hand, bmBc sometimes yields a shift valuee
0 and in such cases it could not be used independently.
Hence, it has to work along with bmGs (Boyer-Moore good-
suffix) to calculate the skip of the window.

(2) qsBc) bmBc+1, except for the last character in the
pattern. Hence, qsBc always gets more shift than bmBc in
practice.

(3) qsBc does not depend on the order of comparisons
between the pattern and the window. This is because qsBc
is defined relative to a character that lies outside the current
comparison range of the pattern. However, the Boyer-Moore
bmBc strongly depends on the right to left pattern scan order.

The above said reasons clearly demonstrate the advantages
of using qsBc over bmBc. The preprocessing phase assists
the searching phase to improve the overall efficiency of the
proposed algorithm. The three stages of the searching phase
of the proposed algorithm are outlined in the following
sections.

3.2. Search Phase.Stage 1 and stage 2 deal with the order
of character-character comparisons between the window and
the pattern.

Stage 1.To find out the initial resemblance between the
pattern and the window, first, the last character of the pattern
and the window are compared, and in case of a match, the
first character of the pattern and the corresponding character
in the window are compared. If these characters match, the
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algorithm enters into the next stage; otherwise, it goes to
the last stage.

Stage 2.After establishing an initial resemblance on the
window and the pattern, the remaining characters are
compared in the right to left order until a mismatch occurs
or all the m-2 characters match. If all the characters match,
the algorithm displays the corresponding position (j) of the
window on the text. Then the algorithm enters into the final
stage.

Stage 3.In this stage, the calculation of the distance by
which the window has to be shifted is computed using qsBc,
generated during the preprocessing phase, for the first
character placed immediately after the window.

This procedure is repeated until the window is positioned
beyond n-m+1.

3.3. C Language Implementation

9 The value of ASIZE is dependent on the alphabet size.
For efficiency considerations, we have chosen a value
accordingly to cover all the ASCII values of the characters
defined in the present alphabet set.

9 Void OUTPUT (int) is a function used to print the
position (j) of the current window on the text.

3.4. Working Example. The human genome consists of
37 490 gene sequences (NCBI site, U.S.A., ftp://ftp.ncbi.
nih.gov/genomes/H_sapiens/protein/). To validate the pro-
posed algorithm, a part of the gene sequence (only 47
residues from a gene sequence consisting of 136 amino acid
residues) has been used (see below for details).

Full Sequence in FASTA Format. >gi|4504279|ref|
NP_002098.1| H3 histone, family 3A [Homo sapiens] MAR-
TKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKK-
PHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREI-
AQDFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHA-
KRVTIMPKDIQLARRIRGERA

Part of the Sequence Considered for the Test Run.
MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGV-
KKPHRYRPGTV

y ) MARTKQTARKSTGGKAPRKQLATKAARKSAP-
STGGVKKPHRYRPGTV

x ) KAPRKQL
n ) 47 m ) 7
Preprocessing Phase.

A table is formed with a sizeσ, storing the character and its
corresponding skip value.

Searching Phase.First attempt:

shift ) qsBc[A] ) 6
First, the last characters of the pattern and the window

are compared. In case of a mismatch, the window moves
are based on the Quick-Search bad character shift value of
y[j+m].

Second attempt:

shift ) qsBc[G] ) 8
Here again, the comparison of the last characters of the

pattern and the text is carried out, and in the event of a
mismatch, the window is shifted based on the shift value of
y[j+m].

Third attempt:

shift ) qsBc[A] ) 6
In this case, the given pattern completely matches with

the text and the comparison is done as follows: First, the
last character of the pattern and the window are compared,
followed by the first, and then in the right to left manner.
Then the window is moved based on the shift value of
y[j+m].

A A C D E F G H I K L M N P Q R S T V W Y

qsBc[a] 6 8 8 8 8 8 8 8 3 1 8 8 5 2 4 8 8 8 8 8
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Fourth attempt:

shift ) qsBc[K] ) 3
In this attempt, the mismatch occurs between the last

characters of the pattern and the text. Therefore, the window
is shifted based on the shift value.

Fifth attempt:

shift ) qsBc[P]) 5
In this attempt also, because of the mismatch, the window

is moved based on the shift value.
Sixth attempt:

shift ) qsBc[V] ) 8
Here again, the comparison of the last characters of the

pattern and the text fails, so the window is shifted based on
the shift value.

SeVenth Attempt:

Total number of attempts: 7
Total number of character comparisons: 13
As shown above, the character-character comparison fails.

The shift value is calculated, but the window is not shifted
because it goes beyond the right end of the text.

4. ANALYSIS OF THE PROPOSED ALGORITHM

The preprocessing phase time complexity of our algorithm
is O(m + σ), and the space complexity is O(σ). The
subsequent section describes the search phase time complex-
ity.

Lemma 4.1.The time complexity is O ([(n/(m+ 1))]) in
the best case.

Proof. Every character that does not occur in the pattern
has a shift m+1 as defined by the Quick-search bad-character
function qsBc, calculated during the preprocessing phase.
Considering the best case (all the characters in the pattern is
completely different compared to the characters in the text),
matching m characters of the pattern in the text (see example
1 below) yields a shift of m+1 at each attempt and hence
the time complexity is O ([(n/(m+ 1))]).

Example 1:
Text: xxxxxxxxxxxxxxxxxxxxxxxxx
Pattern: yyyyy
Lemma 4.2. The time complexity is O(m(n-m+1)) in

the worst case.
Proof. By virtue of the fact that every character in the

text is matched no more than m times, the total character
comparisons for n characters of the text cannot be more than
m(n-m+1). In the worst case, the shift is equal to one, and

all the characters are matched at each attempt. This can be
realized when the characters in the pattern are exactly similar
to the characters in the text.

Example 2:
Text: aaaaaaaaaaaaaaaaaaaaaaaaa
Pattern: aaaaa
In the proposed algorithm, the average time complexity

cannot be defined strictly because it mainly depends on the
alphabet size and the probability of the occurrence of each
individual character in the text.

5. RESULTS

To assess the performance of our algorithm, we considered
all the well-known algorithms for comparison with the
proposed algorithm. We have analyzed two types of data,
consisting of small (σ ) 4) and big (σ ) 20) alphabet sizes.
The first one is the nucleotide sequences available in the
genome database and the second is the corresponding amino
acid sequences. We have executed and tested all the
algorithms under study using a 3.06 GHz processor, 1 GB
of RD-RAM with 512 KB of cache memory. The source
codes were compiled using the “cc” compiler without any
optimization. The reported time (in 10-2 seconds) in the
tables corresponds to the time taken by the algorithm. The
source code for the algorithms used for comparison is taken
from the corresponding literature.5

6. CASE STUDY WITH THE NUCLEOTIDE
SEQUENCES

A total of 837 gene sequences (comprising of nucleotides)
(826.31 MB size) have been deployed in the present study.
The data set contains four alphabets (nucleotides) in their
set viz., A - (Adenine, 239490165), C- (Cytosine,
183940124), G- (Guanine, 183818044), and T- (Thymine,
239419854) and hence, the alphabet size is equal to 4 (σ )
4). The numbers within the parentheses denote the corre-
sponding occurrences in the entire database. For each pattern
length, the calculation has been repeated for 50 different
randomly generated patterns to avoid bias in the result. The
same procedure is repeated for patterns of different lengths.
The average time taken by various algorithms is listed in
Table 1. The standard deviation (within the parentheses) is

Table 1. Comparison of the Proposed Algorithm with the
Well-Known Algorithms Available in the Literaturea

algorithmpattern
length QS HORSPOOL RAITA BM SSABSb

4 1972 (137) 1259 (76) 1143 (114) 1195 (79) 999 (76)
6 1796 (183) 1140 (100) 1009 (67) 1065 (72) 950 (69)
8 1732 (206) 1109 (109) 980 (79) 1016 (72) 918(57)
10 1774 (255) 1092 (101) 985 (105) 1038 (176) 939 (82)
12 1817 (293) 1125 (135) 991 (96) 1001 (85) 934 (74)
14 1656 (248) 1129 (235) 953 (84) 967 (113) 899 (65)
16 1806 (271) 1126 (122) 984 (88) 1001 (126) 954 (111)
18 1783 (241) 1140 (215) 971 (80) 960 (64) 929 (66)
20 1670 (236) 1098 (103) 967 (83) 930 (53) 900 (68)

a The database used is the gene sequences comprised of nucleotides
(σ ) 4). The patterns used here are generated randomly. For each pattern
length, 50 patterns have been generated and the average time (× 10-2)
is calculated. The numbers shown within the parentheses denote the
standard deviation.b SSABS (Sheik- Sumit- Anindya- Balakrish-
nan-Sekar) algorithm proposed in the present paper.
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also shown. The values in Table 1 are also plotted as a graph
(Figure 1), and it is evident that the total time taken by the
proposed algorithm is less. It is interesting to note that the
standard deviation is low in most of the places, and it shows
that the time is uniform irrespective of the pattern and its
length.

7. CASE STUDY WITH THE AMINO ACID SEQUENCES

We now consider the situation where the alphabet size is
large (σ ) 20) dealing with the amino acid residues. 453 861
gene sequences (191.24 MB size) have been used in the
present case study. In this case, the alphabet set is defined
as Σ ) (A (13100890), C (1839722), D (8295604), E
(9841468), F (6335049), G (10713539), H (3349835), I
(9562897), K (8668206), L (15356872), M (3715491), N
(6697619), P (6900621), Q (5838973) R (8414478), S
(10200603), T (8319861), V (10559951), W (1837371), Y
(4820702)), and the alphabet sizeσ ) 20. The numbers
within the parentheses denote the corresponding occurrence
of a particular amino acid residue in the database. As in the
previous case study, the computation has been carried out
for 50 randomly selected patterns for each of the pattern
lengths considered for study (see Table 2 for details). The
average time taken by various algorithms are given in Table
2. The standard deviation is also shown. The values listed
in Table 2 clearly show that the proposed algorithm is better
compared to other algorithms. The average time and the
pattern lengths are also represented graphically (Figure 2).
To conclude, the algorithm performs better irrespective of
the alphabet size.

8. CONCLUSIONS

In this paper, we propose a new algorithm for exact
pattern-matching by defining a new order of character-
character comparisons between the pattern and the window
at each attempt and by computing the appropriate shift value
that maximizes the skip of the window on the text. The new
algorithm has been tested, and it is particularly noteworthy
that the results obtained are consistently better when
compared with the algorithms reported in the open literature.

The database used to validate our algorithm is sufficiently
large, and at this point, it is enough to conclude that the
proposed algorithm is efficient and faster. Hence, it can
possibly be implemented in all applications related to exact
pattern-matching, in particular, biological sequence database
analysis. Our further interests are focused for developing
algorithms for multiple pattern matching and patterns that
include regular expressions to meet the challenges and
demands put forward by the present-day computational
genomics research.
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