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Abstract 

Shannon information theory can be used to quantify overall sequence conservation 

among sets of  related sequences. Variation in nucleic acid sequences  recognized by 

proteins can be  comprehensively modeled with information weight matrices that permit 

each member sequence to be rank ordered according to its respective individual 

information contents. These rankings can be used to compute the affinities of recognition 

sites by proteins and to predict the effects of nucleotide substitutions in the sequences of 

these sites.  The distribution of information across a set of protein binding sites in DNA is 

related to the pattern of intermolecular contacts that stabilize the protein-nucleic acid 

complex (i.e. the corresponding helical structure of double stranded DNA).   

 

 

A. Theory 

Shannon and Weaver (1949) developed their theory of information in order to understand 

the transmission of electronic signals and model the communication system. Gatlin 

(1972) first described its extension to biology. Information theory is an obvious tool to 

use in looking for patterns in DNA and protein sequences (Schneider, 1995). Information 

theory has been applied to the analysis of DNA and protein sequences in several ways: 

(1) by analyzing sequence complexity from the Shannon-Weaver indices of smaller DNA 

windows contained in a long sequence; (2) by comparing homologous sites in a set of 

aligned sequences by means of their information content; and (3) by examining the 

pattern of information content of a sequence divided into successively longer words 

(symbols) consisting of a single base, base pairs, base triplets and so forth.  

Some of the most useful applications of molecular information theory have come from 

studies of binding sites (typically protein recognition sites) in DNA or RNA recognized 

by the same macromolecule, which typically contain similar but non-identical sequences. 

Because average information measures the choices made by the system, the theory can 

comprehensively model the range of sequence variation present in nucleic sequences that 

are recognized by individual proteins or multi-subunit complexes.  
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Treating a discrete information source (i.e. telegraphy or DNA sequences) as a Markov 

process, Shannon defined entropy (H) to measure how much information is generated by 

such a process. The information source generates a series of symbols belonging to an 

alphabet with size J (e.g. 26 English letters or 4 nucleotides). If symbols are generated 

according to a known probability distribution p, the entropy function H(p1, p2, …, pJ) can 

be evaluated. The units of H are in bits, where one bit is the amount of information 

necessary to select one of two possible states or choices. In this section we describe 

several important concepts  regarding the use of entropy in genomic sequence analysis. 

Entropy is a measure of the average uncertainty of symbols or outcomes. Given a 

random variable X with a set of possible symbols or outcomes AX = {a1, a2, …, aJ}, 

having probabilities {p1, p2, …, pJ}, with P(x = ai) = pi, pi ≥ 0 and ∑ ∈
=

XAx
xP 1)( , the 

Shannon entropy of X is defined by 

∑
∈

=
XAx xP

xPXH
)(

1log)()( 2        (1) 

Two important properties of the entropy function are: (a) H(X) ≥ 0 with equality for one 

x, P(x) = 1; and (b) Entropy is maximized if P(x) follows the uniform distribution. Here 

the uncertainty or surprisal, h(x), of an outcome (x) is defined by 

)(
1log)( 2 xP

xh =   (bits)       (2) 

For example, given a DNA sequence, we say each position corresponds to a random 

variable X with values AX = {A, C, G, T}, having probabilities {pa, pc, pg, pt}, with P(x = 

A) = pa, P(x = C) = pc and so forth. Suppose the probability distribution P(x) at a position 

of DNA sequence is 

P(x = A) = 1/2; P(x = C) = 1/4; P(x = G) = 1/8; P(x = T) = 1/8. 

The uncertainties (surprisals) in this case are h(A) = 1, h(C) = 2, h(G) = h(T) = 3 (bits). 

The entropy is the average of the uncertainties: H(X) = E[h(x)] = 1/2(1) + 1/4(2) + 1/8(3) 

+ 1/8(3) = 1.75 bits. In a study of genomic DNA sequences, Schmitt and Herzel (1997) 

found that genomic DNA sequences are closer to completely random sequences than to 

written text, suggesting that higher-order interdependencies between neighboring or 

adjacent sequence positions make little contributions to the block entropy.  
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The entropy (average uncertainty), H, is 2 bits if each of the four bases is equally 

probable (uniform distribution) before the site is decoded. The information content (IC) 

is a measure of a reduction in average uncertainty after the binding site is decoded. IC(X) 

= Hbefore – Hafter = log2|Ax| – H(X), provided the background probability distribution 

P(before) is uniform (Schneider, 1997a). If the background distribution is not uniform, 

the Kullback-Leibler distance (relative entropy) can be used (Stormo, 2000). The 

information content calculation needs to be corrected for the fact that a finite number of 

sequences were used to estimate the information content of the ideal binding site, 

resulting in the corrected IC, Rsequence (Schneider et al., 1986). This measures the decrease 

in uncertainty before vs. after the macromolecule is bound to a set of target sequences. 

Positions within a binding site with high information are conserved between binding 

sites, whereas low information content positions exhibit greater variability.  The Rsequence 

values obtained precisely describe how different the sequences are from all possible 

sequences in the genome of the organism, in a manner that clearly delineates the 

conserved features of the site.  

Relative entropy For two probability distributions P(x) and Q(x) that are defined over 

the same alphabet the relative entropy (also known as the Kullback-Leibler divergence or 

KL-distance) is defined by 

∑
∈

=
XAx

KL xQ
xPxPQPD
)(
)(log)()||(        (3) 

Note that the relative entropy is not symmetric: DKL(P||Q) ≠ DKL(Q||P); and although it is 

sometimes called the KL-distance, it is not strictly a distance (Koski, 2001; Lin 1991). 

Relative entropy is an important statistic for finding unusual motifs/patterns in genomic 

sequences (Durbin et al., 1998; Lawrence et al., 1993; Bailey and Elkan, 1994; Hertz and 

Stormo, 1999; Liu et al., 2002).  

Rsequence vs. Rfrequency The fact that proteins can find their required binding sites among a 

huge excess of non-sites (Lin and Riggs, 1975; von Hippel, 1979) indicates that more 

information is required to identify an infrequent site than a common binding site in the 

same genome. The amount of information required for these sites to be distinguished 

from all sites in the genome, Rfrequency, is derived independently from the size and 
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frequency of sites in the genome. Rfrequency, like Rsequence, is expressed in bits per site. 

Rsequence cannot be less than the information needed to find sites in the genome. With few 

exceptions, it has been found that Rsequence and Rfrequency are similar (Schneider et al. 1986).  

This empirical relationship is strongly constrained by the fact that all DNA-binding 

proteins operating on the genome are encoded in the genome itself (Kim et al. 2003).   

 

Molecular machines are characterized by stable interactions between distinct 

components, for example, the binding of a recognizer protein to a specific genomic 

sequence.  The behavior of a molecular machine can be described with information 

theory. The properties of molecular machine theory may be depicted on multiple levels: 

on one level, sequence logos, which describe interactions between the molecules (see 

Figure 1), are equivalent to transmission of information by the recognizer as a set of 

binary decisions; on another level, the information capacity of the machine, which 

represents the maximum number of binary decisions (or bits) that can be made for the 

amount of energy dissipated by the binding event; and finally,  the relationship between 

information content and the energy cost of performing molecular operations (Schneider 

1991, Schneider 1994).  The molecular machine capacity is derived from Shannon’s 

channel capacity (Shannon, 1949). The error rate of the machine can be specified to be as 

low as necessary to ensure the survival of the organism, so long as the molecular machine 

capacity is not exceeded. Entropy decreases as the machine makes choices, which 

corresponds to an increase in information. 

 

The second law of thermodynamics can be expressed by the equation: dS ≥ dQ/T. The 

equation states that for a given increment of heat dQ entering a volume at some 

temperature T, the entropy will increase dS at least by dQ/T. If we relate entropy to 

Shannon’s uncertainty, we can rewrite the second law in the following form:  

IC
qTB

−
≤= )2ln(min κε   (joules per bit)     (4) 

where κB is Boltzman constant and q is the heat. This equation states that there is a 

minimum amount of heat energy that must be dissipated (negative q) by a molecular 

machine in order for it to gain IC = 1 bit of information. 
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Individual information  The information contained in a set of binding sites is an average 

of the individual contributions of each of the sites [Shannon 1948; Pierce 1980; Sloan and 

Wyner 1993; Schneider 1995].  The information content to each individual binding site 

sequence can be determined by a weight matrix so that the average of these values over 

the entire set of sites is the average information content [Schneider 1997].  

The individual information weight matrix is:  

)))((),((log(0.2),( 2 lnelbflbRiw +−−=  (bits per base)   (5) 

in which f(b,l) is the frequency of each base b at position l in the binding site sequences; 

e(n(l)) is a correction of f(b,l) for the finite sample size (n sequences at position l) 

[Schneider et al 1986].   The jth sequence of a set of binding sites is represented by a 

matrix s(b,l,j), which contains 1’s in cells from base b at position l of a binding site and 

zeros at all other matrix locations. The individual information of a binding site sequence 

is the dot product between the sequence and the weight matrix:  

∑∑
=

=
l

t

ab
iwi lbRjjbsjR ),(),,()(  (bits per site)    (6) 

 

B. Applications   

 

Displaying sequence conservation Sequence logos, which display information about 

both consensus and non-consensus nucleotides, are visual representations of the 

information found in a binding site (an example is shown in Figure 1). This is the 

information that the decoder (i.e. a binding protein) uses to evaluate potential sites in 

order to recognize actual sites. The calculation of sequence logos uses the assumption 

that each site is evaluated independently, i.e. that there is no correlation between a change 

in nucleotide at one position with another position, which is reasonable for most genomic 

sequences (Schmitt and Herzel 1997).  An advantage of the information approach is that 

the sequence conservation can be interpreted quantitatively. Rsequence, which is the total 

area under the sequence logo and measures the average information in a set of binding 
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site sequences, is related to the specific binding interaction between the recognizer and 

the site. Rsequence is an additive measure of sequence conservation; thus it is feasible to 

quantitatively compare the relative contributions of different portions within the same 

binding site. 

 

Structural features of the protein-DNA complex can be inferred from sequence logos. 

When positions with high information content are separated by a single helical turn (10.4 

base pairs), this suggests that the protein makes contacts across the same face of the 

double helix.  Sequence conservation in the major groove can range anywhere between 0 

and 2 bits depending on the strength of the contacts involved, and usually correlates with 

the highest information content positions (Papp et al. 1993). Minor groove contacts of B-

form DNA allow both orientations of each kind of base pair so that rotations about the 

dyad axis cannot easily be distinguished, hence a single bit is the information content in 

native B-form DNA (Schneider 1996). Higher levels of conservation for bases within the 

minor groove indicate that these positions are accessed protein distortion of the helix, i.e. 

bending accompanied by base pair opening and flipping (Schneider, 2001).  

 

 

Visualizing individual binding site information 

Because sequence logos display the average information content in a set of binding sites, 

they may not accurately convey protein-DNA interactions with individual DNA 

sequences, especially at highly variable positions within a binding site.  The walker 

method (Schneider 1997b) graphically depicts the nucleotide conservation of a known or 

suspected site compared to other valid binding sites defined by the individual information 

weight matrix (Schneider 1997a).  Walkers apply to a single sequence (rather than a set 

of binding sites); only a single letter is visualized at each position of the binding site (Fig. 

2). The height of the letter, which is in units of bits, represents the contribution of that 

nucleotide at each position in the binding site by the information weight matrix, Riw(b,l).    

Evaluation of the Ri value at each position in a genomic DNA sequence is equivalent to 

moving the walker along that sequence.  Walkers are displayed for sequences with 
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positive Ri values, since these are more likely to be valid binding sites (see equation 4 

and discussion below). Sequence walkers facilitate visualization and interpretation of the 

structures and strengths of binding sites in complex genetic intervals and can be used to 

understand the effects of sequence changes (see below), and engineer overlapping or 

novel binding sites.  

Mutation and polymorphism analysis Because the relationship between information 

and energy can be used to predict the effects of natural sequence variation at these sites, 

phenotypes can be predicted from corresponding changes in the individual information 

contents (Ri, in bits) of the natural and variant DNA binding sites (Rogan et al., 1998; see 

g206101). For splice site variants, mutations have lower Ri values than the corresponding 

natural sites, with null alleles having values at or below zero bits (Equation 4; Kodolitsch 

et al., 1999). The decreased Ri values of mutated splice sites indicate that such sites are 

either not recognized or are bound with lower affinity, usually resulting in an 

untranslatable mRNA. Decreases in Ri are more moderate for partially functional (or 

leaky) mutations that reduce but do not abolish splice site recognition and have been 

associated with milder phenotypes (Rogan et al 1998).   The minimum change in binding 

affinity for leaky mutations is ≥ 2∆Ri lower fold than cognate wild type sites.  Mutations 

that activate cryptic splicing may decrease the Ri value of the natural site, increase the 

strength of the cryptic site, or concomitantly affect the strengths of both types of sites 

(see Figure 2).  Non-deleterious changes do not alter the Ri value of splice sites 

significantly (Rogan and Schneider, 1995). Increases in Ri indicate stronger interactions 

between protein and cognate binding sites.  
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Information evolution How do genetic systems gain information in a binding site of 

genomic DNA sequence by evolutionary processes? Schneider (2000) proposed an 

answer to this question. Given a binding site for an artificial protein, his simulation 

begins with zero information and, as in naturally occurring genetic systems, the 

information measured in the fully evolved binding sites (Rsequence) is close to that needed 

to locate the sites in the genome (Rfrequency). 

 

Model refinement  Information models based on small numbers of proven binding sites 

may fail to detect valid binding sites and tend to predict Ri inaccurately. Iterative 

selection of functional binding sites has been used to optimize (Lund et al., 2000)  and to 

introduce bias (Shultzaberger and Schneider, 1999)  into the frequencies of each 

nucleotide in computing the information theory-based weight matrices of binding sites. 

Significant differences between information weight matrices have been determined from 

their respective evolutionary distance metrics (for example, see Shultzaberger et al., 

2001).  The effects of model refinements can be monitored by comparing the genome 

scan results for pairs of successive information weight matrices based on additional 

binding sites (Gadiraju et al., 2003)  Other potential applications include determining the 

locations of overlapping binding sites recognized by different proteins and comparisons 

of binding sites detected with information models of orthologous proteins from different 

species. 

 

Regulatory binding sites Information theory-based models have been used in searching 

for regulatory sites in genomic DNA or RNA sequences of prokaryotes (Hengen et al., 

1997) and eukaryotes (see g402310). The binding sites in prokaryotes include the 

ribosome binding sites (Shultzaberger et al., 2001), T7 promoters, plasmid replication 

initiator protein binding sites (Papp et al., 1993) and binding sites for repressors and 

polymerases (Schneider et al., 1986) and cyclic AMP receptor protein (Stormo and 

Fields, 1989) in E. coli.  

 

A bipartite pattern is an independent functional unit on the upstream or downstream 

side of a regulated gene that is recognized by a protein binding complex such as a 
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heterodimer. A model built to simulate a bipartite pattern in genomic sequences has  

left and right motif sub-models, plus an associated gap penalty function, g(d) defined as 

–log(n(d)/n), where n(d) is the number of sites with gap size d. Shannon’s entropy can 

be used to evaluate such sites by calculating the total information content, IC, given as 

)()|()|( dgdrightICdleftICIC −+=      (7) 

( )( ) { }∑
=

∈−=
mJ

l
mlX rightleftmXHAdmIC

1
2 ,,log)|(    (8) 

( ) ( ) ( ) { }∑
∈

==
XAx

X
ml

mlml TGCAA
xP

xPXH ,,,,1log2    (9) 

Here Jm is the width of motif m, and Pml(x) is the probability of x at position l given 

motif m. The left and right motifs are not allowed to be overlapping and the gap size (d) 

is set to a limited range [dmin, dmax] based on empirical observations. The goal is to 

maximize the total information content which can be reduced to minimize the total 

Shannon’s entropy. We used a Monte Carlo strategy to greedily search the multiple 

alignment space and find an optimal solution to the bipartite pattern search problem (Bi 

et al., 2004). 

 

We developed a new method for the bipartite cis-regulatory pattern discovery based on  

minimizing entropy, and applied the method to a set of known PXR/RXRα binding sites 

in the human genome. The PXR/RXRα heterodimer binding controls the expression of 

co-regulated genes such as CYP3A4, which is involved in detoxification of drugs and 

xenobiotics (see g206211). This work is an extension of Shultzaberger et al. ,  2001. 

Using the assumption that two proteins (i.e. PXR and RXRα) cooperatively bind to the 

bipartite site with constrained spacers, we built models for different motif widths and 

validated them based on the relative binding strength of the a series of test sequences. 

The results supported our hypothesis that PXR and RXRα transcription factors 

cooperatively bind to two adjacent motifs with variable spacing (Bi et al 2004). 

 

Genome-wide analyses  Information weight matrices of binding sites can be developed 

directly from validated sets of binding sites extracted from genome sequences provided 

that the locations of sequence features are accurately annotated.  As this is not always the 
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case, we built a genome-wide human splice junction database by initially extracting the 

coordinates and sequences of donor and acceptor splice regions from both strands of the 

human genome reference sequence (Rogan et al., 2003).  After redundant sites were 

eliminated, the splice site database consisted of 170,144 acceptor and 170,450 donor 

sites.  The information weight matrix was recomputed after each of iteration and scanning 

of the resultant set of sites. Successive models iteratively utilized the modified matrix by 

excluding sites with negative Ri values.  After 8 cycles of refinement, the final models 

were then defined by 108,079 unique acceptor sites and 111,772 donor sites (Sequence 

logos of model sites are shown in Figure 1).  

 

The average information contents of the acceptor and donor sites are respectively, 9.8 

bits/site and 8.1 bits/site. These values are similar to those previously reported by 

Schneider and Stephens (1992), i.e. 9.35 bits for acceptors and 7.92 bits for donors, 

which were based on about 65-fold fewer splice sites. Individual splice site strengths in 

the genome have an approximately Gaussian distribution.  

 

 

C. Prospects for information theory based analyses of genomic sequences 

As the functions for regulatory and expressed nucleic acid sequences are elucidated, it is 

becoming evident that multiple protein components catalyze these processes.  Modeling 

such molecular machines by information theory will require the development of 

procedures that account for cooperative and interdependent binding events between two 

or more recognizers.  Frameworks for building multipartite information models will 

therefore have to incorporate corrections for overlapping sites and mutual information. 

 

There are opportunities to enhance currently available genomic                              

applications by scaling currently available software for information theory analyses 

(Gadiraju et al. 2003) to investigate genome annotation.  For example, changes in IC 

contents due to mutation may be of assistance in prioritizing single nucleotide 

polymorphisms for functional analyses. It is also possible that comparative genomic 

analyses of binding sites with orthologous DNA recognition domains from multiple 
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species may reveal possible identities of functionally-analogous regulatory sequences in 

these systems. 

 

Medical genetic applications of information theory based binding site models are a 

promising avenue to improve diagnosis and prognosis of disease causing mutations (see 

g106404). Accurate models will be required for use of information theory in a clinical 

setting. To calibrate individual information measures of protein-nucleic acid binding with 

the thermodynamic properties of these complexes will require more comprehensive 

models, ie. based on larger numbers of binding sites spanning a wide range of binding 

affinities.  
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Figure Captions 

 

Figure 1. Examples of sequence logos. Models of human (A) 108,079 acceptor and (B) 

111,772 donor splice sites derived from both strands of the human genome reference 

sequence (April, 2003) are shown. A sequence logo visually represents the sequence 

conservation among a common set of recognition sites, with the height of each nucleotide 

stack corresponding to the the average information content at that position. The height of 

each nucleotide is proportional to its frequency. Sampling error is indicated by error bar 

at the top of each stack.The zero coordinate represents the intronic position immediately 

adjacent to the splice junction. The average information contents (Rsequence) of the 

acceptor and donor sites are respectively, 9.8118 ± 0.0001 bits/site and 8.12140 ± 

0.00009 bits/site.  

 

Figure 2. Examples of sequence walkers.  A synonymous C>T substitution at codon 608 

activates a cryptic donor splice site in exon 11 the LMNA gene in patients with 

Hutchinson-Gifford progeria (Ericksson et al. 2003). The walker, shown below the 

sequence, indicates a pre-existing 8.7 bit cryptic site that is strengthened by the mutation 

to 10.2 bits (≥ 2.8 fold).  The height and orientation of each nucleotide correspond to 

contribution that nucleotide makes to the overall information content in the binding site. 

The green rectangle indicates the location of valid splice site (Ri > 0) and delineates the 

scale displayed; the lower and upper limits shown are, respectively, -4 bits and +2 bits. 

Sequence coordinates are from GenBank accession L12401 (4277C>T).  
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- 3 -
 piece 2, L12401

* * 4270 * * 4280
 5’ g a g c c c a g g t g g g c g g a c c c  3’

 - A   - Q  - V   - G  - G  - P   -
... ---------------------------------------- ... L12401.#11

[-----------  ] Normal_sequence_of_LMNA
c a g g t g

g
g c g donor 8.7 bits @4272

iece 3, L12401.c4277t, at 4277 c->tiece 3, L12401.c4277t, at 4277 c->tiece 3, L12401.c4277t, at 4277 c->t

* * 4270 * * 4280
 5’ g a g c c c a g g t g g g t g g a c c c  3’

 - A   - Q  - V   - G  - G  - P   -

c a g g t g
g
g t g donor 10.2 bits @4272

G608G (GGC>GGT)

Figure 2




