Math 2210-1

Notes of 01/23/24

- Bohyun ill today
- Peter Alfeld, pa@math.utah.edu

11.6 Lines and Tangents

- The simplest curve is a line.
- A line is determined by a fixed point

$$
P_{0}=\left(x_{0}, y_{0}, z_{0}\right)
$$

and a fixed vector

$$
\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

contained in the line.

- A line though the point P in the direction \mathbf{v} can be written as

$$
\mathbf{r}=O \vec{P}_{0}+t \mathbf{v}=\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=O \vec{P}_{0}$.

- This is a parametric representation of the line. In component form it is given by

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t .
$$

- Example 1. Write an equation for the line through the points $(3,-2,4)$ and $(5,6,-2)$.
- Modify Example 1 such that t gives the distance from the point $(3,-2,4)$.

Symmetric Equations of a Line

- In the previous example we got the parametric equations
$x=3+2 t, \quad y=-2+8 t, \quad$ and $\quad z=4-6 t$.
- Suppose (x, y, z) is a point on that line. Then for some value of t we get the values x, y, z, and t is the same for all three values.
- We can solve each equation for t :

$$
\begin{array}{llll}
x & =3+2 t & \Longrightarrow & t=\frac{x-3}{2} \\
y & =-2+8 t & \Longrightarrow & t=\frac{y+2}{8} \\
z & =4-6 t & \Longrightarrow & t=\frac{z-4}{-6}
\end{array}
$$

- Eliminating t gives the symmetric equations of the line:

$$
\frac{x-3}{2}=\frac{y+2}{8}=\frac{z-4}{-6} .
$$

- In general, the symmetric equations of the line

$$
\mathbf{r}(t)=<x_{0}, y_{0}, z_{0}>+t<a, b, c>
$$

are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

- Example 3, textbook. Find the symmetric equations of the line where the two planes

$$
\begin{gathered}
2 x-y-5 z=-14 \\
\text { and } \\
4 x+5 y+4 z=28
\end{gathered}
$$

intersect.

- Once you have a line and a point you can find the plane that is perpendicular to the line at that point.
- Example: Find an equation for the tangent of the curve, and the plane that is perpendicular to that tangent,

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{1}{2} t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}
$$

at the point where $t=2$.

