"clay Millenium Problems"
Math 1220-3

Notes of 4/11/18

Announcements

- Q\&A tomorrow
- New Syllabus online. Next week: more on Taylor Series!

10.6 Polar Equations

- The graph of a polar equation is the set of all points $P(r, \theta)$ whose polar coordinates r and θ satisfy the equation.
- Same as before, replace "polar" with "cartesian".
- We already saw some examples. Today, let's start with a gallery of more examples.
- Here are a few more.
- A limaçon is the graph of an equation of the form

$$
r=a \pm b \cos \theta
$$

where a and b are real numbers.

- A limçacon is a cardioid if $a=b$.
- If $b=0$ a limaçon becomes a circle.

Figure 1. A Limaçon, $r=1+2 \cos (t)$.

Figure 2. A Limaçon, $r=1+0.5 \cos (t)$.

Figure 3. A Cardioid, $r=1+\cos (t)$.

Equation of a Line, Revisited

- yesterday we derived the equation of a line in terms of a distance and angle.

- Here is another form of this equation, more directly related to the standard cartesian form

$$
\begin{gathered}
y=m x+b \quad \begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r \sin \theta=m i \cos \theta+b \\
& r(\sin \theta-m \cos \theta)=b \\
& r=\frac{b}{\sin \theta \cdot m \cos \theta}
\end{aligned}
\end{gathered}
$$

Intersections of Polar Curves

- Intersections of curves are more tricky because you can get the same points for different values of the angle.

```
cartesian
    y=f(x)
    y=g(x)
    f(x)=g(x)->x
```


Figure 4. 2 Cardioids.

- Figure 4 shows two cardioids: $r=1+\cos \theta$ in green and $r=1-\sin \theta$ in red.
- Recall how we computed the the intersection of two curves in Cartesian Coordinates. If these are given by $y=f(x)$ and $y=g(x)$, say, we solve the equation

$$
f(x)=g(x)
$$

for x and then compute y for those values of x.

- Similarly, the two curves will intersect in a point if r and θ agree. Eliminating r from the two equations gives

$$
\begin{aligned}
1+\cos \theta & =1-\sin \theta \\
\cos \theta & =-\sin \theta \\
\tan \theta & =-1
\end{aligned}
$$

which gives the two angles

$$
\theta=\frac{3 \pi}{4} \quad \text { and } \quad \theta=\frac{7 \pi}{4}
$$

corresponding to the points

$$
P_{1}=P\left(1-\frac{\sqrt{2}}{2}, \frac{3 \pi}{4}\right) \quad \text { and } \quad P_{2}=P\left(1+\frac{\sqrt{2}}{2}, \frac{7 \pi}{4}\right)
$$

- Those points are clearly shown in Figure 4.
- However, the two curves also intersect in the origin.
- There $r=0$ and we get

$$
\begin{aligned}
1-\sin \theta & =0 \\
1+\cos \theta & =0
\end{aligned} \quad \Longrightarrow \quad \sin \theta=1 \quad \Longrightarrow \quad \theta=\frac{\pi}{2}=\begin{aligned}
\cos \theta & =-1 \quad \Longrightarrow \quad \theta=\pi .
\end{aligned}
$$

- The curves pass through the origin for different values of θ. If you think of them just as curves they do of course intersect there. If you think of $\theta=t$ as time and $P(r, t)$ being the location of a vehicle at time t they will coolide in P_{1} and P_{2}, but they will be at the origin at different times, and will not collide there.
10.7 Calculus in Polar Coordinates
- Suppose

$$
r=f(\theta)
$$

and we want to compute the area of a sector.

- We get the formula

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\theta) \mathrm{d} \theta
$$

- As usual, let's check it in a case where we know the true answer.
- For the unit circle we get

$$
A=\frac{1}{2} \int_{0}^{2 \pi} 1^{2} \mathrm{~d} \theta=\pi
$$

- good!
- Example 1, textbook: Compute the area enclosed by the limaçon

$$
f(\theta)=2+\cos \theta
$$

shown in Figure 5.

- First estimate!

Figure 5. Example 1, Area of Limaçon.

$$
\begin{aligned}
& f(\theta)=2+\cos \theta \\
& A=\frac{1}{2} \int_{0}^{2 \pi}(2+\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} 4+4 \cos \theta+\cos ^{2} \theta d \theta \\
& =\frac{1}{2}(8 \pi+0+\pi)=\frac{9 \pi}{2} \\
& \int_{2 \pi}^{2 \pi} 4 d \theta=8 \pi \\
& \int_{0}^{2 \pi} 4 \cos \theta d \theta=0 \\
& \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\pi \\
& \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{2 \pi} 1+\cos 2 \theta d \theta \\
& =\left.\frac{1}{2}\left(\theta+\frac{1}{2} \cos 2 \theta\right)\right|_{0} ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)
\end{aligned}
$$

Compute the area of the circle defined by

$$
r=\sin \theta
$$

