Math 2210-1

Notes of 8/24/18

Announcements

- You should have received a message from me with login info for WeBWorK.
- Email me, pa@math.utah.edu, if you are signed up for the class, and you have not received a message.
- ww email is sent through your Umail account.
- You can change your email address within ww.
- The first home work is open until Friday next week.
- hw 2 will open on Monday.
- You should finish each home work before the next one opens, so you should finish hw 1 by Sunday night.
- This morning: 100 people signed up for class, 5 people done completely, 51 done partially, 46 have not started answering question (but may of course have solved some or all problems).
- Today is the last day to register for the class without having to get permission.
- next Friday is the last day do drop the class without having to pay tuition.
- I'm in a rush after class since I have to go to another but you should have no trouble getting a hold of me at other times.

11.2 Vectors

- first major new concept this semester
- A vector has length (or magnitude) and direction.
- Examples include:
- displacement
- velocity
- acceleration
- force
- By contrast, a number has no direction. To emphasize the contrast with a vector, in this context a number is referred to as a scalar.
- Examples of scalars include:
- temperature
- pressure
- density
- speed
- Following the textbook, unless indicated otherwise, we use lower case bold face letters to denote vectors and ordinary lower case letters to denote scalars.
- You can think of a vector as an arrow. It has a tail and a head (or tip).
- We add two vectors \mathbf{u} and \mathbf{v} by attaching the tail of \mathbf{v} to the head of \mathbf{u}.

Figure 1. Vector Addition.

- The Parallelogram Law says that for all vectors \mathbf{u} and \mathbf{v} :

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

								${ }_{4}$						
									$v=$		<4	1)		
									$u=$		<1	27		
					+v	$=$			+1,		+2)	$y=$		5,3>

Figure 2. Parallelogram Law.

- We also write vectors as

$$
\mathbf{v}=<v_{1}, v_{2}>
$$

in the plane or

$$
\mathbf{v}=<v_{1}, v_{2}, v_{3}>
$$

in 3 -space.

- A point (x, y) is often identified with the vector $\left\langle v_{1}, v_{2}\right\rangle$. This amounts to assuming the tail of the vector is the origin.
- A notation like $\left.<v_{1}, v_{2}\right\rangle$ can also mean the set of all vectors with tail $\left(p_{1}, p_{2}\right)$ and head $\left(q_{1}, q_{2}\right)$ where

$$
v_{1}=q_{1}-p_{1} \quad \text { and } \quad v_{2}=q_{2}-p_{2}
$$

- This may appear very confusing, but it will be always clear from the context what is meant.
- Vectors can be added, and multiplied with scalars:
$\mathbf{v}+\mathbf{w}=<v_{1}, v_{2}>+<w_{1}, w_{2}>=<v_{1}+w_{1}, v_{2}+w_{2}>$
and

$$
\left.s \mathbf{v}=s\left\langle v_{1}, v_{2}\right\rangle=\left\langle s v_{1}, s v_{2}\right\rangle\right\}\langle 1,2\rangle=\langle 3,6\rangle
$$

- Similarly for vectors in \mathbb{R}^{3}. (We'll do this a lot: state a general property only for vectors in \mathbb{R}^{2} or \mathbb{R}^{3}.)

Figure 3. Vector Addition.

- In

$$
\mathbf{u}=<u_{1}, u_{2}, u_{3}>
$$

the u_{i} are called the $\left\{\begin{array}{l}\text { entries } \\ \text { components } \\ \text { coordinates } \\ \text { elements }\end{array}\right\}$ of \mathbf{u}.

- The textbook usually uses components, but occasionally the word component may mean something else. (For example, we might think of velocity as separated into a component in the direction of motion, and a component perpendicular to that direction.)
- A vector can have any number of components. The set of all vectors with n components is written as \mathbb{R}^{n}. For our purposes, usually $n=$
 real numbers as \mathbb{R}^{1}.
- The magnitude of a vector is the length of the arrow that represents it. We write it as

$$
\|\mathbf{u}\|=\left\|<u_{1}, u_{2}, u_{3}>\right\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
$$

- The magnitude $\|\mathbf{u}\|$ is also called the $\left\{\begin{array}{l}\text { norm } \\ \text { length } \\ \text { 2-norm } \\ \text { Euclidean Length } \\ \text { magnitude }\end{array}\right\}$
of \mathbf{u}.
- The zero vector is the vector with all components equal to zero:

$$
\mathbf{0}=<0,0>\quad \text { or } \quad \mathbf{0}=<0,0,0>.
$$

$$
\begin{aligned}
& -\langle 3,4\rangle \\
& =\langle-3,-4\rangle
\end{aligned}
$$

- The negative of a vector \mathbf{v} is the vector obtaine by interchanging the head and tail of v. Algebraically we multiply all components with -1 .
$-\mathbf{u}=-<u_{1}, u_{2}, u_{3}>=<-u_{1},-u_{2},-u_{3}>$.
- We subtract vectors by adding the negative:

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

- Clearly

$$
\mathbf{u}-\mathbf{u}=\mathbf{0}
$$

The zero vector

$$
\mathbf{0}=<0,0,0>
$$

has zero magnitude and no direction!

Properties

- Below are some properties of vectors and scalars. You should convince yourself that these are true, going back to the relevant definitions if necessary.

1.

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\mathbf{v}+\mathbf{u} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =\mathbf{u}+(\mathbf{v}+\mathbf{w})
\end{aligned}
$$

2.
3.
4.
5.
6.

$$
a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}
$$

7.

$$
(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}
$$

8.
9.

$$
\begin{aligned}
\mathbf{u}+(-\mathbf{u}) & =\mathbf{0} \\
a(b \mathbf{u}) & =(a b) \mathbf{u}=b(a u)
\end{aligned}
$$

$$
1 \mathbf{u}=\mathbf{u}
$$

$$
\|a \mathbf{u}\|=|a| \mathbf{u}
$$

The textbook does not define the concept of a vector precisely. Mathematically the properties above are used to define vectors. You'll see that definition in Linear Algebra, Math 2250 or 2270 .

Unit Vectors

- A vector \mathbf{u} is a unit vector if it has magnirude 1:

$$
\|\mathbf{u}\|=1
$$

- If \mathbf{v} is a (non-zero) vector then

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

is a unit vector in the same direction as \mathbf{v}

- Examples:

$$
\begin{aligned}
& V=\langle 3,4\rangle \\
&\|v\|=\sqrt{3^{2}+41^{2}}=\sqrt{25}=5 \\
& U=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle \\
&\left\|\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle\right\|=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{3^{2}+4^{2}}{25}=\frac{25}{25}=1
\end{aligned}
$$

Standard Unit Vectors

- Particularly important unit vectors are those in the directions of the coordinate axes. They have their own special notation.
- in \mathbb{R}^{2} :

$$
\mathbf{i}=<1,0>\quad \text { and } \quad \mathbf{j}=<0,1>.
$$

- in \mathbb{R}^{3} :
$\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=<0,1,0\rangle, \quad$ and $\quad \mathbf{k}=\langle 0,0,1\rangle$.
- Examples:

$$
\begin{aligned}
& \langle 3,4\rangle=3\langle 1,0\rangle+4\langle 0,1\rangle \leq 3 i+4 j \\
& \langle 1,2,-1\rangle=i+2 j-k
\end{aligned}
$$

- The line through the point P in the direction \mathbf{v} can be described by the equation

$$
Q=\mathbf{p}+t 孔 \boldsymbol{u}
$$

where \mathbf{p} is the vector with tail at the origin and head at P.

Q head of $\overrightarrow{O P}+t u$

$$
\begin{aligned}
P=(4,5) & u=(1,1) \\
Q(t)= & (4+t, 5+t)
\end{aligned}
$$

- Example: The diagonals of a parallelogram bisect each other.

Figure 4. Parallelogram.

$$
\begin{aligned}
M=u+\frac{1}{2}(v-u) & =u+\frac{1}{2} v-\frac{1}{2} u \\
& =\frac{1}{2}(u+v)
\end{aligned}
$$

