Math 1220-3
Notes of $1 / 30 / 18$

6.9 Hyperbolic Functions and their Inverses

- The hyperbolic sine, cosine, and tangent, are defined by

$$
\begin{aligned}
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
\tanh x & =\frac{\sinh x}{\cosh x}
\end{aligned}
$$

- You might say these are just combinations of exponentials, so they don't deserve treatment as a separate subject.
- However, they come up a lot in applications, and they have a large number of useful properties. We'll look at some of them.

$$
\sin , \cos \quad y^{\prime \prime}-y
$$

Figure 1. Graphs of hyperbolic functions.

Figure 2. Graphs of hyperbolic functions.

Why "Hyperbolic"?

$$
\begin{aligned}
& \cosh ^{2} x=\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right)^{2} \\
&=\frac{1}{4}\left(\left(e^{x}\right)^{2}+2\left(e^{x}\right)\left(e^{-x}\right)+\left(e^{-x}\right)^{2}\right) \\
&=\frac{1}{4}\left(e^{2 x}+2+e^{-2 x}\right) \\
& \sinh ^{2} x=\left(\frac{1}{2}\left(e^{x}-e^{-x}\right)\right)^{2} \\
&=\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right) \\
& \cosh ^{2} x-\sinh ^{2} x=\frac{1}{4} \cdot 4=1 \\
& n^{2}-v^{2}=1 \\
& u^{2}=1+v^{2}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sinh x & =\frac{d}{d x} \frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& =\cosh x
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \cosh x & =\frac{d}{d x} \frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& =\sinh x
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \tanh x & =\frac{d}{d x} \frac{\sinh x}{\cosh x} \\
& =\frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x} \\
& =\frac{1}{\cosh ^{2} x}
\end{aligned}
$$

Derivatives of Inverses

- cosh is not invertible.
- Let's do sinh.
- Differentiate implicitly:

$$
\arcsin h=\sinh h^{-1}
$$

$\operatorname{arcsinh}^{\prime}(x)$

$$
\left.\begin{array}{rl}
\sinh \operatorname{arcsinh} x & =x \\
(\cosh (\operatorname{arcinh} x)) & \operatorname{arcsihh}^{\prime}(x)=1
\end{array}\right)=1 \frac{d}{d x}
$$

$$
\begin{aligned}
1=\cosh ^{2} z & -\sinh ^{2} z \\
\cosh ^{2} z= & 1+\sinh ^{2} z \\
\cosh z & =\sqrt{1+\sinh ^{2} z}
\end{aligned}
$$

- We can compute an explicit expression for $\sinh ^{-1}$:

$$
\begin{aligned}
& y=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
&\left.z=e^{x}\right)=? \\
& y \left.=\frac{1}{2}\left(z-\frac{1}{2}\right) \quad \right\rvert\, \cdot z \cdot 2 \\
& 2 y z=z^{2}-1 \\
& z^{2}-2 y z-1=0 \\
& z(\left.=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right) \\
&=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2}=e^{x}>0 \\
&=y+\sqrt{y^{2}+1} \\
& x=\ln \left(y+\sqrt{y^{2}+1}\right) \\
& \arcsin 4 x=\ln \left(x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln \left(x+\sqrt{1+x^{2}}\right) & \left.=\frac{1+\frac{1}{2} \frac{2 x}{\sqrt{1+x^{2}}}}{x+\sqrt{1+x^{2}}} \right\rvert\, \cdot \frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}} \\
& =\frac{\sqrt{1+x^{2}}+x}{x \sqrt{1+x^{2}}+1+x^{2}} \\
& =\frac{x+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}\left(x+\sqrt{1+x^{2}}\right)}} \\
& =\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
=\sqrt{\sqrt{1+x^{2}}}
$$

A Catenary

- A hanging rope suspended at $x=-a$ and $x=a$ assumes the shape of the catenary

$$
y(x)=a \cosh \frac{x}{a}
$$

Figure 3. Catenary with $a=1$.

- Find the length of the catenary

$$
y(x)=a \cosh \frac{x}{a}, \quad-a \leq x \leq a
$$

- Expectations?

$$
\begin{aligned}
L & =\int_{-a}^{a} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{-a}^{a} \sqrt{1+\left(\frac{a}{a} \sinh \frac{x}{a}\right)^{2}} \\
& =\int_{-a}^{a} \sqrt{1+\frac{\sinh }{}} \frac{a}{a} \\
& =\int_{-a}^{a} \cosh \frac{x}{a} d x \\
& =a \sinh \frac{x}{a}(-a \\
& =a(\sinh)
\end{aligned}
$$

$$
\begin{aligned}
& =2 a \sinh 1 \\
& \approx 2.35 a
\end{aligned}
$$

