C^1 elements on triangles

- Recall: we need to work on only one element (triangle).
- We generate a general element matrix and then assemble the global linear system.
\(Q_{21} \) A **piecewise quintic \(C^1 \) element**

- Quintic have 21 parameters.
- The nodal data are: Function, gradient, and Hessian at the vertices.
- Values of the perpendicular Cross-Boundary Derivatives at the midpoints of edges.

\[
p(x, y) = \sum_{i+j \leq d} a_{ij} x^i y^j
\]

\[
\dim P_d = \binom{d+2}{2}
\]

- \(f(x, y) \)
- \(\nabla f = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \)
- \(\nabla^2 = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} \)
Q_{18} Condensation of Parameters

- we prefer to have nodal values only at vertices. The user may not even know about the triangulation!

- Start with Q_{21} and require that the perpendicular cross-boundary derivatives be cubic.

$\text{perp. cross-boundary derivative along the edge is } \text{cubic} \quad \text{(instead of quartic)}$
• A common requirement is to have as few parameters as possible subject to requirements such as global smoothness or reproduction of polynomials of degree as high as possible.

• \(Q_{21} \) has 21 parameters per triangle, or 6 per vertex and 1 per edge.

• \(Q_{18} \) has 18 per triangle, and none per edge, or 6 per vertex globally.
Clough-Tocher

- Divide each (macro) triangle into 3 micro-triangles about the centroid.
- Use piecewise cubic C^1 functions on each macro triangle.
- Nodal data: function and gradient values at each vertex, perpendicular cross-boundary derivatives on midpoints of edges (of the macro triangle).

\[\dim S_3^1 = 3 \cdot 10 - 3 \cdot 4 - 3 \cdot 3 + 3 = 12 \]
Condensation of parameters for Clough-Tocher

\[Pcb \text{ along edges of macro-} \Delta \]
\[\text{are linear instead of quadratic} \]
Summary

- The following Table lists
 - The name of the scheme
 - The polynomial degree, d
 - The degree of global smoothness, r
 - The nodal data. V means vertex, E means edge, C means centroid. f means function values, ∇f gradients, $\nabla^2 f$ Hessians, CB perpendicular cross-boundary derivatives
 - The number of data per triangle, D
 - The polynomial precision, p

<table>
<thead>
<tr>
<th>name</th>
<th>d</th>
<th>r</th>
<th>data</th>
<th>D</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>1</td>
<td>C^0</td>
<td>$f(V)$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C0Q</td>
<td>2</td>
<td>C^0</td>
<td>$f(V), f(E)$</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>C01A</td>
<td>3</td>
<td>C^0</td>
<td>$f(V), f(E) \times 2, f(C)$</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>C01B</td>
<td>3</td>
<td>C^0</td>
<td>$f(V), \nabla f(V)f(C)$</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Q_{21}</td>
<td>5</td>
<td>C^1</td>
<td>$f(V), \nabla f(V), CB(E), \nabla^2 f(V)$</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Q_{18}</td>
<td>5</td>
<td>C^1</td>
<td>$f(V), \nabla f(V), \nabla^2 f(V)$</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>CT</td>
<td>3</td>
<td>C^1</td>
<td>$f(V), \nabla f(V), CB(E)$</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>CTc</td>
<td>3</td>
<td>C^1</td>
<td>$f(V), \nabla f(V)$,</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>