Math 5610 Fall 2021

Notes of 11/10/2021

Wavelets

- Again, today we will see only the proverbial tip of the iceberg.
- Quick Review of Fourier Series:
 - Suppose \(f \) is \(2\pi \)-periodic.
 - Then
 \[
 f(x) \approx F_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)
 \]
 - The coefficients are determined by
 \[
 \int_{-\pi}^{\pi} (f(x) - F_n(x))^2 \, dx = \min
 \]
 - We saw that the basis functions are orthogonal and that
 \[
 a_k = \int_{-\pi}^{\pi} f(x) \cos kx \, dx
 \]
 \[
 b_k = \int_{-\pi}^{\pi} f(x) \sin kx \, dx
 \]
- A significant drawback of Fourier series is that any change in an arbitrarily small subinterval
of $[-\pi, \pi]$ affects all the coefficients of the Fourier Series.

- This can be overcome in many ways, including modifications of the Fourier Series.

- However, the most effective way of handling this, with many additional useful properties, is based on wavelets.

- The best introduction, in my opinion, to wavelets, is still

- Daubechies is one of the primary pioneers and developers of wavelets. Check the wikipedia for more information on her many distinctions and accomplishments.

- We’ll just look at one example, the subject of the first of Daubechies’ lectures, which, however, will introduce most of the key ideas.

The Haar Wavelet

- Wavelets are translations and dilations of a mother wavelet. In the special case of the Haar wavelet, that function is given by

$$
\psi(x) = \begin{cases}
1 & \text{if } 0 \leq x < \frac{1}{2} \\
-1 & \text{if } \frac{1}{2} \leq x < 1 \\
0 & \text{else}
\end{cases}
$$

\(\text{---}\)

introduced by Alfred Haar, 1885-1933, in 1909
• The mother wavelet plays essentially the same role as the sine (or cosine) function in Fourier series.

• Note that the Haar wavelet has local support.

Translation and Dilation

• For integers m and n we define a Haar wavelet to be the function

\[
\psi_{m,n}(x) = 2^{-\frac{m}{2}} \psi \left(2^{-m} x - n \right).
\]

• Note that the support of $\psi_{m,n}$ is the interval $[2^m n, 2^m (n + 1)]$. The length of the support is 2^m.

• A major property of Haar wavelets is that they are orthonormal, i.e.,

\[
\int_{\mathbb{R}} \psi_{m,n} \psi_{m',n'} = \begin{cases}
1 & \text{if } m = m' \text{ and } n = n' \\
0 & \text{else}
\end{cases}
\]
• This is easy to see. We first observe that

\[\int_{\mathbb{R}} \psi_{m,n}^2 = \int_{n^{2^m}}^{(n+1)^{2^m}} 2^{-m} dx = 2^{-m}2^m = 1. \]

Now assume that \(n \neq n' \) and \(m = m' \). Then the supports of \(\psi_{m',n'} \) and \(\psi_{m,n} \) do not overlap and

\[\int_{\mathbb{R}} \psi_{m,n} \psi_{m',n'} = 0. \]

Finally, suppose that \(m \neq m' \), and without loss of generality suppose that \(m < m' \). Then the support of \(\psi_{m,n} \) lies entirely in a region where \(\psi_{m',n'} \) is constant. Since \(\int_{\mathbb{R}} \psi_{m,n} = 0 \) we get that

\[\int_{\mathbb{R}} \psi_{m,n} \psi_{m',n'} = 0. \]

Approximation of an \(L_2 \) function

• Suppose \(f \) is a function defined on the real line and satisfying

\[\int_{\mathbb{R}} f^2 < \infty \]

• We contemplate approximating \(f \) by a function \(g \) in the 2-norm:

\[\|f\| = \sqrt{\int_{\mathbb{R}} f^2} \]
Any L_2 function f, i.e., any function f that satisfies
\[\int_{\mathbb{R}} f^2 < \infty \]
can be arbitrarily well approximated in the sense that for all $\epsilon > 0$ there exists a finite linear combination A_ϵ of Haar wavelets such that
\[\int_{\mathbb{R}} (f - A_\epsilon)^2 < \epsilon \]

- This fact is highly counterintuitive (in my opinion) since the integral of any linear combination of the Haar wavelets is zero, whereas the integral of f may not be zero.

- But let us press ahead.

- First observe that any L_2 function f can be arbitrarily well approximated by a function f_0 which is constant on each interval $[\ell 2^{-J_0}, (\ell + 1)2^{-J_0}]$ and whose support is $[-2^{J_1}, 2^{J_1}]$ where J_0 and J_1 are sufficiently large.

- We now come to the key idea. We write
\[f^0 = f^1 + \delta_1 \]

where f^1 is an approximation of f^0 that is piecewise constant on subintervals of twice the size of those on which f^0 is constant.
• the value of f^1 on one of the new, twice as large, intervals is obtained by averaging the values of the original two subintervals.

• Note that $\delta^1 = f^1 - f^0$ is a linear combination of Haar Wavelets!

\[f^0 = f^1 + \sum_{\ell} c_{-J_0+1, \ell} \psi_{-J_0+1, \ell}. \]

• Naturally, we apply the same trick to f^1, etc.

• Eventually we get

\[f^0 = f^{J_0+J_1} + \sum_{m=-J_0+1}^{J_1} \sum_{\ell} c_{m, \ell} \psi_{m, \ell}. \]

• $f^{J_0+J_1}$ consists of two constant pieces on the original support.

• $f^{J_0+J_1+1}$ consists of one constant piece on the original support.

• However, we continue, just widening the support.

• At every stage we average a constant with zero, halve the function value, and double the support.
• In due course we obtain

\[f^0 = \sum_{m=-J_0+1}^{J_1+K} \sum_{\ell} c_{m,\ell} \psi_{m,\ell} = f^{J_0+J_1+K} \]

• So we have written our original function as a linear combination of Haar Wavelets + a remainder that is arbitrarily small.

• Notice that we have sets of wavelets for every length scale (corresponding to a fixed value of \(m \)).

• This is referred to as **multiresolution analysis**

• All basis functions have local support.

• A local phenomenon affects only the coefficients of those basis functions that are non-zero at the location of the phenomenon.

• We considered the Haar wavelet for simplicity. It’s not unreasonable because many technological phenomena are in fact discrete and piecewise constant.

• However, we can of course use different types of basis functions, particularly smoother ones. For examples, see Figure 1.8 on page 15 of Daubechies’ book. It is similar to Figure 2\(^{-2-}\).

\(^{-2-} \) from https://www.intechopen.com/source/html/ 49109/media/image8.png
Figure 2. Some Orthogonal Wavelets.