Math 5610 Fall 2021

Notes of 10/28/21

- Monday: Discussion of hw 3
- Tuesday: Gaussian Quadrature, another brain storming session. Notes will appear after class.
- Video of Wednesday will appear today or this weekend.

Numerical Integration

- also called:

Quadrature

- We want to approximate

\[I = \int_{a}^{b} f(x) \, dx. \]

- The basic idea underlying many techniques is to integrate the interpolating polynomial:

\[\int_{a}^{b} f(x) \, dx \approx \int_{a}^{b} \sum_{i=0}^{n} f(x_i) L_i(x) \, dx = \sum_{i=0}^{n} w_i f(x_i) \]

- from Latin *quadratus*, square, squared
where the L_i are the Lagrange basis functions and the weights or coefficients w_i are given by

$$w_i = \int_a^b L_i(x) \, dx.$$

- If the x_i are equally spaced throughout the interval of interest the resulting quadrature formulas are called **Newton-Cotes Formulas**. If the knots include the endpoints the formula is a closed Newton Cotes Formula, if they do not it’s an open Newton-Cotes Formula.

- For example, the **Trapezoidal Rule** is given by

$$\int_a^{a+h} f(x) \, dx \approx \frac{h(f(a) + f(a + h))}{2}$$

- Doing the same for an interpolating quadratic gives **Simpson’s Rule**:

$$\int_a^{a+2h} f(x) \, dx \approx \frac{h}{3} (f(a) + 4f(a+h) + f(a+2h)).$$

- The Trapezoidal and Simpson’s Rules are the first two closed Newton-Cotes formulas.

- The first two open Newton-Cotes Formulas are the **midpoint rule**

$$\int_a^{a+2h} f(x) \, dx \approx 2hf(a + h)$$
and
\[\int_{a}^{a+3h} f(x)\,dx \approx \frac{3h}{2} (f(a + h) + f(a + 2h)). \]
Method of Unknown Coefficients

• It’s a good exercise to derive Simpson’s Rule by actually integrating the Lagrange form of the interpolating quadratic.

• However, here is another idea for deriving quadrature rules and other formulas:

• Use knowledge of the properties of the formula to derive a set of simple equations that can be solved.

• For example, we know that Simpson’s Rule has the form

\[\int_a^{a+2h} f(x) \, dx \approx h \left(Af(a) + Bf(a+h) + Cf(a+2h) \right) \]

• We also know that it gives the exact interval if \(f \) is a quadratic polynomial.

• So write down the formula for some special choices of \(a, h, \) and \(f \), and solve the resulting linear system.

• For example, for Simpson’s Rule the derivation becomes quite easy by choosing \(a = -1, \quad h = 1, \) and \(f = 1, x, x^2 \).

\[\int_{-1}^{1} f(x) \, dx \approx \left(A f(-1) + B f(0) + C f(1) \right) \]
\[
\int_1^2 dx = 2 = A + B + C \implies B = \frac{4}{3}
\]
\[
\int x \, dx \geq 0 = -A + 0 + c \implies A = c
\]
\[
\int x^2 \, dx = \frac{2}{3} = A + 0 + C \implies A = c = \frac{1}{3}
\]
Error Analysis

- The basic idea is to expand the error

\[E = \int_a^b f(x)dx - \sum_{i=1}^n w_i f(x_i) \]

into a Taylor series in \(h \).

- We’ll illustrate this for the Trapezoidal Rule:

\[
\begin{align*}
\int_a^{a+h} f(x)dx - \frac{h}{2} (f(a) + f(a+h)) &= \\
= F(a+h) - F - \frac{h}{2} (f + f(a+h)) &= \\
F + h F' + \frac{h^2}{2} F'' + \frac{h^3}{6} F''' + \cdots + \text{HOT} &= \\
- \frac{h}{2} \left(f + f + hf' + \frac{h^2}{2} f'' + \cdots \right) &= - \frac{h^3}{12} F' + \text{HOT}
\end{align*}
\]
and Simpson’s Rule

\[E = \int_a^{a+2h} f(x) \, dx - \frac{h}{3} \left(f(a) + 4f(a+h) + f(a+2h) \right) \]

\[= F + \frac{h}{2} F' + \frac{h^2}{6} F'' + \frac{h^3}{12} F''' + \frac{h^4}{24} F'''' + \frac{h^5}{120} F''''' + \frac{h^6}{720} F'''''' \]

\[- \left(F - \frac{h}{2} F' + \frac{h^2}{6} F'' - \frac{h^3}{12} F''' + \frac{h^4}{24} F'''' + \frac{h^5}{120} F''''' - \frac{h^6}{720} F'''''' \right) \]

\[- \frac{h}{3} \left(f - 6f' + 11f'' - 6f''' + f^{iv} \right) \]

\[= h^5 \left(\frac{1}{120} - \frac{1}{720} \right) f^{iv} \]

\[\frac{1}{60} - \frac{1}{36} = \frac{3 - 5}{180} = -\frac{1}{90} \]

\[E = -\frac{1}{90} h^5 f^{iv} + \text{Hot} \]
We see that Simpson’s Method is **exact for cubics** even though it is obtained by interpolating a **quadratic** interpolant.

- How remarkable.

Composite Newton-Cotes Formulas

- One could in principle integrate interpolating polynomials of high degree but as in the case of interpolation that’s not a good idea.

- It is better to apply low degree Newton-Cotes Formulas on subintervals.

- So let

\[h = \frac{b - a}{N}, \quad x_n = a + nh, \quad n = 0, 1, \ldots, N \]

- Then the **composite Trapezoidal Rule** is given

\[
\int_a^b f(x) \, dx = \frac{h}{2} \left(f(a) + 2 \sum_{n=1}^{N-1} f(x_i) + f(b) \right) + E_T
\]

where

\[E_T = -\frac{(b - a)h^2}{12} f''(\xi). \]

- The **composite Simpson’s Rule** (for even
\(N \) is given by
\[
\int_a^b f(x) \, dx = \frac{h}{3} \left(f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \ldots + 4f(x_{N-1}) + f(b) \right) + E_S
\]

where
\[
E_S = -\frac{(b - a)h^4}{90} f^{iv}(\eta).
\]

Note that we loose one power of \(h \) as we go from the simple to the composite rule.

- Notice that we multiply the function values with positive coefficients.
- There is no cancellation of significant digits.
- However, as the polynomial degree goes up some of the coefficients become negative. For closed Newton-Cotes Formulas this first happens when \(n = 8 \).
- Formulas for closed Newton-Cotes Formula, for \(n = 1, 2, \ldots, 10 \), and open Newton-Cotes Formulas, for \(n = 1, 2, \ldots, 8 \) can be found on pages 886-887 of
- Note: Abramowitz/Stegun is still useful and widely used and quoted. However, there is a
successor which is organized quite differently:

- In all cases we obtain formulas of the form

\[\int_a^b f(x)\,dx \approx \sum_{i=0}^{n} w_i f(x_i) \]

where the \(x_i \) are the knots, nodes, or abscissas and the \(w_i \) are the weights or coefficients.

- For Newton-Cotes Formulas the nodes are equally spaced and the coefficients are chosen so as to make the formula exact for polynomials of degree as high as possible.

- There is also a class of Chebyshev’s equal weight integration formulas where the weights are equal and the abscissas are chosen so as to make the formula exact for polynomials of degree \(n \). For \(n = 8 \) and \(n > 10 \) some of those abscissas are complex. For more information see Abramowitz/Stegun, p. 887.

- Equally spaced nodes make sense if we have data given in a Table.

- But if we can evaluate a function anywhere it makes more sense to pick the weights and the abscissas so as to get exactness for polynomials of degree as high as possible.
This gives rise to **Gaussian Quadrature** formulas.

Let’s illustrate the idea for \(n = 1 \) and \([a, b] = [-1, 1]\). We want to find a formula such that

\[
\int_{-1}^{1} f(x) dx \approx w_1 f(x_1) + w_2 f(x_2)
\]

which is exact if \(f \) is a polynomial of degree up to 3.

We get the **nonlinear** \(4 \times 4 \) system:

\[
\begin{align*}
 f(x) &= 1 & \int_{-1}^{1} 1 dx &= 2 &= w_1 + w_2 \\
 f(x) &= x & \int_{-1}^{1} x dx &= 0 &= w_1 x_1 + w_2 x_2 \\
 f(x) &= x^2 & \int_{-1}^{1} x^2 dx &= 2/3 &= w_1 x_1^2 + w_2 x_2^2 \\
 f(x) &= x^3 & \int_{-1}^{1} x^3 dx &= 0 &= w_1 x_1^3 + w_2 x_2^3
\end{align*}
\]

In general, nonlinear systems can be very hard to solve.

However, it is easy to check that the system (1) has the solution

\[
\begin{align*}
 w_1 &= 1 \\
 w_2 &= 1 \\
 x_1 &= -\frac{\sqrt{3}}{3} \\
 x_2 &= \frac{\sqrt{3}}{3}
\end{align*}
\]
• This is pretty remarkable!

• Carl Friedrich Gauss (1777-1855) managed to solve problems like (1) in great generality.

• How he did this is our next topic.

• As for his analysis, we’ll try to develop his approach together, and I’ll put notes online only after class.