Undergraduate Colloquium

This week, Wednesday, 12:55-1:45, LCB 225.
Franco Rota will present:

Fractal Patterns, Game Theory and Bali’s Rice Terraces

Abstract: Bali’s famous rice terraces, when seen from above, look like colorful mosaics because some farmers plant synchronously, while others plant at different times. The resulting fractal patterns are rare for human-made systems and lead to optimal harvests without global planning. We’ll describe a model of this system, introducing some notions from game theory, to help understand this peculiar example.
The Power Method

• The power method is the basis of the most widely used method for computing eigenvalues and eigenvectors, i.e., the QR algorithm.

• Best description of the QR algorithm is in Golub/van Loan

• Suppose A is a square matrix and we want to find its eigenvalue with the largest absolute value, i.e., its dominant eigenvalue.

• The basic idea of the power method is to start with a random vector, and to keep multiplying it with A. Each multiplication amplifies the component corresponding to the dominant eigenvalue, until eventually it dominates all others.

• To begin with, suppose A has a dominant eigenvalue λ_1 where

$$|\lambda_1| > |\lambda_2| \geq |\lambda_3| \geq \ldots \geq |\lambda_n|$$

and

$$Ax_i = \lambda_ix_i, \quad i = 1, \ldots, n.$$

Note that the x_i are vectors. λ_1 is the dominant eigenvalue.
Here is version 1 of the power method:

1. Pick a random vector

\[q^{(0)} = \sum_{j=1}^{n} \alpha_j x_j \in \mathbb{R}^n \]

(of course we do not know the coefficients \(\alpha_j \) but we assume \(A \) has a complete set of eigenvectors so we can be sure they exist.)

2. For \(k = 0, 1, 2, \ldots \) let

\[q^{(k+1)} = A q^{(k)} \]

Every time we multiply with \(A \) we amplify the dominant component:

\[q^{(1)} = Aq^{(0)} = \sum_{j=1}^{n} \alpha_j Ax_j = \sum_{j=1}^{n} \alpha_j \lambda_j x_j \]

and in general

\[q^{(k)} = \sum_{j=1}^{n} \alpha_j \lambda_j^k x_j \]

Eventually the \(\lambda_1 \) term will dominate the others so that \(q^{(k)} \) is a good approximation of the corresponding eigenvector.

This won’t work! Why not?
• We need to normalize!

• Here is **version 2** of the power method:

1. Pick a random vector

\[q^{(0)} = \sum_{j=1}^{n} \alpha_j x_j \in \mathbb{R}^n \]

2. For \(k = 0, 1, 2, \ldots \) let

\[z^{(k+1)} = Aq^{(k)} \]

\[q^{(k+1)} = \frac{z^{(k+1)}}{\|z^{(k+1)}\|} \]

(for some suitable norm, often \(\| \cdot \|_\infty \))
Estimating the dominant eigenvalue

- Given an approximation q, say, of an eigenvector, how do we approximate the corresponding eigenvalue?

- Idea: Find λ such that

$$F(\lambda) = \| Aq - \lambda q \|_2^2 = \min$$

- This is a simple calculus problem. We differentiate F, set the derivative to zero, and solve for λ:

$$F(\lambda) = \| Aq - \lambda q \|_2^2$$
$$= (Aq - \lambda q)^T (Aq - \lambda q)$$
$$= q^T A^T Aq - \lambda q^T (A + A^T) q + \lambda^2 q^T q$$

and hence

$$F'(\lambda) = 2\lambda q^T q - q^T (A + A^T) q = 0$$

which gives

$$\lambda = \frac{q^T (A + A^T) q}{2q^T q}$$

- In the special case that A is symmetric this estimate turns into the Rayleigh Quotient

$$\lambda = \frac{q^T A q}{q^T q}.$$
What can go wrong?

- There might be no dominant eigenvalue, i.e.,

\[|\lambda_1| = |\lambda_2| = \ldots = |\lambda_k| > |\lambda_{k+1}| \quad k > 1. \]

This has several subcases, including:

- \(\lambda_1 \) is an eigenvalue of algebraic multiplicity \(k \). In that case the iteration converges to a particular vector in the space spanned by the eigenvectors corresponding to \(\lambda_1 \).

- \(\lambda_1 = -\lambda_2, \; k = 2 \). In that case the iteration becomes an oscillation of length 2, and one can work out the values of \(\lambda_1 \) and \(\lambda_2 \).

- \(\lambda_1 = \bar{\lambda}_2, \; k = 2 \). The two dominant eigenvalues form a conjugate complex pair and the iteration becomes periodic. Again, one could work out the eigenvalues.

- Exercise: Think of other possibilities, e.g., defectiveness, \(k > 2 \).

- One might start with a random vector that has a zero component in the dominant eigenvalue\(^{-1}\), i.e., \(\alpha_1 = 0 \). In that case, technically, the method converges to \(\lambda_2 \) (provided \(\alpha_2 \neq 0 \) and \(|\lambda_2| > |\lambda_3| \)). It does in exact

\(^{-1}\) This happened to me the first time I assigned a homework problem where I had the class compute the eigenvalues of a 3 \(\times \) 3 matrix and then run the power method to get the largest of those...
arithmetic. However, in floating point arithmetic, round-off errors make the λ_1 component non-zero, and so eventually you do get the dominant eigenvector. This is the only case I know where round-off errors actually get you out of trouble.

- However, the main problem with the power method is that it converges only slowly if $|\lambda_1/\lambda_2|$ is close to 1, i.e., the dominance is weak.

Shift of Origin

- Shift of origin means that we apply the power method to a matrix B of the form

$$B = A - \mu I$$

for some scalar μ.

- The power method will converge to the dominant eigenvalue σ of B. The eigenvalues of $B = A - \mu I$ are of course $\lambda_i - \mu$, and one can thus obtain the eigenvalue $\lambda = \mu + \sigma$ of A.

Inverse Iteration

- The basic idea is to apply the power method to A^{-1}. Of course, we don’t actually invert A. Instead we solve a linear system, using a suitable factorization such as the PLU or QR factorization of A.

- Here is version 3 of the power method:
1. Pick a random vector

\[q^{(0)} = \sum_{j=1}^{n} \alpha_j x_j \in \mathbb{R}^n \]

2. For \(k = 0, 1, 2, \ldots \):

Solve \(Az^{(k+1)} = q^{(k)} \)

set \(q^{(k+1)} = \frac{z^{(k+1)}}{\|z^{(k+1)}\|} \)

- Assuming that

\[|\lambda_n| < |\lambda_{n-1}| \leq \ldots \leq |\lambda_1| \]

this will converge to \(1/\lambda_n \) from which we can compute the smallest eigenvalue.

- Note that here we have a typical case where we solve many linear systems with the same coefficient matrix, and where we know the new right hand side only after we solve the previous system.

Inverse Iteration and Shift of Origin

- Inverse Iteration and Shift of Origin can be combined. We apply the power method to the matrix

\[B = (A - \mu I)^{-1}. \]
• The eigenvalues of B are

$$\eta = \frac{1}{\lambda - \mu} \iff \lambda = \mu + \frac{1}{\eta}$$

• Thus we can find the eigenvalue that is closest to our shift μ.

• Again, we do not actually invert $A - \mu I$.

• Here is version 4 of the power method:

1. Pick a random vector

$$q^{(0)} = \sum_{j=1}^{n} \alpha_j x_j \in \mathbb{R}^n$$

2. For $k = 0, 1, 2, \ldots$:

Solve $$(A - \mu I)z^{(k+1)} = q^{(k)}$$

set

$$q^{(k+1)} = \frac{z^{(k+1)}}{\|z^{(k+1)}\|}$$

• Here is an interesting complication. We want $A - \mu I$ to be well conditioned so that we can solve the linear system accurately. On the other hand, we want μ close to λ, for fast convergence. If μ actually was an eigenvalue then $A - \mu I$ would be singular and we could not solve the linear system. So the closer μ is to an eigenvalue, the more ill-conditioned is the linear system.

Stopping

• Suppose some version of the power method gives a unit vector \hat{x} which approximates an eigenvector and an approximation $\hat{\lambda}$ of the corresponding eigenvalue. A reasonable criterion is to stop when

$$\|A\hat{x} - \hat{\lambda}\hat{x}\| < \epsilon$$

for a suitable tolerance ϵ which depends on the problem.

Squaring A

• Carrying out n steps of the power method requires n^3 operations. Usually the number of iteration will be less than n. But here is an interesting speculation. Suppose we contemplate iterating many more than n steps. The eigenvalues of A^2 are the squares of those of A. Squaring takes n^3 operations, the same as n steps of the power method. However, squaring A^2 again also only takes n^3 operations,
but generates a matrix whose eigenvalues are the fourth power of those of A. Squaring k times requires kn^3 operations, but generates the matrix A^{2k} whose eigenvectors are the 2^k-th powers of those of A. Multiplying with A^{2k} is equivalent to 2^k steps of the power method. Carrying out that many steps with the ordinary power method would require $2^k n^3$ steps as opposed to kn^3 for the squaring method. So it appears that repeated matrix squaring may be a good way to get the dominant eigenvalue. Of course we do have to worry about floating point overflows and underflows, and there need to incorporate a suitable scaling procedure.
Finding Several Eigenvalues

- How can we modify the power method to find not just one, 2, 3, or \(n \) eigenvalues, and the corresponding eigenvectors?

\[
Q^{(0)} = \begin{bmatrix}
\ast & \ast & \ast \\
\ast & \ast & \ast \\
\ast & \ast & \ast
\end{bmatrix}
\]

\[
Z^{(k+1)} = AQ^{(k)}
\]

\[
Q^{(k+1)} = \frac{Z^{(k+1)}}{\|Z^{(k+1)}\|}
\]