Math 5600 Spring 2021 Notes of 2/12/21

• no class Monday
• discuss hw 1 Tuesday

Cubic Splines

Review

• polynomial interpolant: C^∞, global, error may not converge to zero.
• piecewise linear interpolant: only C^0, local, Error goes to zero like $O(h^2)$.
• piecewise cubic Hermite interpolant: C^1, local, Error goes to zero like $O(h^4)$, requires derivative values.

Cubic Splines

• This is another classic subject. Here are two classic references:

• A recent Matlab oriented text is:

• Again, assume we are given data (x_i, y_i), $i = 0, \ldots, n$ where the knots are ordered:

$$a = x_0 < x_1 < \ldots < x_n = b$$

• The word “spline” derives from a mechanical gadget that used to be used to draw smooth curves.
• Pass an elastic wire through some points and let it adjust itself so that it minimizes its strain energy.
• The curvature of the curve $y = s(x)$ is

$$\kappa(x) = \left| \frac{s''}{(1 + s'^2)^{3/2}} \right|.$$

• If s' is small (or close to constant) the curvature is approximately proportional to s''.

• So the mechanical idea can be approximated by the mathematical problem of finding the interpolating function s that interpolates, i.e.,

$$s(x_i) = y_i, \quad i = 0, 1, 2, \ldots, n$$

and that minimizes the integral

$$\int_a^b (s''(x))^2 \, dx = \min$$

• It is a great exercise to show that the solution of this \textbf{variational problem} is a cubic spline, i.e., a function that is cubic on each subinterval

$$I_i = [x_{i-1}, x_i]$$

and that is twice differentiable on $[a, b]$.
Count parameters and conditions
Boundary Conditions

• Three kinds of boundary conditions are in frequent use:

1. **natural end conditions.** Let
 \[s''(a) = s''(b) = 0 \]

 • This is called **natural** since the above discussed wire would be linear to the left of \(a \) and to the right of \(b \).

2. **Forced End Condition.** Let
 \[s'(a) = A, \quad s'(b) = B. \]

 This means forcing the wire to point in certain directions at the endpoints. The obvious question is how to pick \(A \) and \(B \).

3. **Not-a-Knot** condition. Force the spline to be three times differentiable at \(x_1 \) and \(x_{n-1} \):

 \[\lim_{x \to x_1^-} s'''(x) = \lim_{x \to x_1^+} s'''(x) \]
 \[\lim_{x \to x_{n-1}^-} s'''(x) = \lim_{x \to x_{n-1}^+} s'''(x) \]

 • A piecewise cubic function that is three times differentiable is actually cubic, so \(x_1 \) and \(x_{n-1} \) are not knots. The resulting spline is cubic, rather than piecewise cubic, on \([x_0, x_2]\) and \([x_{n-2}, x_n]\).

• **A Cardinal Spline** is a spline satisfying the **cardinal condition**
 \[S_i(x_j) = \delta_{ij} \]

• If we also assume that we are using the natural boundary condition, and that all the \(S_i \) have a zero second derivative at the endpoints then we can write the interpolating spline

 \[s(x) = \sum_{i=0}^{n} y_i S_i(x) \]
in cardinal form, just as we did for all other interpolants before.

- As an exercise you may want to think about how to incorporate the other types of boundary conditions into the cardinal form.

The support of a cardinal spline is the entire interval \([a, b]\) (except at the knots). Geometrically, if you move any one data point the wire wiggles everywhere.

- This means that **cubic spline interpolation is global**.
B-splines

- **B-splines** are splines with support that is small as possible, which for cubic splines means 4 intervals.

- B-splines form a large subject.
Polynomial Precision

- We say that an interpolation scheme has **polynomial precision** \(k \) if the interpolant of a polynomial of degree up to \(k \) is that polynomial.

- We also say that the interpolation scheme reproduces polynomials of degree up to \(k \).

- Polynomial interpolation of \(n + 1 \) data reproduces polynomials of degree up to

- Piecewise linear interpolation reproduces polynomials of degree up to

- Piecewise Cubic Hermit interpolation reproduces polynomials of degree up to

- What about cubic spline interpolation:
Computation of Cubic Splines

- We only have to solve a tridiagonal linear system!
- exercise: Verify everything and work out the details!
- The second derivative of a cubic spline s is piecewise linear and continuous. Letting $M_i = s''(x_i)$ and $I_i = [x_{i-1}, x_i]$ we set $h_i = x_i - x_{i-1}$ as before and get for $x \in I_i$:

$$s''(x) = M_{i-1} \frac{x_i - x}{h_i} + M_i \frac{x - x_{i-1}}{h_i}.$$

- Integrating s'' twice gives

$$s(x) = M_{i-1} \frac{(x_i - x)^3}{6h_i} + M_i \frac{(x - x_{i-1})^3}{6h_i} + c_i (x_i - x) + d_i (x - x_{i-1})$$

where the c_i and d_i are as yet undetermined integration constants.
- We must have

$$s(x_{i-1}) = y_{i-1} \quad \text{and} \quad s(x_i) = y_i.$$

- This determines the constants c_i and d_i and gives (still for $x \in I_i$)

$$s(x) = M_{i-1} \frac{(x_i - x)^3}{6h_i} + M_i \frac{(x - x_{i-1})^3}{6h_i}$$

$$+ \left(y_{i-1} - \frac{M_{i-1} h_i^2}{6} \right) \frac{x_i - x}{h_i}$$

$$+ \left(y_i - \frac{M_i h_i^2}{6} \right) \frac{x - x_{i-1}}{h_i} \quad (1)$$
• Exercise: compute the c_i and d_i in terms of the M_j, h_j and y_j.

• We still need to define the M_i. They can be obtained from the C^1 conditions

$$\lim_{x \to x_i^-} s'(x) = \lim_{x \to x_i^+} s'(x).$$

• Differentiating in (1) gives:

$$S'(x) = -M_{i-1} \frac{(x_i - x)^2}{2h_i} + M_i \frac{(x - x_{i-1})^2}{2h_i}$$

$$+ \frac{y_i - y_{i-1}}{h_i} + \frac{M_{i-1} - M_i}{6} h_i$$

(2)

• Evaluating (2) and the expression on the next interval at x_i and equating the two expression gives the equation

$$\frac{h_i}{2} M_i + \frac{M_{i-1} - M_i}{6} h_i + \frac{y_i - y_{i-1}}{h_i} =$$

$$- M_i \frac{h_{i+1}}{2} + \frac{y_{i+1} - y_i}{h_{i+1}} + \frac{M_i - M_{i+1}}{6} h_{i+1}$$

which can be rewritten as

$$\alpha_i M_{i-1} + \beta_i M_i + \gamma_i M_{i+1} = \delta_i$$

where

$$\alpha_i = \frac{h_i}{6}$$

$$\beta_i = \frac{1}{3} (h_i + h_{i+1})$$

$$\gamma_i = \frac{h_{i+1}}{6}$$

$$\delta_i = \frac{y_{i-1} - y_i}{h_i} + \frac{y_{i+1} - y_i}{h_{i+1}}$$

(3)

$$i = 1, 2, \ldots, n - 1$$
These are $n - 1$ equations in M_0, \ldots, M_n.

- The two missing conditions are the boundary conditions. For example, **natural splines** have the boundary conditions
 \[M_0 = M_n = 0. \]

 Adding these as the first and last equations to (3) gives a square tridiagonal $(n + 1) \times (n + 1)$ tridiagonal linear system.

- Exercise: work out the missing equations for forced end and knot-a-knot conditions.