Numerical PDEs

- perhaps a larger subfield of numerical analysis than all the rest combined!

Unlike IVPS for ODEs where we came up with a general purpose method (i.e., VSVO based on blended linear multistep methods) method that will solve any problem in that class, for PDE’s we need to design a new method for every kind of problem (roughly speaking).

- Moreover, engineers, scientists and mathematicians come up with new kinds of problems all the time.

- Even more so than for ODEs, you want to look out for the ideas and principles.

- We already encountered these issues when studying ODEs:
 - Discretization
 - Local versus global accuracy
 - Consistency
 - Stability
 - Convergence
• New Issues, in addition to those mentioned above, for PDEs include:

- Usually t is time, and x, y, z are space coordinates. (For ODEs we rarely worried about the meaning of the variables.)

- The geometry of the underlying domain can present huge problems. (Examples: modeling an airplane or an internal combustion engine).

- mixture of initial and boundary conditions

- unknown or moving boundaries

- traveling waves (shocks)

- Solving large linear and nonlinear systems efficiently.

- reproducing qualitative behavior (like periodicity, dissipation, dispersion), in addition to plain accuracy (small global truncation error), for the actual DE as opposed to a simple test equation.

- The source of a PDE (and some ODE-BVPs) is often a minimization principle (like minimizing potential energy). Often one can solve the PDE by approaching the minimization principle directly.
The Method of Lines

- As mentioned above, for PDEs every problem is separate and special.

- However, the closest thing to a general purpose method is the **Method of Lines**

- Discretize in space and integrate in time! Consider the PDE

\[
 u_t = f(t, x, u, u_x, u_{xx}) \tag{1}
\]

where

\[
 u = u(t, x), \quad t \geq 0, \quad x \in [0, 1], \tag{2}
\]

\[
 u(0, x) = g(x) \tag{3}
\]

and

\[
 u(0, t) = \phi_0(t), \quad u(1, t) = \phi_1(t). \tag{4}
\]

- The problem (1)—(4) is a **second order one-dimensional initial-boundary value problem**. The equations (4) are boundary conditions, and the equation (3) is an initial condition.

- We could have more space variables, with little modification.

- We’ll be more specific about the function \(f \) later.
Figure 1. Method of Lines.

- Figure 1 shows the lines (in red). The vertical axis indicates time (t) and the horizontal axis indicates space (x). The black vertical lines form the boundary of the domain of u. (Time always almost always goes up in PDEs).

- we discretize in space:

$$x_n = nh, \quad n = 0, \ldots N, \quad h = \frac{1}{N}$$
and define functions
\[u_n(t) \approx u(t, x_n) \]
by the IVP of ODEs:
\[u'_n(t) = f \left(t, x_n, u_n, \frac{u_{n+1} - u_{n-1}}{2h}, \frac{u_{n+1} - 2u_n + u_{n-1}}{h^2} \right) \]
where
\[n = 1, 2, \ldots, N - 1 \] (6)
and
\[u_0(t) = \phi_0(t), \quad u_N(t) = \phi_1(t), \quad u_n(0) = g(x_n). \] (7)

- This approach is also called **semi-discretization**.
- The IVP (5)—(7) is a special tridiagonal system of \(N - 1 \) ODES and can in principle be solved by any ODE method, including a VSVO method like lsode.
- to gain more insight we specialize the function \(f \) and consider the **one-dimensional heat equation**
\[u_t = u_{xx} \] (8)
which described the temperature in a rod.
- The ODEs (5) turn into
\[u'_n(t) = \frac{1}{h^2} \left(u_{n+1}(t) - 2u_n(t) + u_{n-1}(t) \right). \]
• Suppose we solve this system with the
 1. Euler
 2. Backward Euler
 3. Trapezoidal
 Methods.

• We need a notation for the time step. The
 conventional choice is k (since h is taken for
 the space discretization parameter).

• We also use superscripts to denote the time
 level.

• Thus
 \[U_n^m \approx u_n(t_m) \]
 where
 \[t_m = mk, \quad n = 1, \ldots, N-1, \quad \text{and} \quad m = 0, 1, 2, \ldots. \]

• Moreover, we define the grid constant
 \[r = \frac{k}{h^2} \]

• With every method we associate a stencil
 which indicates all points entering into the
 basic formula.
Euler’s Method

Figure 2. Stencil for Euler’s Method.

- In the ODE context Euler’s Method is

\[y_{n+1} = y_n + hf_n. \]

Translated into our new context this becomes

\[
U_{n+1}^m = U_n^m + \frac{k}{h^2} \left(U_{n+1}^m - 2U_n^m + U_{n-1}^m \right)
= U_n^m + r \left(U_{n+1}^m - 2U_n^m + U_{n-1}^m \right)
\]

- Figure 2 shows the stencil for Euler’s Method.
- Euler’s Method is explicit.
Backward Euler Method

Figure 3. Stencil for the Backward Euler Method.

• In the ODE context the Backward Euler Method is
 \[y_{n+1} = y_n + hf_{n+1}. \]
 Translated into our new context this becomes
 \[U_{n+1}^m = U_n^m + r(U_{n+1}^{m+1} - 2U_n^{m+1} + U_{n-1}^{m+1}) \]

• Figure 3 shows the stencil for the Backward Euler Method.

• The Backward Euler Method is **implicit**. At every step we have to solve a tridiagonal linear system.
The Crank-Nicolson Method

Figure 4. Stencil for the Crank-Nicolson Method.

- The Trapezoidal Rule applied to the IVP (5)—(7) is usually called the **Crank-Nicolson** Method. Note that “Nicolson” is spelled without the letter “h”.

- In the ODE context the Trapezoidal Rule is given by

 \[y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1}). \]

 Translated into our new context this becomes

 \[U_{n+1}^m = U_n^m + \frac{\tau}{2}(U_{n+1}^m - 2U_n^m + U_{n-1}^m + U_{n+1}^{m+1} - 2U_n^{m+1} + U_{n-1}^{m+1}) \]

- Figure 4 shows the stencil for the Crank-Nicolson Method.

- Just like the Backward Euler Method the Crank-Nicolson Method is **implicit** and requires the solution of a tridiagonal linear system at every time step.
• We can now ask the same questions as we did for ODEs, i.e.,
 – Local Truncation Error
 – Stability
 – Convergence

Local Truncation Error

• Let’s consider Euler’s Method.