• Recall Newton’s Method for Systems:

• Suppose F is function from \mathbb{R}^n to \mathbb{R}^n:

$$F : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

and we want to solve

$$F(x) = 0 \quad (1)$$

• Here

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

and

$$F(x) = \begin{bmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_n(x) \end{bmatrix},$$

• Also let

$$\nabla F = \left[\frac{\partial F_i}{\partial x_j} \right]_{i,j=1,2,...,n}$$

is the Jacobian of F.
• Newton’s Method is given by

\[x^{(0)} \text{ given} \]

• For \(k = 0, 1, 2, \ldots \) do:
1. Compute \(F(x^{(k)}) \) and \(A = \nabla F (x^{(k)}) \)
2. Solve \(As = -F(x^{(k)}) \)
 (The vector \(s \) is called the **Newton Step**).
3. Let \(x^{(k+1)} = x^{(k)} + s \)
4. Repeat until \(\|s\| < 0.01 \)
 (We stop when the length of the Newton step is less than 1 cm.)

• Newton’s Method is often written as

\[x^{(0)} \text{ given} \quad x^{(k+1)} = x^{(k)} \left(\nabla F(x^{(k)}) \right)^{-1} F(x^{(k)}) \]

where \(k = 0, 1, 2, \ldots \). However, there is no need to compute the inverse of the Jacobian.
• Example:

\[F_1(x, y) = x^2 + y^2 - 1 = 0 \]
\[F_2(x, y) = y - x^4 = 0 \Rightarrow x_0 = y_0 = 1. \]

• slight change in notation ...
• For the receiver program in the term project we have equations like

\[z = \|x_V - x_S\| - c(t_V - t_S) = 0 \]

where

- \(x_V\) is the unknown position of the vehicle
- \(x_S\) is the known position of the satellite
- \(t_V\) is the unknown time at which the vehicle receives the signals, and
- \(t_S\) is the known time at which the satellite broadcasts.

• Let’s say

\[x_V = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} \quad \text{and} \quad x_S = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix}. \]

Then

\[z = \left(\sum_{i=1}^{3} (\xi_i - \sigma_i)^2 \right)^{\frac{1}{2}} - c(t_V - t_S), \]

and, for example,

\[\frac{\partial z}{\partial \xi_i} = \frac{2(\xi_i - \sigma_i)}{2 \left(\sum_{i=1}^{3} (\xi_i - \sigma_i)^2 \right)^{\frac{1}{2}}} = \frac{(\xi_i - \sigma_i)}{\left(\sum_{i=1}^{3} (\xi_i - \sigma_i)^2 \right)^{\frac{1}{2}}}. \]
We already discussed this briefly, but it is worth reiterating: \(t_V \) and \(x_V \) have very different accuracy requirements. We want to know \(x_V \) within one centimeter and \(t_V \) within one centimeter divided by the speed of light. This

This is bound to lead to numerical trouble.

However, \(t_V \) enters our equations linearly, and can be eliminated!

We simply take differences. For example, suppose we have data from two satellites, \(S_1 \) and \(S_2 \):

\[
\begin{align*}
z_1 &= \|x_V - x_{S_1}\| - c(t_V - t_{S_1}) = 0 \\
\|x_V - x_{S_2}\| - c(t_V - t_{S_2}) &= 0 \\
\end{align*}
\]

Subtracting the second equation from the first gives the equation

\[
\|x_V - x_{S_1}\| - \|x_V - x_{S_2}\| + c(t_{S_1} - t_{S_2}) = 0
\]

which no longer contains the variable \(t_V \).

So, for example, if we have data from four satellites, \(S_1, S_2, S_3, \) and \(S_4 \), say, we can form 3 such equations corresponding to

\[
S_1 - S_2, \quad S_1 - S_3, \quad \text{and} \quad S_1 - S_4
\]

and solve the resulting system of 3 equations in 3 unknowns.

But we have data from more than four satellites, and we want to (and should) use all!
• So we get an overdetermined system.

• We have more equations than unknowns.

• To introduce the relevant idea, discrete non-linear Least Squares, consider and example:

\[
\begin{align*}
F_1(x, y) &= x + y - 2 = 0 \\
F_2(x, y) &= x^2 + y^2 - 2 = 0 \\
F_3(x, y) &= xy - 2 = 0
\end{align*}
\]

• We have 3 equations in 2 unknowns, there is no solution (check it out!).

• However, if there was in fact a solution we’d have

\[
f(x, y) = \sum_{i=1}^{3} F_i^2(x, y) = F_1^2(x, y) + F_2^2(x, y) + F_3^2(x, y) = 0.
\]

• Since we can’t have that we do the next best thing: Find \(x\) and \(y\) so as to minimize \(f\):

\[
f(x, y) = \sum F_i^2(x, y) = \min.
\]

• This idea generalizes in an obvious way to a system of \(m\) equations in \(n\) variables, where \(m > n\):

• Suppose we have a function

\[
F : \mathbb{R}^n \rightarrow \mathbb{R}^m
\]
where \(m > n \). Instead of solving the root finding problem

\[
F(x) = 0
\]

which has no solution we solve the nonlinear Least Squares problem

\[
f(x) = \|F(x)\|^2 = (F(x))^T F(x) = \min
\]

- \(F \) is called the \textbf{residual} in this context. Instead of making the residual zero we make it as small as possible.

- To find a solution of (2) we find a stationary point where

\[
\nabla f(x) = 0.
\]

- We can and should apply these ideas to the term project. Suppose we have data from \(m+1 \) satellites \(S_0, \ldots, S_m \). Then we find \(x_V \) so as to minimize

\[
f(x_V) = \sum_{i=1}^{m} \left(\|x_V - x_{S_0}\| - \|x_V - x_{S_i}\| + c(t_{S_0} - t_{S_i}) \right)^2 = \min.
\]

- To solve this problem we need to solve the nonlinear \(3 \times 3 \) system

\[
\nabla f = 0.
\]

- To solve the nonlinear system use Newton’s Method.
• This will give rise to a sequence of 3×3 positive definite linear systems.

• HW 1 asks you to describe Newton’s Method. This means you need to give explicit formulas for the relevant derivatives!
• Let’s look at this from a slightly more general point of view, with an important conclusion at the end.

• Suppose

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad \text{where} \quad m > n. \]

• We want \(F(x) = 0 \) but the system is overdetermined and so we settle for solving

\[f(x) = \| F(x) \|^2 = F(x)^T F(x) = \min. \]

• To find the minimizer we solve the nonlinear system

\[\nabla f(x) = 2 \nabla F(x)^T F(x) = 0 \]

where \(\nabla f \) is the gradient of \(f \) and the Jacobian \(\nabla F(x) \) is given by

\[B = \nabla F(x) = \left[\frac{\partial F_i}{\partial x_j} \right]_{i=1,\ldots,m}^{j=1,\ldots,n}. \]

• To solve the nonlinear system we need the Jacobian of \(\nabla f \). That’s the Hessian \(H(x) \) (the symmetric matrix of second order partial derivatives) of \(f \).

• In our case we get

\[
H(x) = \nabla(\nabla f) = \nabla^2 f = \nabla(2\nabla F^T F) \\
= 2 \left((\nabla^2 F)^T F + \nabla F^T \nabla F \right)
\]
• Here, as before, $B = \nabla F$ is an $m \times n$ matrix. $\nabla^2 F$ is an $m \times n \times n$ tensor. It consists of $n \times n$ layers, each of which is the matrix of second order partial derivatives of a component of F.

\begin{itemize}
 \item However, the residual F is very small in our project!
\end{itemize}

• So we can safely ignore the tensor term and approximate

\[
 H(x) \approx 2\nabla F^T \nabla F = B^T B
\]

• It’s easy to see that $B^T B$ is positive definite.