2.5

MATRIX FACTORIZATION

Linear Algebra
And Its Applications
Fifth Edition
David C. Lay • Steven R. Lay • Judi J. McDonald

Pearson

© 2016 Pearson Education, Inc.
A factorization of a matrix A is an equation that expresses A as a product of two or more matrices. Whereas matrix multiplication involves a synthesis of data (combining the effects of two or more linear transformations into a single matrix), matrix factorization is an analysis of data.
The LU factorization, described on the next few slides, is motivated by the fairly common industrial and business problem of solving a sequence of equations, all with the same coefficient matrix:

\[Ax = b_1, \ Ax = b_2, \ldots, \ Ax = b_p \]

(1)

When \(A \) is invertible, one could compute \(A^{-1} \) and then compute \(A^{-1}b_1, A^{-1}b_2, \) and so on.

However, it is more efficient to solve the first equation in the sequence (1) by row reduction and obtain the LU factorization of \(A \) at the same time. Thereafter, the remaining equations in sequence (1) are solved with the LU factorization.
THE LU FACTORIZATION

- At first, assume that A is an $m \times n$ matrix that can be row reduced to echelon form, \textit{without row interchanges}.
- Then A can be written in the form $A = LU$, were L is an $m \times m$ lower triangular matrix with 1’s on the diagonal and U is an $m \times n$ echelon form of A.
- For instance, see Fig. 1 below. Such a factorization is called an \textbf{LU factorization} of A. The matrix L is invertible and is called a unit lower triangular matrix.

\[A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ * & 1 & 0 & 0 & 0 \\ * & * & 1 & 0 & 0 \\ * & * & * & 1 & \end{bmatrix} \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ 0 & 0 & 0 & 0 & \end{bmatrix} \]
Before studying how to construct L and U, we should look at why they are so useful. When $A = LU$, the equation $Ax = b$ can be written as $L(Ux) = b$. Writing y for Ux, we can find x by solving the pair of equations

\[
\begin{align*}
Ly &= b \\
Ux &= y
\end{align*}
\]

First solve $Ly = b$ for y, and then solve $Ux = y$ for x. See Fig. 2 on the next slide. Each equation is easy to solve because L and U are triangular.
Example 1 It can be verified that

\[A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -3 & 8 & 3 & 1 \\ 2 & -5 & 1 & 0 \\ -9 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = LU \]

Use this factorization of \(A \) to solve \(Ax = b \), where \(b = \begin{bmatrix} -9 \\ 5 \\ 7 \\ 11 \end{bmatrix} \)
THE LU FACTORIZATION

Solution The solution of $Ly = b$ needs only 6 multiplications and 6 additions, because the arithmetic takes place only in column 5.

\[
\begin{bmatrix} L & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ -1 & 1 & 0 & 0 & 5 \\ 2 & -5 & 1 & 0 & 7 \\ -3 & 8 & 3 & 1 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} I & y \end{bmatrix}
\]

Then, for $Ux = y$, the “backward” phase of row reduction requires 4 divisions, 6 multiplications, and 6 additions.
The LU Factorization

- For instance, creating the zeros in column 4 of \([U \ y]\) requires 1 division in row 4 and 3 multiplication-addition pairs to add multiples of row 4 to the rows above.

\[
\begin{bmatrix}
U & y
\end{bmatrix} = \begin{bmatrix}
3 & -7 & -2 & 2 & -9 \\
0 & -2 & -1 & 2 & -4 \\
0 & 0 & -1 & 1 & 5 \\
0 & 0 & 0 & -1 & 1
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & -1
\end{bmatrix}, \quad x = \begin{bmatrix}
3 \\
4 \\
-6 \\
-1
\end{bmatrix}
\]

- To find \(x\) requires 28 arithmetic operations, or “flops” (floating point operations), excluding the cost of finding \(L\) and \(U\). In contrast, row reduction of \([A \ b]\) to \([I \ x]\) takes 62 operations.
AN LU FACTORIZATION ALGORITHM

- Suppose A can be reduced to an echelon form U using only row replacements that add a multiple of one row to another below it.

- In this case, there exist unit lower triangular elementary matrices E_1, \ldots, E_p such that
 $$E_p \ldots E_1 A = U$$

- Then
 $$A = (E_p \ldots E_1)^{-1} U = LU$$ \hspace{1cm} (3)

- where
 $$L = (E_p \ldots E_1)^{-1}$$ \hspace{1cm} (4)

- It can be shown that products and inverses of unit lower triangular matrices are also unit lower triangular. Thus L is unit lower triangular.
AN LU FACTORIZATION ALGORITHM

Note that row operations in equation (3), which reduce \(A \) to \(U \), also reduce the \(L \) in equation (4) to \(I \), because
\[
E_p \ldots E_1 L = (E_p \ldots E_1)(E_p \ldots E_1)^{-1} = I.
\]
This observation is the key to constructing \(L \).

Algorithm for an LU Factorization

1. Reduce \(A \) to an echelon form \(U \) by a sequence of row replacement operations, if possible.
2. Place entries in \(L \) such that the same sequence of row operations reduces \(L \) to \(I \).
AN LU FACTORIZATION ALGORITHM

- Step 1 is not always possible, but when it is, the argument above shows that an LU factorization exists.
- Example 2 on the followings slides will show how to implement step 2. By construction, L will satisfy

$$(E_p \ldots E_1)L = I$$

- using the same E_p, \ldots, E_1 as in equation (3). Thus L will be invertible, by the Invertible Matrix Theorem, with $(E_p \ldots E_1) = L^{-1}$. From (3), $L^{-1}A = U$, and $A = LU$. So step 2 will produce an acceptable L.
Example 2 Find an LU factorization of

\[
A = \begin{bmatrix}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1 \\
\end{bmatrix}
\]

Solution Since \(A \) has four rows, \(L \) should be \(4 \times 4 \). The first column of \(L \) is the first column of \(A \) divided by the top pivot entry:

\[
L = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
-3 & -3 & 1 & 1 \\
\end{bmatrix}
\]
AN LU FACTORIZATION ALGORITHM

- Compare the first columns of A and L. The row operations that create zeros in the first column of A will also create zeros in the first column of L.

- To make this same correspondence of row operations on A hold for the rest of L, watch a row reduction of A to an echelon form U. That is, highlight the entries in each matrix that are used to determine the sequence of row operations that transform A onto U.

\[
A = \begin{bmatrix}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{bmatrix} \sim \begin{bmatrix}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & -9 & -3 & -4 & 10 \\
0 & 12 & 4 & 12 & -5
\end{bmatrix} = A_1
\]

\[
\sim A_2 = \begin{bmatrix}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 4 & 7
\end{bmatrix} \sim \begin{bmatrix}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{bmatrix} = U
\]
AN LU FACTORIZATION ALGORITHM

- The highlighted entries above determine the row reduction of A to U. At each pivot column, divide the highlighted entries by the pivot and place the result onto L:

\[
\begin{bmatrix}
2 \\
-4 \\
2 \\
-6
\end{bmatrix}
\begin{bmatrix}
3 \\
-9 \\
12 \\
4
\end{bmatrix}
\begin{bmatrix}
2 \\
3 \\
2 \\
5
\end{bmatrix}
\]

\[\div 2 \quad \div 3 \quad \div 2 \quad \div 5\]

\[
\begin{bmatrix}
1 \\
-2 \\
1 \\
-3
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
-3 \\
4
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]

- An easy calculation verifies that this L and U satisfy $LU = A$.